CSE 517
Natural Language Processing
Winter 2019

Hidden Markov Models

Yejin Choi
University of Washington

[Many slides from Dan Klein, Michael Collins, Luke Zettlemoyer]
Overview

- Hidden Markov Models
- Learning
 - Supervised: Maximum Likelihood
- Inference (or Decoding)
 - Viterbi
 - Forward-Backward
- N-gram Taggers
Wait,
is forward-backward still relevant?
Google DeepMind Is Now Analysing *Magic* And *Hearthstone* Cards

Figure 4: Generation process for the code `init('Tirion Fordring', 8, 6, 6)` using LPNs.
Latent Predictor Networks for Code Generation

Wang Ling, Edward Grefenstette, Karl Moritz Hermann, Tomáš Kočiský, Andrew Senior, Fumin Wang, Phil Blunsom

ACL 2016

While the number of possible paths grows exponentially, α and β can be computed efficiently using the forward-backward algorithm for Semi-Markov models [Sarawagi and Cohen, 2005], where we associate $P(r_t \mid y_1 \ldots y_{t-1}, x)$ to edges and $P(s_t \mid y_1 \ldots y_{t-1}, x, r_t)$ to nodes in the Markov chain.

The derivative $\frac{\partial \log P(y \mid x)}{\partial P(s_t \mid y_1 \ldots y_{t-1}, x, r_t)}$ can be computed using the same logic:

$$\frac{\partial \alpha_{t,s_t} P(s_t \mid y_1 \ldots y_{t-1}, x, r_t) \beta_{t+|s_t|-1} + \xi_{r_t}}{P(y \mid x) \partial P(s_t \mid y_1 \ldots y_{t-1}, x, r_t)} = \frac{\alpha_{t,r_t} \beta_{t+|s_t|-1}}{\alpha_{|y|+1}}$$
Structured Attention Networks

Yoon Kim* Carl Denton* Luong Hoang Alexander M. Rush
{yoonkim@seas, carldenton@college, lhoang@g, srush@seas}.harvard.edu
School of Engineering and Applied Sciences
Harvard University
Cambridge, MA 02138, USA

\begin{algorithm}
\textbf{procedure} \textsc{forwardbackward}(\theta) \hfill \textbf{procedure} \textsc{backpropforwardbackward}(\theta, p, \nabla^\mathcal{L}_p) \\
\hspace{1em} \alpha[0, \langle t \rangle] \leftarrow 0 \hfill \nabla^\mathcal{L}_\theta \leftarrow \log p \otimes \log \nabla^\mathcal{L}_p \otimes \beta \otimes -A \\
\hspace{1em} \beta[n + 1, \langle t \rangle] \leftarrow 0 \hfill \hat{\alpha}[0, \langle t \rangle] \leftarrow 0 \\
\hspace{2em} \text{for} i = 1, \ldots, n; c \in \mathcal{C} \text{ do} \hfill \text{for} i = n, \ldots, 1; c \in \mathcal{C} \text{ do} \\
\hspace{3em} \alpha[i, c] \leftarrow \bigoplus_y \alpha[i - 1, y] \otimes \theta_{i-1,i}(y, c) \hfill \hat{\beta}[n + 1, \langle t \rangle] \leftarrow 0 \\
\hspace{3em} \text{for} i = n, \ldots, 1; c \in \mathcal{C} \text{ do} \hfill \text{for} i = 1, \ldots, n; c \in \mathcal{C} \text{ do} \\
\hspace{4em} \beta[i, c] \leftarrow \bigoplus_y \beta[i + 1, y] \otimes \theta_{i,i+1}(c, y) \hfill \hat{\beta}[i + 1, y] \leftarrow 0 \\
\hspace{4em} A \leftarrow \alpha[n + 1, \langle t \rangle] \\
\end{algorithm}
Inside-outside and forward-backward algorithms are just backprop.

Jason Eisner (2016). In *EMNLP Workshop on Structured Prediction for NLP*.
Inside-Outside & Forward-Backward Algorithms are just Backprop
(tutorial paper)

Jason Eisner

“The inside-outside algorithm is the hardest algorithm I know.”
– a senior NLP researcher, in the 1990’s
Pairs of Sequences

- Consider the problem of jointly modeling a pair of strings
 - E.g.: part of speech tagging

```
DT   NNP   NN   VBD   VBN   RP   NN   NNS
The Georgia branch had taken on loan commitments …
```

```
DT   NN   IN   NN   VBD   NNS   VBD
The average of interbank offered rates plummeted …
```

- Q: How do we map each word in the input sentence onto the appropriate label?
- A: We can learn a joint distribution:

\[p(x_1 \ldots x_n, y_1 \ldots y_n) \]

- And then compute the most likely assignment:

\[\arg \max_{y_1 \ldots y_n} p(x_1 \ldots x_n, y_1 \ldots y_n) \]
We want a model of sequences \(y\) and observations \(x\) where \(y_0 = \text{START}\) and we call \(q(y'|y)\) the transition distribution and \(e(x|y)\) the emission (or observation) distribution.

\[
p(x_1 \ldots x_n, y_1 \ldots y_{n+1}) = q(\text{STOP} | y_n) \prod_{i=1}^{n} q(y_i | y_{i-1}) e(x_i | y_i)
\]

where \(y_0 = \text{START\text{}}\) and we call \(q(y'|y)\) the transition distribution and \(e(x|y)\) the emission (or observation) distribution.

Assumptions:
- Tag/state sequence is generated by a markov model
- Words are chosen independently, conditioned only on the tag/state
- These are totally broken assumptions: why?
Example: POS Tagging

The Georgia branch had taken on loan commitments ...

DT NNP NN VBD VBN RP NN NNS

- HMM Model:
 - States $Y = \{\text{DT, NNP, NN, ... }\}$ are the POS tags
 - Observations $X = V$ are words
 - Transition dist’ n $q(y_i | y_{i-1})$ models the tag sequences
 - Emission dist’ n $e(x_i | y_i)$ models words given their POS

- Q: How do we represent n-gram POS taggers?
Example: Chunking

- **Goal:** Segment text into spans with certain properties
- **For example,** named entities: PER, ORG, and LOC

Germany’s representative to the European Union’s veterinary committee Werner Zwingman said on Wednesday consumers should…

Q: Is this a tagging problem?
Example: Chunking

[Germany]_{\text{LOC}} ’s representative to the [European Union]_{\text{ORG}} ’s veterinary committee [Werner Zwingman]_{\text{PER}} said on Wednesday consumers should…

Germany/BL ’s/NA representative/NA to/NA the/NA European/BO Union/CO ’s/NA veterinary/NA committee/NA Werner/BP Zwingman/CP said/NA on/NA Wednesday/NA consumers/NA should/NA…

- **HMM Model:**
 - States $Y = \{\text{NA}, \text{BL}, \text{CL}, \text{BO}, \text{CO}, \text{BP}, \text{CP}\}$ represent beginnings (BL,BO,BP) and continuations (CL,CO,CP) of chunks, as well as other words (NA)
 - Observations $X = V$ are words
 - Transition $\text{dist} \ q(y_i | y_{i-1})$ models the tag sequences
 - Emission $\text{dist} \ e(x_i | y_i)$ models words given their type
Example: HMM Translation Model

E: Thank you, I shall do so gladly.

A: 1 2 3 4 5 6 7 8 9

F: Gracias, lo haré de muy buen grado.

Model Parameters

Emissions: e(F1 = Gracias | E_{A1} = Thank) Transitions: p(A2 = 3 | A1 = 1)
HMM Inference and Learning

- **Learning**
 - Maximum likelihood: transitions q and emissions e

\[
p(x_1 \ldots x_n, y_1 \ldots y_{n+1}) = q(\text{STOP} | y_n) \prod_{i=1}^{n} q(y_i | y_{i-1}) e(x_i | y_i)
\]

- **Inference (linear time in sentence length!)**
 - Viterbi: $y^* = \arg\max_{y_1 \ldots y_n} p(x_1 \ldots x_n, y_1 \ldots y_{n+1})$

\[
\text{where } y_{n+1} = \text{STOP}
\]

- Forward Backward:

\[
p(x_1 \ldots x_n, y_i) =
\]
Learning: Maximum Likelihood

\[p(x_1 \ldots x_n, y_1 \ldots y_{n+1}) = q(\text{STOP}|y_n) \prod_{i=1}^{n} q(y_i|y_{i-1}) e(x_i|y_i) \]

- **Learning (Supervised Learning)**
 - Maximum likelihood methods for estimating transitions \(q \) and emissions \(e \)

\[q_{ML}(y_i|y_{i-1}) = \quad e_{ML}(x|y) = \]

- Will these estimates be high quality?
 - Which is likely to be more sparse, \(q \) or \(e \)?
- Can use all of the same smoothing tricks we saw for language models!
Learning: Low Frequency Words

Typically, linear interpolation works well for transitions

\[q(y_i | y_{i-1}) = \lambda_1 q_{ML}(y_i | y_{i-1}) + \lambda_2 q_{ML}(y_i) \]

However, other approaches used for emissions

Step 1: Split the vocabulary
- **Frequent words**: appear more than M (often 5) times
- **Low frequency**: everything else

Step 2: Map each low frequency word to one of a small, finite set of possibilities
- For example, based on prefixes, suffixes, etc.

Step 3: Learn model for this new space of possible word sequences

\[p(x_1 \ldots x_n, y_1 \ldots y_{n+1}) = q(\text{STOP} | y_n) \prod_{i=1}^{n} q(y_i | y_{i-1}) e(x_i | y_i) \]
Low Frequency Words: An Example

Named Entity Recognition [Bickel et. al, 1999]
- Used the following word classes for infrequent words:

<table>
<thead>
<tr>
<th>Word class</th>
<th>Example</th>
<th>Intuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>twoDigitNum</td>
<td>90</td>
<td>Two digit year</td>
</tr>
<tr>
<td>fourDigitNum</td>
<td>1990</td>
<td>Four digit year</td>
</tr>
<tr>
<td>containsDigitAndAlpha</td>
<td>A8956-67</td>
<td>Product code</td>
</tr>
<tr>
<td>containsDigitAndDash</td>
<td>09-96</td>
<td>Date</td>
</tr>
<tr>
<td>containsDigitAndSlash</td>
<td>11/9/89</td>
<td>Date</td>
</tr>
<tr>
<td>containsDigitAndComma</td>
<td>23,000.00</td>
<td>Monetary amount</td>
</tr>
<tr>
<td>containsDigitAndPeriod</td>
<td>1.00</td>
<td>Monetary amount, percentage</td>
</tr>
<tr>
<td>othernum</td>
<td>456789</td>
<td>Other number</td>
</tr>
<tr>
<td>allCaps</td>
<td>BBN</td>
<td>Organization</td>
</tr>
<tr>
<td>capPeriod</td>
<td>M.</td>
<td>Person name initial</td>
</tr>
<tr>
<td>firstWord</td>
<td>first word of sentence</td>
<td>no useful capitalization information</td>
</tr>
<tr>
<td>initCap</td>
<td>Sally</td>
<td>Capitalized word</td>
</tr>
<tr>
<td>lowercase</td>
<td>can</td>
<td>Uncapitalized word</td>
</tr>
<tr>
<td>other</td>
<td>,</td>
<td>Punctuation marks, all other words</td>
</tr>
</tbody>
</table>
Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA their/NA CEO/NA Alan/SP Mulally/CP announced/NA first/NA quarter/NA results/NA ./NA

firstword/NA soared/NA at/NA initCap/SC Co./CC ,/NA easily/NA lowercase/NA forecasts/NA on/NA initCap/SL Street/CL ,/NA as/NA their/NA CEO/NA Alan/SP initCap/CP announced/NA first/NA quarter/NA results/NA ./NA

NA = No entity
SC = Start Company
CC = Continue Company
SL = Start Location
CL = Continue Location
…
Inference (Decoding)

- Problem: find the most likely (Viterbi) sequence under the model
 \[y^* = \arg\max_{y_1 \cdots y_n} p(x_1 \cdots x_n, y_1 \cdots y_{n+1}) \]

- Given model parameters, we can score any sequence pair

 Fed raises interest rates 0.5 percent .

 \[q(\text{NNP}|\star) \ e(\text{Fed}|\text{NNP}) \ q(\text{VBZ}|\text{NNP}) \ e(\text{raises}|\text{VBZ}) \ q(\text{NN}|\text{VBZ}) \ldots . \]

- In principle, we’re done – list all possible tag sequences, score each one, pick the best one (the Viterbi state sequence)

 \[\begin{align*}
 \text{NNP} & \quad \text{VBZ} & \quad \text{NN} & \quad \text{NNS} & \quad \text{CD} & \quad \text{NN} \quad \Rightarrow \quad \log P = -23 \\
 \text{NNP} & \quad \text{NNS} & \quad \text{NN} & \quad \text{NNS} & \quad \text{CD} & \quad \text{NN} \quad \Rightarrow \quad \log P = -29 \\
 \text{NNP} & \quad \text{VBZ} & \quad \text{VB} & \quad \text{NNS} & \quad \text{CD} & \quad \text{NN} \quad \Rightarrow \quad \log P = -27
 \end{align*} \]
Dynamic Programming!

\[
p(x_1...x_n, y_1...y_{n+1}) = q(\text{STOP}|y_n) \prod_{i=1}^{n} q(y_i|y_{i-1}) e(x_i|y_i)
\]

- Define \(\pi(i, y_i) \) to be the max score of a sequence of length \(i \) ending in tag \(y_i \)

\[
\pi(i, y_i) = \max_{y_1...y_{i-1}} p(x_1...x_i, y_1...y_i)
\]

\[
= \max_{y_i-1} e(x_i|y_i) q(y_i|y_{i-1}) \max_{y_1...y_{i-2}} p(x_1...x_{i-1}, y_1...y_{i-1})
\]

\[
= \max_{y_i-1} e(x_i|y_i) q(y_i|y_{i-1}) \pi(i - 1, y_{i-1})
\]

- We now have an efficient algorithm. Start with \(i=0 \) and work your way to the end of the sentence!
Time flies like an arrow;
Fruit flies like a banana.
<table>
<thead>
<tr>
<th>Fruit</th>
<th>Flies</th>
<th>Like</th>
<th>Bananas</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi(1, N))</td>
<td>(\pi(2, N))</td>
<td>(\pi(3, N))</td>
<td>(\pi(4, N))</td>
</tr>
<tr>
<td>(\pi(1, V))</td>
<td>(\pi(2, V))</td>
<td>(\pi(3, V))</td>
<td>(\pi(4, V))</td>
</tr>
<tr>
<td>(\pi(1, IN))</td>
<td>(\pi(2, IN))</td>
<td>(\pi(3, IN))</td>
<td>(\pi(4, IN))</td>
</tr>
</tbody>
</table>

\[
\pi(i, y_i) = \max_{y_1 \ldots y_{i-1}} p(x_1 \ldots x_i, y_1 \ldots y_i)
\]
Fruit Flies Like Bananas

\[\pi(i, y_i) = \max_{y_1 \cdots y_{i-1}} p(x_1 \cdots x_i, y_1 \cdots y_i) \]

\[
\begin{align*}
\pi(1, N) & = 0.03 \\
\pi(1, V) & = 0.01 \\
\pi(1, IN) & = 0
\end{align*}
\]

\[
\begin{align*}
\pi(2, N) \\
\pi(2, V) \\
\pi(2, IN)
\end{align*}
\]

\[
\begin{align*}
\pi(3, N) \\
\pi(3, V) \\
\pi(3, IN)
\end{align*}
\]

\[
\begin{align*}
\pi(4, N) \\
\pi(4, V) \\
\pi(4, IN)
\end{align*}
\]

START STOP
Fruit | Flies | Like | Bananas

\[\pi(i, y_i) = \max_{y_1 \ldots y_{i-1}} p(x_1 \ldots x_i, y_1 \ldots y_i) \]
π(i, y_i) = \max_{y_1 \ldots y_{i-1}} p(x_1 \ldots x_i, y_1 \ldots y_i)
\begin{align*}
\pi(i, y_i) &= \max_{y_1 \ldots y_{i-1}} p(x_1 \ldots x_i, y_1 \ldots y_i) \\
\pi(1, N) &= 0.03 \\
\pi(1, V) &= 0.01 \\
\pi(1, IN) &= 0 \\
\pi(2, N) &= 0.005 \\
\pi(2, V) &= 0.007 \\
\pi(2, IN) &= 0 \\
\pi(3, N) &= 0.0001 \\
\pi(3, V) &= 0.0007 \\
\pi(3, IN) &= 0.0003 \\
\pi(4, N) &= \\
\pi(4, V) &= \\
\pi(4, IN) &=
\end{align*}
\[\pi(i, y_i) = \max_{y_1 \ldots y_{i-1}} p(x_1 \ldots x_i, y_1 \ldots y_i) \]

\[= \max_{y_1 \ldots y_{i-1}} p(x_1 \ldots x_{i-1}, y_1 \ldots y_{i-1}) \]

\[= \max_{y_{i-1}} e(x_i | y_i) q(y_i | y_{i-1}) \pi(i - 1, y_{i-1}) \]
\[\pi(i, y_i) = \max_{y_1 \ldots y_{i-1}} p(x_1 \ldots x_i, y_1 \ldots y_i) \]
Fruit Flies Like Bananas

\[\pi(i, y_i) = \max_{y_1 \ldots y_{i-1}} p(x_1 \ldots x_i, y_1 \ldots y_i) \]
Fruit Flies Like Bananas

\[
\pi(i, y_i) = \max_{y_1 \ldots y_{i-1}} p(x_1 \ldots x_i, y_1 \ldots y_i)
\]
Why is this not a greedy algorithm? Why does this find the max p(.)? What is the runtime?

\[
\pi(i, y_i) = \max_{y_1 \ldots y_{i-1}} p(x_1 \ldots x_i, y_1 \ldots y_i)
\]
Dynamic Programming!

Define \(\pi(i, y_i) \) to be the max score of a sequence of length \(i \) ending in tag \(y_i \):

\[
\pi(i, y_i) = \max_{y_1 \ldots y_{i-1}} p(x_1 \ldots x_i, y_1 \ldots y_i)
\]

\[
= \max_{y_{i-1}} e(x_i | y_i) q(y_i | y_{i-1}) \max_{y_1 \ldots y_{i-2}} p(x_1 \ldots x_{i-1}, y_1 \ldots y_{i-1})
\]

\[
= \max_{y_{i-1}} e(x_i | y_i) q(y_i | y_{i-1}) \pi(i - 1, y_{i-1})
\]

- Define \(\pi(i, y_i) \) to be the max score of a sequence of length \(i \) ending in tag \(y_i \)

\[
p(x_1 \ldots x_n, y_1 \ldots y_{n+1}) = q(\text{STOP}|y_n) \prod_{i=1}^{n} q(y_i|y_{i-1}) e(x_i|y_i)
\]

\[
y^* = \arg\max_{y_1 \ldots y_n} p(x_1 \ldots x_n, y_1 \ldots y_{n+1})
\]

- We now have an efficient algorithm. Start with \(i=0 \) and work your way to the end of the sentence!
Viterbi Algorithm

- Dynamic program for computing (for all i)

$$\pi(i, y_i) = \max_{y_1 \ldots y_{i-1}} p(x_1 \ldots x_i, y_1 \ldots y_i)$$

- Iterative computation

$$\pi(0, y_0) =$$

For $i = 1 \ldots n$:

$$\pi(i, y_i) = \max_{y_{i-1}} e(x_i | y_i) q(y_i | y_{i-1}) \pi(i - 1, y_{i-1})$$

- Also, store back pointers

$$bp(i, y_i) = \arg \max_{y_{i-1}} e(x_i | y_i) q(y_i | y_{i-1}) \pi(i - 1, y_{i-1})$$

- What is the final solution to

$$y^* = \arg \max_{y_1 \ldots y_n} p(x_1 \ldots x_n, y_1 \ldots y_{n+1})$$
The Viterbi Algorithm: Runtime

- Linear in sentence length n
- Polynomial in the number of possible tags $|K|$

$$\pi(i, y_i) = \max_{y_{i-1}} e(x_i | y_i) q(y_i | y_{i-1}) \pi(i - 1, y_{i-1})$$

- Specifically:

$$O(n |K|) \text{ entries in } \pi(i, y_i)$$

$$O(|K|) \text{ time to compute each } \pi(i, y_i)$$

- Total runtime: $O(n |K|^2)$

- Q: Is this a practical algorithm?
- A: depends on $|K|$....
Broader Context

- **Beam Search**: Viterbi decoding with K best sub-solutions (beam size = K)
- Viterbi algorithm - a special case of **max-product** algorithm
- Forward-backward - a special case of **sum-product** algorithm (belief propagation algorithm)
- Viterbi decoding can be also used with general graphical models (factor graphs, Markov Random Fields, Conditional Random Fields, …) with non-probabilistic scoring functions (potential functions).
Reflection

- Viterbi: why argmax over joint distribution?

\[y^* = \arg \max_{y_1 \ldots y_n} p(x_1 \ldots x_n, y_1 \ldots y_n) \]

- Why not this:

\[y^* = \arg \max_{y_1 \ldots y_n} p(y_1 \ldots y_n | x_1 \ldots x_n) \]

\[\begin{align*}
 &= \arg \max_{y_1 \ldots y_n} \frac{p(y_1 \ldots y_n, x_1 \ldots x_n)}{p(x_1 \ldots x_n)} \\
 &= \arg \max_{y_1 \ldots y_n} p(x_1 \ldots x_n, y_1 \ldots y_n)
\end{align*} \]

- Same thing!
Marginal Inference

- Problem: find the marginal probability of each tag for y_i

$$p(x_1 \ldots x_n, y_i) = \sum_{y_1 \ldots y_{i-1}} \sum_{y_{i+1} \ldots y_n} p(x_1 \ldots x_n, y_1 \ldots y_{n+1})$$

- Given model parameters, we can score any sequence pair

```
NNP  VBZ  NN  NNS  CD  NN
Fed  raises  interest  rates  0.5  percent.
q(NNP|♦) e(Fed|NNP) q(VBZ|NNP) e(raises|VBZ) q(NN|VBZ).....
```

- In principle, we’re done – list all possible tag sequences, score each one, sum over all of the possible values for y_i

```
NNP  VBZ  NN  NNS  CD  NN  \rightarrow  \log P = -23
NNP  NNS  NN  NNS  CD  NN  \rightarrow  \log P = -29
NNP  VBZ  VB  NNS  CD  NN  \rightarrow  \log P = -27
```
Marginal Inference

- Problem: find the marginal probability of each tag for \(y_i \)

\[
p(x_1 \ldots x_n, y_i) = \sum_{y_1 \ldots y_{i-1}} \sum_{y_{i+1} \ldots y_n} p(x_1 \ldots x_n, y_1 \ldots y_{n+1})
\]

Compare it to “Viterbi Inference”

\[
\pi(i, y_i) = \max_{y_1 \ldots y_{i-1}} p(x_1 \ldots x_i, y_1 \ldots y_i)
\]
START Fed raises interest rates STOP

The State Lattice / Trellis: Viterbi
The State Lattice / Trellis: Marginal

\[p(x_1 \ldots x_n, y_i) = \sum_{y_1 \ldots y_i-1} \sum_{y_{i+1} \ldots y_n} p(x_1 \ldots x_n, y_1 \ldots y_{n+1}) \]
Dynamic Programming!

\[p(x_1 \ldots x_n, y_i) = p(x_1 \ldots x_i, y_i)p(x_{i+1} \ldots x_n | y_i) \]

- Sum over all paths, on both sides of each \(y_i \)

\[\alpha(i, y_i) = p(x_1 \ldots x_i, y_i) = \sum_{y_1 \ldots y_{i-1}} p(x_1 \ldots x_i, y_1 \ldots y_i) \]
\[= \sum_{y_{i-1}} e(x_i | y_i)q(y_i | y_{i-1})\alpha(i - 1, y_{i-1}) \]

\[\beta(i, y_i) = p(x_{i+1} \ldots x_n | y_i) = \sum_{y_{i+1} \ldots y_n} p(x_{i+1} \ldots x_n, y_{i+1} \ldots y_{n+1} | y_i) \]
\[= \sum_{y_{i+1}} e(x_{i+1} | y_{i+1})q(y_{i+1} | y_i)\beta(i + 1, y_{i+1}) \]
The State Lattice / Trellis: **Forward**

\[
\alpha(i, y_i) = p(x_1 \ldots x_i, y_i) = \sum_{y_1 \ldots y_{i-1}} p(x_1 \ldots x_i, y_1 \ldots y_i)
\]

\[
= \sum_{y_{i-1}} e(x_i | y_i) q(y_i | y_{i-1}) \alpha(i - 1, y_{i-1})
\]
The State Lattice / Trellis: Backward

\[\beta(i, y_i) = p(x_{i+1} \ldots x_n | y_i) = \sum_{y_{i+1} \ldots y_n} p(x_{i+1} \ldots x_n, y_{i+1} \ldots y_{n+1} | y_i) \]

\[= \sum_{y_{i+1}} e(x_{i+1} | y_{i+1}) q(y_{i+1} | y_i) \beta(i + 1, y_{i+1}) \]
Forward Backward Algorithm

- Two passes: one forward, one back
 - Forward:
 \[
 \alpha(0, y_0) = \begin{cases}
 1 & \text{if } y_0 == \text{START} \\
 0 & \text{otherwise}
 \end{cases}
 \]
 - For \(i = 1 \ldots n \)
 \[
 \alpha(i, y_i) = \sum_{y_{i-1}} e(x_i|y_i)q(y_i|y_{i-1})\alpha(i - 1, y_{i-1})
 \]
 - Backward:
 \[
 \beta(n, y_n) = \begin{cases}
 q(y_{n+1}|y_n) & \text{if } y_{n+1} == \text{STOP} \\
 0 & \text{otherwise}
 \end{cases}
 \]
 - For \(i = n-1 \ldots 0 \)
 \[
 \beta(i, y_i) = \sum_{y_{i+1}} e(x_{i+1}|y_{i+1})q(y_{i+1}|y_i)\beta(i + 1, y_{i+1})
 \]
Forward Backward: Runtime

- Linear in sentence length n
- Polynomial in the number of possible tags $|K|$

 \[
 \alpha(i, y_i) = \sum_{y_{i-1}} e(x_i | y_i) q(y_i | y_{i-1}) \alpha(i - 1, y_{i-1})
 \]
 \[
 \beta(i, y_i) = \sum_{y_{i+1}} e(x_{i+1} | y_{i+1}) q(y_{i+1} | y_i) \beta(i + 1, y_{i+1})
 \]

- Specifically: $O(n|K|)$ entries in $\alpha(i, y_i)$ and $\beta(i, y_i)$

 $O(|K|)$ time to compute each entry

- Total runtime: $O(n|K|^2)$

- Q: How does this compare to Viterbi?
- A: Exactly the same!!!
Other Marginal Inference

- We’ve been doing this:
 \[p(x_1 \ldots x_n, y_i) = \sum_{y_1 \ldots y_{i-1}} \sum_{y_{i+1} \ldots y_n} p(x_1 \ldots x_n, y_1 \ldots y_{n+1}) \]

- Can we compute this?
 \[p(x_1 \ldots x_n) = \sum_{y_1 \ldots y_n} p(x_1 \ldots x_n, y_1 \ldots y_{n+1}) \]
 \[= \ldots \ldots p(x_1 \ldots x_n, y_i) \]
 \[= \sum_{y_i} p(x_1 \ldots x_n, y_i) \]
Other Marginal Inference

- Can we compute this?

\[p(x_1 \ldots x_n) = \sum_{y_i} p(x_1 \ldots x_n, y_i) \]

- Relation with forward quantity?

\[\alpha(i, y_i) = p(x_1 \ldots x_i, y_i) = \sum_{y_1 \ldots y_{i-1}} p(x_1 \ldots x_i, y_1 \ldots y_i) \]

\[p(x_1 \ldots x_n) = \sum_{y_1 \ldots y_n} p(x_1 \ldots x_n, y_1 \ldots y_{n+1}) \]

\[= \ldots ? \ldots \alpha(n, y_n) \]

\[= \sum_{y_n} q(STOP|y_n) \alpha(n, y_n) := \alpha(n + 1, STOP) \]
Unsupervised Learning (EM) Intuition

- We’ve been doing this:

\[p(x_1 \ldots x_n, y_i) = \sum_{y_1 \ldots y_{i-1}} \sum_{y_{i+1} \ldots y_n} p(x_1 \ldots x_n, y_1 \ldots y_{n+1}) \]

- What we really want is this: (which we now know how to compute!)

\[p(y_i | x_1 \ldots x_n) = \frac{p(x_1 \ldots x_n, y_i)}{p(x_1 \ldots x_n)} \]

- This means we can compute the expected count of things

\[\text{(expected)} \ \text{count}(\text{NN}) = \sum_i p(y_i = \text{NN} | x_1 \ldots x_n) \]
Unsupervised Learning (EM) Intuition

- What we really want is this: (which we now know how to compute!)

\[
p(y_i | x_1 \ldots x_n) = \frac{p(x_1 \ldots x_n, y_i)}{p(x_1 \ldots x_n)}
\]

- This means we can compute the expected count of things:

\[
(\text{expected \ count(NN)}) = \sum_i p(y_i = \text{NN} | x_1 \ldots x_n)
\]

- If we have this:

\[
p(y_i y_{i+1} | x_1 \ldots x_n) = \frac{p(x_1 \ldots x_n, y_i, y_{i+1})}{p(x_1 \ldots x_n)}
\]

- We can also compute expected transition counts:

\[
(\text{expected \ count(NN \rightarrow VB)}) = \sum_i p(y_i = \text{NN}, y_{i+1} = \text{VB} | x_1 \ldots x_n)
\]

- Above marginals can be computed as

\[
p(x_1 \ldots x_n, y_i) = \alpha(i, y_i) \beta(i, y_i)
\]
\[
p(x_1 \ldots x_n, y_i, y_{i+1}) = \alpha(i, y_i) q(y_{i+1} | y_i) e(x_{i+1} | y_{i+1}) \beta(i + 1, y_{i+1})
\]
Unsupervised Learning (EM) Intuition

- Expected emission counts:

\[
(\text{expected}) \ \text{count}(\text{NN} \rightarrow \text{apple}) = \sum_i p(y_i = \text{NN}, x_i = \text{apple}|x_1...x_n)
\]

\[
= \sum_{i: x_i = \text{apple}} p(y_i = \text{NN}|x_1...x_n)
\]

- Maximum Likelihood Parameters (Supervised Learning):

\[
q_{\text{ML}}(y_i|y_{i-1}) = \frac{c(y_{i-1}, y_i)}{c(y_{i-1})}
\]

\[
e_{\text{ML}}(x|y) = \frac{c(y, x)}{c(y)}
\]

- For Unsupervised Learning, replace the actual counts with the expected counts.
Expectation Maximization

- Initialize transition and emission parameters
 - Random, uniform, or more informed initialization
- Iterate until convergence
 - **E-Step:**
 - Compute expected counts

 $$(\text{expected \ count}(\text{NN}) = \sum_i p(y_i = \text{NN}|x_1...x_n)$$
 $$(\text{expected \ count}(\text{NN} \rightarrow \text{VB}) = \sum_i p(y_i = \text{NN}, y_{i+1} = \text{VB}|x_1...x_n)$$
 $$(\text{expected \ count}(\text{NN} \rightarrow \text{apple}) = \sum_i p(y_i = \text{NN}, x_i = \text{apple}|x_1...x_n)$$
 - **M-Step:**
 - Compute new transition and emission parameters (using the expected counts computed above)

 $$q_{ML}(y_i|y_{i-1}) = \frac{c(y_{i-1}, y_i)}{c(y_{i-1})} \quad e_{ML}(x|y) = \frac{c(y, x)}{c(y)}$$
- Convergence? Yes. Global optimum? No
function FORWARD-BACKWARD(observations of len T, output vocabulary V, hidden state set Q) returns $HMM=(A,B)$

initialize A and B
iterate until convergence

E-step
\[
\gamma_t(j) = \frac{\alpha_t(j)\beta_t(j)}{P(O|\lambda)} \quad \forall \ t \text{ and } j
\]
\[
\xi_t(i,j) = \frac{\alpha_t(i)a_{ij}b_j(o_{t+1})\beta_{t+1}(j)}{\alpha_T(N)} \quad \forall \ t, \ i, \text{ and } j
\]

M-step
\[
\hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \sum_{j=1}^{N} \xi_t(i,j)}
\]
\[
\hat{b}_j(v_k) = \frac{\sum_{t=1 \text{ s.t. } O_t=v_k}^{T} \gamma_t(j)}{\sum_{t=1}^{T} \gamma_t(j)}
\]

return A, B

Equivalent to the procedure given in the textbook (J&M) – slightly different notations
How is Unsupervised Learning Possible (at all)?

- I water the garden everyday
- Saw a weird bug in that garden …
- While I was thinking of an equation …

Noun
- S: (n) garden (a plot of ground where plants are cultivated)
- S: (n) garden (the flowers or vegetables or fruits or herbs that are cultivated in a garden)
- S: (n) garden (a yard or lawn adjoining a house)

Verb
- S: (v) garden (work in the garden) "My hobby is gardening"

Adjective
- S: (adj) garden (the usual or familiar type) "it is a common or garden sparrow"
Does EM learn good HMM POS-taggers?

- "Why doesn’t EM find good HMM POS-taggers”, Johnson, EMNLP 2007

HMMs estimated by EM generally assign a roughly equal number of word tokens to each hidden state, while the empirical distribution of tokens to POS tags is highly skewed.
Unsupervised Learning Results

- **EM for HMM**
 - POS Accuracy: 74.7%

- **Bayesian HMM Learning** [Goldwater, Griffiths 07]
 - Significant effort in specifying prior distributions
 - Integrate our parameters $e(x|y)$ and $t(y'|y)$
 - POS Accuracy: 86.8%

- **Unsupervised, feature rich models** [Smith, Eisner 05]
 - **Challenge**: represent $p(x,y)$ as a log-linear model, which requires normalizing over all possible sentences x
 - Smith presents a very clever approximation, based on local neighborhoods of x
 - POS Accuracy: 90.1%

- **Newer, feature rich methods do better, not near supervised SOTA**
Quiz: \(p(S1) \) vs. \(p(S2) \)

- \(S1 = \) Colorless green ideas sleep furiously.
- \(S2 = \) Furiously sleep ideas green colorless

 “It is fair to assume that neither sentence \((S1)\) nor \((S2)\) had ever occurred in an English discourse. Hence, in any statistical model for grammaticalness, these sentences will be ruled out on identical grounds as equally "remote" from English” (Chomsky 1957)

- How would \(p(S1) \) and \(p(S2) \) compare based on (smoothed) bigram language models?

- How would \(p(S1) \) and \(p(S2) \) compare based on marginal probability based on POS-tagging HMMs?

 i.e., marginalized over all possible sequences of POS tags