CSE 447/547
Natural Language Processing
Winter 2018

Distributed Semantics & Embeddings

Yejin Choi - University of Washington

[Slides adapted from Dan Jurafsky]

VWny vector moaels ot meaning?’
computing the similarity between
words

“fast” is similar to “rapid”

“tall” is similar to "height”

Question answering:

Q: “How tall is Mit. Everest?”

Candidate A: “The official height of Mount Everest is 29029
feet”

Similar words in plagiarism detection

MAINFRAMES
Mainframes are primarily referred to large

MAINFRAMES
Mainframes usually are referred those

computers with rapid, advanced
processing capabilities that can
execute and perform tasks equivalent
to many Personal Computers (PCs)
machines networked together. Itis
characterized with high quantity
Random Access Memory (RAM), very
large secondary storage devices, and
high-speed processors to cater for the
needs of the computers under its
service.

Consisting of advanced components,
mainframes have the capability of
running multiple large applications
required by many and most enterprises
and organizations. This is one of its
advantages. Mainframes are also
suitable to cater for those applications
(programs) or files that are of very high
demand by its users (clients).
Examples of such organizations and
enterprises using mainframes are
online shopping websites such as

Fhav Amaznan and ~ramniitina.niant

computers with fast, advanced
processing capabilities that could
perform by itself tasks that may require
a lot of Personal Computers (PC)
Machines. Usually mainframes would
have lots of RAMSs, very large
secondary storage devices, and very
fast processors to cater for the needs
of those computers under its service.

Due to the advanced components

mainframes have, these computers
have the capability of running multiple
large applications required by most
enterprises, which is one of its
advantage. Mainframes are also
suitable to cater for those applications
or files that are of very large demand
by its users (clients). Examples of
these include the large online
shopping websites -i.e. : Ebay,
Amazon, Microsoft, etc.

Problems with thesaurus-based meaning

= \We don’'t have a thesaurus for every language
= \WWe can't have a thesaurus for every year

» For historical linguistics, we need to compare word
meanings in year t to year t+1

= Thesauruses have problems with recall
= Many words and phrases are missing
» Thesauri work less well for verbs, adjectives

Intuition ot distributional word similarity

= Suppose | asked you what is tesgtiino?
A bottle of tesgliino is on the table
Everybody likes tesgtino
Tesgliino makes you drunk
We make tesgtiino out of corn.

= From context words humans can guess tesglino means
= an alcoholic beverage like beer
= |ntuition for algorithm:

= Two words are similar if they have similar word
contexts.

Distributional models of meaning
= vector-space models of meaning
= vector semantics

Intuitions: Zellig Harris (1954):

= “oculist and eye-doctor ... occur in almost the same
environments”

= “If A and B have almost identical environments we say
that they are synonyms.”

Firth (1957):
* "You shall know a word by the company it keeps!”

Four kinds of vector models

Sparse vector representations
1. Word co-occurrence matrices
-- weighted by mutual-information

Dense vector representations:

2. Singular value decomposition (and Latent Semantic
Analysis)

3. Neural-network inspired models (skip-grams,

CBOW)

4. Brown clusters

Shared intuition

= Model the meaning of a word by “embedding” it in a vector
space.

= The meaning of a word is a vector of numbers

» Vector models are also called “embeddings”.

Vector Semantics

|. Words and co-occurrence vectors

Co-occurrence Matrices

= We represent how often a word occurs in a document
* Term-document matrix
= Or how often a word occurs with another
* Term-term matrix
(or word-word co-occurrence matrix
or word-context matrix)

Term-document matrix

= Each cell: count of word win a document d-:
= Fach document is alcount vector|in NV: a column below

As You Like It Twelfth Night Julius Caesar HenryV

battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5

clown 6 117 0 0

Similarity in term-document matrices

Two documents are similar if their vectors are similar

As You Like It Twelfth Night Julius Caesar HenryV

battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5
clown 6 117 0 0

The words in a term-document matrix

= Each word is a count vector in NP: a row below

As You Like It Twelfth Night Julius Caesar HenryV

battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5

clown 6 117 0 0

The words in a term-document matrix

= Two words are similar if their vectors are similar

As You Like It Twelfth Night Julius Caesar HenryV

battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5

clown 6 117 0 0

The word-word or word-context matrix

Instead of entire documents, use smaller contexts
» Paragraph
= \Window of + 4 words

A word is now detined by a vector over counts of context
words

Instead of each vector being of length D
Each vector is now of length |V|

The word-word matrix is |V|x|V]

Word-Word matrix
Sample contexts + 7 words

sugar, a sliced lemon, a tablespoonful of apricot preserve or jam, a pinch each of,
their enjoyment. Cautiously she sampled her first pineapple and another fruit whose taste she likened
well suited to programming on the digital computer. In finding the optimal R-stage policy from
for the purpose of gathering data and information necessary for the study authorized in the

aardvark computer data pinch result sugar

apricot 0 0 0) 0
pineapple

0 0 0
digital 2 1 0 1 0
information 1 6 4

o OO0

Word-word matrix

= We showed only 4x6, but the real matrix is 50,000 x 50,000
» So it's very sparse (most values are 0)

= That's OK, since there are lots of efficient algorithms for
sparse matrices.

= The size of windows depends on your goals
* The shorter the windows...
= the more syntactic the representation (+ 1-3 words)
= The longer the windows...
= the more semantic the representation (+ 4-10 words)

Vector Semantics

Positive Pointwise Mutual Information
(PPMI)

Informativeness of a context word X
for a target word Y

Freqg(the, beer) VS freqg(drink, beer) ?
How about joint probability?
P(the, beer) VS (drink, beer) ?

Frequent words like “the” and “of” are not quite
informative

Normalize by the individual word frequencies!
= Pointwise Mutual Information (PMI)

Pointwise Mutual Information

Pointwise mutual information:

Do events x and y co-occur more than if they were independent?

PMI(X ==x,Y =y) = log, PI(DaSZ)EI’Dy(L)

PMI between two words:

Do words x and y co-occur more than if they were independent?

P(word,,word,)
P(word,)P(word,)

PMI(word,,word,) = log,

Positive Pointwise Mutual Information

PMI ranges from —oo to + oo
But the negative values are problematic
= Things are co-occurring less than we expect by chance
= Unreliable without enormous corpora
* |magine w1 and w2 whose probability is each 10°
= Hard to be sure p(w1,w2) is significantly different than 10-12
= Plus it's not clear people are good at “unrelatedness”
So we just replace negative PMI values by 0

Positive PMI (PPMI) between word1 and word?2:
P(word,,word,))

P(word,)P(word,)’

PPMI(word,word,) = max (logz

Computing PPMI on a term-context matrix

= Matrix F with W rows (words) and C columns (contexts)

= f, is # of times w; occurs in context c;

aardvark computer data pinch result sugar

apricot 0 0 0 1 0 1
f’ . pineapple 0 0 0 1 0 1
Dij = — ’LJC digital 0 2 1 0 1 0
Zi:l Ejzl fij information 0 1 6 0 4 0
C
=Y Dij
Pix = S G 5 PMI;; = log —
Z¢:1 Zj:l Jig PixPx
|47
i S fig PPMI;; = max(0, PMI;;)
*J -

Sy S fi

o fij
Pij = ZW ZC i apricot
i=1 cy=174 pineapple
digital
information
po(w=information,c=data) =6/19 = .32
o(w=information) =11/19 = .58
o(c=data) =7/19 = .37
computer
apricot 0.00
pineapple 0.00
digital 0.11
information 0.05

p(context) 0.16

Count(w,context)

computer data pinch result sugar
0 0 1 0 1
0 0 1 0 1
2 1 0 1 0
1 6 0 4 0
p(w;) = Zle Jij
N
p(w,context) p(w)
data pinch result sugar
0.00 0.05 0.00 0.05 0.11
0.00 0.05 0.00 0.05 0.11
0.05 0.00 0.05 o0.00 0.21
0.32 0.00 0.21 0.00 0.58
0.37 0.11 0.26 0.11

p(w,context)

computer
apricot 0.00
pineapple 0.00
digital 0.11
information 0.05
p(context) 0.16

data
0.00
0.00
0.05
0.32

0.37

pinch
0.05
0.05
0.00
0.00

0.11

= pmi(information,data) = log, (.32 / (.37*.58))

computer
apricot -
pineapple -
digital 1.66
information 0.00

PPMI(w,context)

data

0.00
0.57

pinch
2.25
2.25

result

0.00
0.47

sugar
2.25
2.25

result
0.00
0.00
0.05
0.21

0.26

= .58

sugar
0.05
0.05
0.00
0.00

0.11

p(w)

0.11
0.11
0.21
0.58

(.57 using full precision)

Weighting PMI

= PMI is biased toward infrequent events
» Very rare words have very high PMI values
= Two solutions:
= Give rare words slightly higher probabilities
» Use add-one smoothing (which has a similar effect)

Weighting PMI: Giving rare context words
slightly higher probability

= Raise the context probabilities to @ = 0.75:

PPMI, (w,c) = max(log, ()P () ,0)
0= e

= This helps because P,(c) > P(c) forrare c
= Consider two events, P(a) = .99 and P(b)=.01

.01.75
= .97 Py(b) = —r——== .03

.99.75
99754.0175

= Py(a) =

TF-IDF: Alternative to PPMI for
measuring association

= tf-idf (that's a hyphen not a minus sign)
= The combination of two factors
= Term frequency (Luhn 1957): frequency of the word
» |nverse document frequency (IDF) (Sparck Jones 1972)
= N is the total number of documents
= df; = “document frequency of word i
= # of documents with word |

idfi = log N

a

" w;; = tf;;idf;= weight of word i in document

Vector Semantics

Measuring similarity: the cosine

Measuring similarity

Given 2 target words v and w
We'll need a way to measure their similarity.

Most measure of vectors similarity are based on:

Dot product or inner product from linear algebra

N
dot-product(V,w) =V-w = Zviwi —Viw] +Vvows + ... +Fvywy

: i=1 :
= High when two vectors have large values in same
dimensions.

= Low (in fact O) for orthogonal vectors with zeros in
complementary distribution

Problem with dot product

N
dot-product(V,w) =vV-w = E Viw; = viwq +Vvows + ...+ vywn
i=1

Dot product is longer if the vector is longer. Vector length:

V| = \ szz

Vectors are longer if they have higher values in each dimension
That means more frequent words will have higher dot products

That's bad: we don't want a similarity metric to be sensitive to
word frequency

Solution: cosine

= Just divide the dot product by the length of the two
vectors!

= This turns out to be the cosine of the angle between them!
i-b = |d||blcos@

S

= cos6

dl|b

Cosine for computing similarity

Dot product Unit vectors

N)/ "
D~ G S

v; is the PPMI value for word v in context i
w; is the PPMI value for word w in context i.

Cos(\fﬁ) is the cosine similarity of vand w

Dimension 1: ‘large’

(U S)

S

[

Visualizing vectors and angles

apricot 2 0
. digital 0 1
information 1 6
apricot
digital | | | | | | |

1 2 3 4 5 6 7

Dimension 2: ‘data’

Vector Semantics

Dense Vectors

Sparse versus dense vectors

= PPMI vectors are
* long (length |V|= 20,000 to 50,000)
= sparse (most elements are zero)

= Alternative: learn vectors which are
= short (length 200-1000)

» dense (most elements are non-zero)

Sparse versus dense vectors

- Why dense vectors?
= Short vectors may be easier to use as features in machine
learning (less weights to tune)
» Dense vectors may generalize better than storing explicit
counts

* They may do better at capturing synonymy:

= car and automobile are synonyms; but are represented as
distinct dimensions; this fails to capture similarity between
a word with car as a neighbor and a word with automobile

as a neighbor

hree methods for short dense vectors

= Singular Value Decomposition (SVD)
= A special case of this is called LSA (Latent Semantic Analysis)
» (See supplementary topics)

= Embeddings
» skip-grams and CBOW

= Brown clustering

Vector Semantics

Embeddings inspired by neural language
models: skip-grams and CBOW

Prediction-based models:
An alternative way to get dense vectors

= Skip-gram (Mikolov et al. 2013a) CBOW (Mikolov et al. 2013b)
» Learn embeddings as part of the process of word prediction.
* Train a neural network to predict neighboring words
= |nspired by neural net language models (sans nonlinearity).
* |n so doing, learn dense embeddings for the words in the
training corpus.
= Advantages:
= Fast, easy to train (much faster than SVD)
= Available online in the word2vec package
* Including sets of pretrained embeddings!

Skip-grams

= Predict each neighboring word
" in a context window of 2C words
= from the current word.

= So for C=2, we are given word w, and predicting these 4 words:

[Wt—27 Wi—1,Wtr+1, WH—Z]

Skip-grams learn 2 embeddings tor each w

"
- T2 il M _
output embedding Vv, in the output matrix W' :
= Embedding of the context word " _
= Column i of the output matrix Wisa 1xd dx Vi
embedding v'; for word i in the vocabulary.

N —

input embedding v, in the input matrix W
= Embedding of the target word

= Row iof the input matrix Wis the d x 1
embedding v; for word i in the vocabulary

VI

V| xd

Setup

= Walking through corpus pointing at word w(t), whose
index in the vocabulary is j, so we'll call it Wi (1<j<|V).

= Let's predict w(t+1) , whose index in the vocabulary is k
(1 < k< |V]). Hence our task is to compute P(wk|wj).

One-hot vectors

A vector of length |V|
1 for the target word and O for other words
So if “popsicle” is vocabulary word 5

The one-hot vector is
[0,0,0,0,1,0,0,0,0.......0]

Skip-gram

Output layer

probabilities of
context words

Projection layer
embedding for w;

e Q90
L BN) '\<
)

Input layer

1-hot mput vector

(@) \%Y%
X4 § : Yk t-1
X, 9 .
. @ Q| :
N . (0)
Wi x ® \%Y ; @y,
@ : 'y,
O J ’ ol :
xyile ___———— Waxv
|y, Wit
1X[V] I1xd o
Q :
(@)
!,Y|V|

Skip-gram W, = wyy

'
Yk = Vg Uy
W, = V;
Output layer

probabilities of
context words

« e QY
Input layer Projection layer Y,
. embedding for w, o
1-hot input vector ° W
Ngr—— Y RAS t-1
X, |@ 0 °l .
Q :
3t . o
x lof W ° YV
. VIxd . @ Yy
P : ® V)
O = ’ ol :
xvie__——— Waxvi
Q| y, Wi+l
1X|V] 1xd N
9 :
@
@

Turning outputs into probabilities

_agr. .
Y = VU Uj = Vg - Uy

= \We use softmax to turn into probabilities

exp(vi - v))

welv|exp(Vy - vj)

p(wilw;) = >

Embeddings from W and W'

= Since we have two embeddings, v; and v'; for each word Wi
= We can either:

= Justusevy,

= Sum them

= Concatenate them to make a double-length embedding

Training embeddings

argmax log p(Text)
0

T
argmax log HP(W(FC), w1 D), ...,w<t+c)]w(t))
0 =1

—argmaxz Z log p(w 1) |w")

t=1 —c<j<c,j#0

/(14)) L)1)
—argmaxz Z log exp(v Vi)

T digeipo Zwey eV, V)

= argmaxz S V0 —1og 37 exp(r, v

t=1 —c<j<c,j#0 welV|

Training: Noise Contrastive Estimation (NCE)

argmax log p(Text)
0

= argmaxz Z YD)) —log Z exp(viv-v(t))

t=1 —c<j<c,j#0 welV|

= the normalization factor is too expensive to compute
exactly (why?)

= Negative sampling: sample only a handful of negative
examples to compute the normalization factor

» (some engineering detail) the actual skip-gram training
also converts the problem into binary classification

(logistic regression) of predicting whether a given word
is a context word or not

Relation between skipgrams and PMI!

It we multiply WW'

We get a |V|x|V| matrix M, each entry m;; corresponding to
some association between input word i and output word |

Levy and Goldberg (2014b) show that skip-gram reaches
its optimum just when this matrix is a shitted version of
PMI:

WW =MPMI —log k

So skip-gram is implicitly factoring a shifted version of the
PMI matrix into the two embedding matrices.

CBOW (Continuous Bag of Words)

Input layer

1-hot input vectors
for each context word

<o Projection layer Output layer
: ‘ sum of embeddings probability of w,
. for context words
W X @
t-1 7 S
L ?— _. Y1
®) @ Y
v @ o o
9
X, (@ . \WY dx|V| ko owy
X, Q@ ® .
. ® Q@
: ©)
. e —3
Y+l % (@ Y]
e 1xd
)
Xv) @)

Properties of embeddings

= Nearest words to some embeddings (Mikolov et al. 2013)

target: Redmond Havel ninjutsu graffiti capitulate
Redmond Wash. Vaclav Havel ninja spray paint capitulation
Redmond Washington president Vaclav Havel = martial arts grafitti capitulated
Microsoft Velvet Revolution swordsmanship taggers capitulating

Embeddings capture relational meaning!

vector(’king’) - vector(‘man’) + vector(‘woman’) = vector('queen’)

vector('Paris’) - vector('France’) + vector('ltaly’) = vector('Rome’)

WOMAN

/ AU QUEENS
MAN /

UNELE KINGS \
QUEEN \ QUEEN

KING KING

Vector Semantics

Brown clustering

Brown clustering

= An agglomerative clustering algorithm that clusters
words based on which words precede or follow them

» These word clusters can be turned into a kind of vector

= We'll give a very brief sketch here.

Class-based language model

= Suppose each word was in some class ¢

P(Wi|Wl'_1) — P(Ci|Ci_1)P(Wi‘Ci)

n

P(corpus|C) = HP(ci|ci_1)P(w,-\c,-)
i—1

Brown clustering algorithm

Each word is initially assigned to its own cluster.

We now consider consider merging each pair of clusters.
Highest quality merge is chosen.

» Quality = merges two words that have similar
probabilities of preceding and following words

* (More technically quality = smallest decrease in the
ikelihood of the corpus according to a class-based
language model)

Clustering proceeds until all words are in one big
cluster.

Brown Clusters as vectors

By tracing the order in which clusters are merged, the
model builds a binary tree from bottom to top.

Each word represented by binary string = path from root
to leaf

Each intermediate node is a cluster
Chairman is 0010, “months” = 01, and verbs = 1

11
000 101 walk

CEO 0010 0011 November October run sprint
chairman president

Brown cluster examples

Friday Monday Thursday Wednesday Tuesday Saturday Sunday weekends Sundays Saturdays
June March July April January December October November September August

pressure temperature permeability density porosity stress velocity viscosity gravity tension
anyone someone anybody somebody

had hadn’t hath would’ve could’ve should’ve must’ve might’ve

asking telling wondering instructing informing kidding reminding bothering thanking deposing
mother wife father son husband brother daughter sister boss uncle

great big vast sudden mere sheer gigantic lifelong scant colossal

down backwards ashore sideways southward northward overboard aloft downwards adrift

Brown Clustering on Twitter!
http://www.cs.cmu.edu/~ark/TweetNLP/cluster_viewer.htm

sorry gutted sry srry soz #thankful sory sorrry sowwy sori
thankgod sorryy sowi sorri sorryyy sorrrry luckyyy sowwie paiseh
SOWie SOOry SOrry- SOrrrrry Sowee -sorry sorryyyy
#didntwannatellyou sorreh sorr sowy soorry sorrryyy apols sawry
#iforgiveyou sryy sorrie sowwwy offski sOrry sorrryy soryy sorrrrrry
SaWWY sorryyyyy sozz nitm sowry thankgoodness sowwi

1110101010010 (52)

really rly realy genuinely rlly reallly realllly reallyy rele realli relly reallllly
reali sholl rily reallyyy reeeeally realllllly reaally reeeally rili reaaally
00101110 (79) reaaaally reallyyyy rilly reallllllly reeeeeally reeally shol realllyyy reely re
reaaaaally shole really2 reallyyyyy _really_ reallllllily reaaly realllyy realli
reallt genuinly relli realllyyyy reeeeeeally weally reaaallly reallllyyy

(- -((dis s - =(=/>< -/ </3:\- - /e ((
1110107100111 (582) > < =[:[#fml| & - -=\>(&@-->>>0/@d; .- - -
> >:((-_-"=s ;_;#ugh:-\== - -

Summary

= Distributional (vector) models of meaning

= Sparse (PPMI-weighted word-word co-occurrence
matrices)

= Dense:
= \Word-word SVD 50-2000 dimensions

= Skip-grams and CBOW
= Brown clusters 5-20 binary dimensions.

Supplementary Topics

Vector Semantics

Dense Vectors via SVD

Intuition

Approximate an N-dimensional dataset using fewer
dimensions

By first rotating the axes into a new space

In which the highest order dimension captures the most
variance in the original dataset

And the next dimension captures the next most variance, etc.

Many such (related) methods:
= PCA - principle components analysis
» Factor Analysis

= 5VD

Dimensionality reduction

PCA dimension 1

PCA dimension 2 (€]

Singular Value Decomposition

Any (w x ¢) matrix X equals the product of 3 matrices:

Contexts

Words
P
|
=

W X c w Xm

Singular Value Decomposition

Any (w x ¢) matrix X equals the product of 3 matrices:
X=WSC

W: (w x m) matrix: rows corresponding to original but m columns
represents a dimension in a new latent space, such that

* m column vectors are orthogonal to each other
* m=*“Rank” of X.

S: (m x m) matrix: diagonal matrix of singular values expressing
the importance of each dimension.

C: (m x ¢) matrix: columns corresponding to original but m rows
corresponding to singular values

Singular Value Decomposition

Contexts

Words
>
I
-

W X C w Xm

Landuaer and Dumais 1997

SVD applied to term-document matrix:
Latent Semantic Analysis (LSA)

Deerwester et al (1988)

Often m is not small enough!

If instead of keeping all m dimensions, we just keep the top &
singular values. Let's say 300.

The result is a least-squares approximation to the original X
But instead of multiplying,

" - Context
we'll just make use of W. onexs ‘
Each row of W: 8 "s l C \
. : o | X = | W
= A k-dimensional vector 2>
, mxm Mmxc
= Representing word W K kK

L SA more details

= 300 dimensions are commonly used

= The cells are commonly weighted by a product of two weights
* Local weight: Log term frequency
» Global weight: either idf or an entropy measure

Let's return to PPMI word-word matrices

= Can we apply SVD to them?

SVD applied to term-term matrix

Vix{v]

Vix|V]

0 0 0

VIx{V]

. Oy

(simplifying assumption: the matrix has rank |V|)

VIx|V]

Truncated SVD on term-term matrix

] I 1[or 0 O O_[C
0 oo O 0 kx |V

V| |V| V| xk kx k

Truncated SVD produces embeddings

embedding [T
for :
word i
%%
» Each row of W matrix is a k-dimensional
representation of each word w _]V| s

= K might range from 50 to 1000

= Generally we keep the top k dimensions,
but some experiments suggest that
getting rid of the top 1 dimension or
even the top 50 dimensions is helpful
(Lapesa and Evert 2014).

Embeddings versus sparse vectors

Dense SVD embeddings sometimes work better than sparse
PPMI matrices at tasks like word similarity

= Denoising: low-order dimensions may represent
unimportant information

= Truncation may help the models generalize better to
unseen data.

= Having a smaller number of dimensions may make it easier
tfor classitfiers to properly weight the dimensions for the
task.

*= Dense models may do better at capturing higher order co-
occurrence.

