Natural Language Processing (CSE 517): Featurized and Neural Language Models

Noah Smith
© 2018

University of Washington
nasmith@cs.washington.edu

April 6, 2018
Quick Review

A language model is a probability distribution over \mathcal{Y}^\dagger.

Typically p decomposes into probabilities $p(x_i \mid h_i)$.

▶ n-gram: h_i is $(n-1)$ previous symbols
▶ Probabilities are estimated from data.

Today: more details on log-linear language models, then neural language models
Log-Linear n-Gram Models

\[p_w(X = x) = \prod_{j=1}^{\ell} p_w(X_j = x_j \mid X_{1:j-1} = x_{1:j-1}) \]

\[= \prod_{j=1}^{\ell} \frac{\exp w \cdot \phi(x_{1:j-1}, x_j)}{Z_w(x_{1:j-1})} \]

assumption \[= \prod_{j=1}^{\ell} \frac{\exp w \cdot \phi(x_{j-n+1:j-1}, x_j)}{Z_w(x_{j-n+1:j-1})} \]

\[= \prod_{j=1}^{\ell} \frac{\exp w \cdot \phi(h_j, x_j)}{Z_w(h_j)} \]
How to Estimate \(\mathbf{w} \)?

n-gram

\[
p_{\theta}(x) = \prod_{j=1}^{\ell} \theta_{x_j|h_j}
\]

Parameters:

\[
\theta_{v|h}, \quad \forall v \in \mathcal{V}, h \in (\mathcal{V} \cup \{\circ\})^{n-1}
\]

MLE:

\[
\frac{c(hv)}{c(h)}
\]

log-linear n-gram

\[
\prod_{j=1}^{\ell} \exp \mathbf{w} \cdot \phi(h_j, x_j) / Z_w(h_j)
\]

Parameters:

\[
w_k, \quad \forall k \in \{1, \ldots, d\}
\]

MLE:

no closed form
MLE for w

$$\max_{w \in \mathbb{R}^d} \sum_{i=1}^{N} w \cdot \phi(h_i, x_i) - \log Z_w(h_i)$$
MLE for w

\[
\max_{w \in \mathbb{R}^d} \sum_{i=1}^{N} w \cdot \phi(h_i, x_i) - \log Z_w(h_i)
\]

Hope/fear view: for each instance i,

- increase the score of the correct output x_i, $score(x_i) = w \cdot \phi(h_i, x_i)$
- decrease the “softened max” score overall, $\log \sum_{v \in V} \exp score(v)$
MLE for w

$$
\max_{w \in \mathbb{R}^d} \sum_{i=1}^{N} w \cdot \phi(h_i, x_i) - \log Z_w(h_i)
$$

Gradient view:

$$
\nabla_w f_i = \phi(h_i, x_i) - \sum_{v \in V} p_w(v \mid h_i) \cdot \phi(h_i, v)
$$

observed features

$$
\nabla_w F = \sum_{i=1}^{N} \left(\phi(h_i, x_i) - \sum_{v \in V} p_w(v \mid h_i) \cdot \phi(h_i, v) \right)
$$

expected features

Setting this to zero means getting model’s expectations to match empirical expectations.
MLE for \(w \): Algorithms

- Batch methods (L-BFGS is popular)
- Stochastic gradient descent more common today, especially with special tricks for adapting the step size over time
- Many specialized methods (e.g., “iterative scaling”)
Stochastic Gradient Descent

Goal: minimize $\sum_{i=1}^{N} f_i(w)$ with respect to w.

Input: initial value w, number of epochs T, learning rate α

For $t \in \{1, \ldots, T\}$:
 ▶ Choose a random permutation π of $\{1, \ldots, N\}$.
 ▶ For $i \in \{1, \ldots, N\}$:

\[
 w \leftarrow w - \alpha \cdot \nabla_w f_{\pi(i)}
\]

Output: w
Avoiding Overfitting

Maximum likelihood estimation:

$$\max_{w \in \mathbb{R}^d} \sum_{i=1}^{N} w \cdot \phi(h_i, x_i) - \log Z_w(h_i)$$

- If $\phi_j(h, x)$ is (almost) always positive, we can always increase the objective (a little bit) by increasing w_j toward $+\infty$.
Avoiding Overfitting

Maximum likelihood estimation:

\[
\max_{\mathbf{w} \in \mathbb{R}^d} \sum_{i=1}^{N} \mathbf{w} \cdot \phi(h_i, x_i) - \log Z_{\mathbf{w}}(h_i)
\]

- If \(\phi_j(h, x) \) is (almost) always positive, we can always increase the objective (a little bit) by increasing \(w_j \) toward \(+\infty\).

Standard solution is to add a regularization term:

\[
\max_{\mathbf{w} \in \mathbb{R}^d} \sum_{i=1}^{N} \mathbf{w} \cdot \phi(h_i, x_i) - \log \sum_{v \in \mathcal{V}} \exp \mathbf{w} \cdot \phi(h_i, v) - \lambda \| \mathbf{w} \|_p^p
\]

where \(\lambda > 0 \) is a hyperparameter and \(p = 2 \) or 1.
This case warrants a little more discussion:

\[
\max_{\mathbf{w} \in \mathbb{R}^d} \sum_{i=1}^{N} \mathbf{w} \cdot \phi(h_i, x_i) - \log \sum_{v \in \mathcal{V}} \exp \mathbf{w} \cdot \phi(h_i, v) - \lambda \|\mathbf{w}\|_1
\]

Note that:

\[
\|\mathbf{w}\|_1 = \sum_{j=1}^{d} |w_j|
\]

- This results in sparsity (i.e., many \(w_j = 0\)).
\textbf{\(\ell_1\) Regularization}

This case warrants a little more discussion:

\[
\max_{\mathbf{w} \in \mathbb{R}^d} \sum_{i=1}^{N} \mathbf{w} \cdot \phi(h_i, x_i) - \log \sum_{v \in \mathcal{V}} \exp \mathbf{w} \cdot \phi(h_i, v) - \lambda \| \mathbf{w} \|_1
\]

Note that:

\[
\| \mathbf{w} \|_1 = \sum_{j=1}^{d} |w_j|
\]

- This results in \textbf{sparsity} (i.e., many \(w_j = 0\)).
 - Many have argued that this is a good thing (Tibshirani, 1996); it’s a kind of feature selection.
This case warrants a little more discussion:

$$\max_{\mathbf{w} \in \mathbb{R}^d} \sum_{i=1}^{N} \mathbf{w} \cdot \phi(h_i, x_i) - \log \sum_{v \in V} \exp \mathbf{w} \cdot \phi(h_i, v) - \lambda \|\mathbf{w}\|_1$$

Note that:

$$\|\mathbf{w}\|_1 = \sum_{j=1}^{d} |w_j|$$

- This results in **sparsity** (i.e., many $w_j = 0$).
 - Many have argued that this is a good thing (Tibshirani, 1996); it’s a kind of feature selection.
 - Do not confuse it with data **sparseness** (a problem to be overcome)!
\[\ell_1 \text{ Regularization} \]

This case warrants a little more discussion:

\[
\max_{\mathbf{w} \in \mathbb{R}^d} \sum_{i=1}^{N} \mathbf{w} \cdot \phi(h_i, x_i) - \log \sum_{v \in V} \exp \mathbf{w} \cdot \phi(h_i, v) - \lambda \| \mathbf{w} \|_1
\]

Note that:

\[
\| \mathbf{w} \|_1 = \sum_{j=1}^{d} |w_j|
\]

- This results in **sparsity** (i.e., many \(w_j = 0 \)).
 - Many have argued that this is a good thing (Tibshirani, 1996); it’s a kind of feature selection.
 - Do not confuse it with data **sparseness** (a problem to be overcome)!
- This is not differentiable at \(w_j = 0 \).
ℓ_1 Regularization

This case warrants a little more discussion:

$$\max_{w \in \mathbb{R}^d} \sum_{i=1}^{N} w \cdot \phi(h_i, x_i) - \log \sum_{v \in \mathcal{V}} \exp w \cdot \phi(h_i, v) - \lambda \|w\|_1$$

Note that:

$$\|w\|_1 = \sum_{j=1}^{d} |w_j|$$

- This results in **sparsity** (i.e., many $w_j = 0$).
 - Many have argued that this is a good thing (Tibshirani, 1996); it’s a kind of feature selection.
 - Do not confuse it with data **sparseness** (a problem to be overcome)!
- This is not differentiable at $w_j = 0$.
- Optimization: special solutions for batch (e.g., Andrew and Gao, 2007) and stochastic (e.g., Langford et al., 2009) settings.
MLE for w

If we had more time, we’d study this problem more carefully!

Here’s what you must remember:

▶ There is no closed form; you must use a numerical optimization algorithm like stochastic gradient descent.
▶ Log-linear models are powerful but expensive ($Z_w(h_i)$).
▶ Regularization is very important; we don’t actually do MLE.
 ▶ Just like for n-gram models! Only even more so, since log-linear models are even more expressive.
Maximum Entropy

Consider a distribution p over events in \mathcal{X}. The Shannon entropy (in bits) of p is defined as:

$$ H(p) = - \sum_{x \in \mathcal{X}} p(X = x) \begin{cases} 0 & \text{if } p(X = x) = 0 \\ \log_2 p(X = x) & \text{otherwise} \end{cases} $$

This is a measure of “randomness”; entropy is zero when p is deterministic and $\log |\mathcal{X}|$ when p is uniform.

Maximum entropy principle: among distributions that fit the data, pick the one with the greatest entropy.
If “fit the data” is taken to mean

$$\forall k \in \{1, \ldots, d\}, \mathbb{E}_p[\phi_k] = \mathbb{E}[\phi_k]$$

then the MLE of the log-linear family with features ϕ is the maximum entropy solution.

This is why log-linear models are sometimes called “maxent” models (e.g., Berger et al., 1996)
“Whole Sentence” Log-Linear Models
(Rosenfeld, 1994)

Instead of a log-linear model for each word-given-history, define a single log-linear model over event space \mathcal{V}^\dagger:

$$p_w(x) = \frac{\exp w \cdot \phi(x)}{Z_w}$$

- Any feature of the sentence could be included in this model!
- Z_w is deceptively simple-looking!

$$Z_w = \sum_{x \in \mathcal{V}^\dagger} \exp w \cdot \phi(x)$$
Quick Recap

Two kinds of language models so far:

<table>
<thead>
<tr>
<th>representation?</th>
<th>estimation?</th>
<th>think about?</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-gram</td>
<td>count and normalize</td>
<td>smoothing</td>
</tr>
<tr>
<td>(h_i) is ((n - 1)) previous symbols</td>
<td>iterative gradient descent</td>
<td>features</td>
</tr>
<tr>
<td>log-linear</td>
<td>featurized representation of (\langle h_i, x_i \rangle)</td>
<td></td>
</tr>
</tbody>
</table>
Neural Network: Definitions

Warning: there is no widely accepted standard notation!

A feedforward neural network n_ν is defined by:

- A function family that maps parameter values to functions of the form $n : \mathbb{R}^{d_{in}} \rightarrow \mathbb{R}^{d_{out}}$; typically:
 - Non-linear
 - Differentiable with respect to its inputs
 - “Assembled” through a series of affine transformations and non-linearities, composed together
 - Symbolic/discrete inputs handled through lookups.

- Parameter values ν
 - Typically a collection of scalars, vectors, and matrices
 - We often assume they are linearized into \mathbb{R}^{D}
A Couple of Useful Functions

▶ softmax : \(\mathbb{R}^k \to \mathbb{R}^k \)

\[
\langle x_1, x_2, \ldots, x_k \rangle \mapsto \left\langle \frac{e^{x_1}}{\sum_{j=1}^{k} e^{x_j}}, \frac{e^{x_2}}{\sum_{j=1}^{k} e^{x_j}}, \ldots, \frac{e^{x_k}}{\sum_{j=1}^{k} e^{x_j}} \right\rangle
\]

▶ tanh : \(\mathbb{R} \to [-1, 1] \)

\[
x \mapsto \frac{e^x - e^{-x}}{e^x + e^{-x}}
\]

Generalized to be *elementwise*, so that it maps \(\mathbb{R}^k \to [-1, 1]^k \).

▶ Others include: ReLUs, logistic sigmoids, PReLUs, …
“One Hot” Vectors

Arbitrarily order the words in \mathcal{V}, giving each an index in $\{1, \ldots, V\}$.

Let $e_i \in \mathbb{R}^V$ contain all zeros, with the exception of a 1 in position i.

This is the “one hot” vector for the ith word in \mathcal{V}.
Feedforward Neural Network Language Model

(Bengio et al., 2003)

Define the n-gram probability as follows:

\[
p(\cdot \mid \langle h_1, \ldots, h_{n-1} \rangle) = n_\nu \left(\langle e_{h_1}, \ldots, e_{h_{n-1}} \rangle \right) =
\]

\[
\text{softmax} \left(b + \sum_{j=1}^{n-1} e_{h_j}^\top M A_j + W \tanh \left(u + \sum_{j=1}^{n-1} e_{h_j}^\top M T_j \right) \right)
\]

where each \(e_{h_j} \in \mathbb{R}^V \) is a one-hot vector and \(H \) is the number of “hidden units” in the neural network (a “hyperparameter”).

Parameters \(\nu \) include:

- \(M \in \mathbb{R}^{V \times d} \), which are called “embeddings” (row vectors), one for every word in \(V \)
- Feedforward NN parameters \(b \in \mathbb{R}^V \), \(A \in \mathbb{R}^{(n-1) \times d \times V} \), \(W \in \mathbb{R}^{V \times H} \), \(u \in \mathbb{R}^H \), \(T \in \mathbb{R}^{(n-1) \times d \times H} \)
Breaking It Down

Look up each of the history words $h_j, \forall j \in \{1, \ldots, n - 1\}$ in \mathbf{M}; keep two copies.

$$\mathbf{e}_{h_j}^{\top} \mathbf{M}_{\nu \times d}$$

$$\mathbf{e}_{h_j}^{\top} \mathbf{M}_{\nu \times d}$$
Breaking It Down

Look up each of the history words \(h_j, \forall j \in \{1, \ldots, n - 1\} \) in \(M \); keep two copies. Rename the embedding for \(h_j \) as \(m_{h_j} \).

\[
e_{h_j}^\top M = m_{h_j}
\]

\[
e_{h_j}^\top M = m_{h_j}
\]
Apply an affine transformation to the second copy of the history-word embeddings (u, T)

$$u + \sum_{j=1}^{n-1} m_{h_j} T_j$$
Apply an affine transformation to the second copy of the history-word embeddings \((\mathbf{u}, \mathbf{T})\) and a \(\tanh\) nonlinearity.

\[
\begin{align*}
\mathbf{m}_{h_j} \\
\tanh \left(\mathbf{u} + \sum_{j=1}^{n-1} \mathbf{m}_{h_j} \mathbf{T}_j \right)
\end{align*}
\]
Apply an affine transformation to everything \((b, A, W)\).
Breaking It Down

Apply a softmax transformation to make the vector sum to one.

$$\text{softmax} \left(b + \sum_{j=1}^{n-1} m_{h_j} A_j \right)$$

$$+ W \ \text{tanh} \left(u + \sum_{j=1}^{n-1} m_{h_j} T_j \right)$$
Breaking It Down

\[
\text{softmax} \left(b + \sum_{j=1}^{n-1} m_{h_j} A_j \right) + W \text{ tanh} \left(u + \sum_{j=1}^{n-1} m_{h_j} T_j \right)
\]

Like a log-linear language model with two kinds of features:

- Concatenation of context-word embeddings vectors \(m_{h_j} \)
- \(\text{tanh} \)-affine transformation of the above

New parameters arise from (i) embeddings and (ii) affine transformation “inside” the nonlinearity.
Number of Parameters

\[D = V_d + V_b + (n - 1)dV + V_H + H_u + (n - 1)dH \]

For Bengio et al. (2003):
- \(V \approx 18000 \) (after OOV processing)
- \(d \in \{30, 60\} \)
- \(H \in \{50, 100\} \)
- \(n - 1 = 5 \)

So \(D = 461V + 30100 \) parameters, compared to \(O(V^n) \) for classical n-gram models.
- Forcing \(A = 0 \) eliminated 300V parameters and performed a bit better, but was slower to converge.
- If we averaged \(m_{h,j} \) instead of concatenating, we’d get to \(221V + 6100 \) (this is a variant of “continuous bag of words,” Mikolov et al., 2013).
References I

