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Very Quick Review of Probability

» Event space (e.g., X, Y)—in this class, usually discrete
» Random variables (e.g., X, Y)

» Typical statement: “random variable X takes value x € X with probability
p(X = x), or, in shorthand, p(x)"

» Joint probability: p(X = z,Y =y)

» Conditional probability: p(X =z |Y =y) =

» Always true:

pPX =2Y=y) =pX=z|Y=y)pY =y =pY=y|X=2)pX=n)
» Sometimes true: p(X =z,Y =y) =p(X =z) - p(Y =vy)
» The difference between true and estimated probability distributions
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Language Models: Definitions

» Vis a finite set of (discrete) symbols (© “words” or possibly characters); V = |V|
» Vi is the (infinite) set of sequences of symbols from V whose final symbol is ()

» p: VI 5 R, such that:
» Forany z € VI, p(z) >0

> Y X =z)=1
xzeVT
(l.e., p is a proper probability distribution.)

Language modeling: estimate p from examples, 1., = (X1, x2,...,Ty).
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Immediate Objections

1. Why would we want to do this?
2. Are the nonnegativity and sum-to-one constraints really necessary?
3. Is "finite V" realistic?
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Motivation: Noisy Channel Models

A pattern for modeling a pair of random variables, D and O:

[source] — D — [channel | — O
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Motivation: Noisy Channel Models

A pattern for modeling a pair of random variables, D and O:
— D — — 0

» D is the plaintext, the true message, the missing information, the output
» O is the ciphertext, the garbled message, the observable evidence, the input

» Decoding: select d given O = o.

d* = argmaxp(d | 0)
d

B p(o|d)-p(d)

= argmax
d p(o)

=argmax p(o|d) - p(d)
d S—— ~~

channel model source model
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Noisy Channel Example: Speech Recognition

source | — sequence in VI — | channel | — acoustics

» Acoustic model defines p(sounds | d) (channel)

» Language model defines p(d) (source)
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Noisy Channel Example: Speech Recognition
Credit: Luke Zettlemoyer

word sequence  log p(acoustics | word sequence)

the station signs are in deep in english -14732
the stations signs are in deep in english -14735
the station signs are in deep into english -14739

the station 's signs are in deep in english -14740
the station signs are in deep in the english -14741

the station signs are indeed in english -14757
the station 's signs are indeed in english -14760
the station signs are indians in english -14790
the station signs are indian in english -14799
the stations signs are indians in english -14807

the stations signs are indians and english ~ -14815
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Noisy Channel Example: Machine Translation

Also knowing nothing official about, but having guessed and inferred
considerable about, the powerful new mechanized methods in
cryptography—methods which | believe succeed even when one does not
know what language has been coded—one naturally wonders if the problem of
translation could conceivably be treated as a problem in cryptography. When
| look at an article in Russian, | say: “This is really written in English, but it
has been coded in some strange symbols. | will now proceed to decode.”

Warren Weaver, 1955
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Noisy Channel Examples

v

Speech recognition

Machine translation

v

v

Optical character recognition

v

Spelling and grammar correction
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“Conditional” Language Models

Instead of p(X), model p(X | Context).

» Contezt could be an input (acoustics, source-language sentence, image of text)
...or it could be something else (visual input, stock prices, . ..)

» Made possible by advances in machine learning!
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Immediate Objections

1. Why would we want to do this?
2. Are the nonnegativity and sum-to-one constraints really necessary?
3. Is "finite V" realistic?
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Evaluation: Perplexity

Intuitively, language models should assign high probability to real language they have
not seen before.
For out-of-sample ( “held-out” or “test”) data Ti.y:

» Probability of Z1.,, is Hp(a‘cz)
i=1
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Evaluation: Perplexity

Intuitively, language models should assign high probability to real language they have
not seen before.
For out-of-sample ( “held-out” or “test”) data Ti.y:

» Probability of Z1.,, is Hp(a‘cz)
i=1

m

» Log-probability of &1.,, is Zlogg p(Z;)
i=1

» Average log-probability per word of Z1.,, is

1 & _
| = i Zl log, p(Z;)
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Evaluation: Perplexity

Intuitively, language models should assign high probability to real language they have
not seen before.
For out-of-sample ( “held-out” or “test”) data &i.:

m
» Probability of Z1.,, is Hp(a‘r:z)
i=1
m
» Log-probability of Z1.,, is Zlog2 p(&;)
i=1
» Average log-probability per word of Z1.,, is

1 — B
l=1; ;logg p(Z;)

if M =>""|%;| (total number of words in the corpus)
» Perplexity (relative to Z1.,) is 27
Lower is better.
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Understanding Perplexity

1 & _
M Z log p(Z:)
2 i=1

It's a branching factor!
> Assign probability of 1 to the test data = perplexity = 1
» Assign probability of ﬁ to every word = perplexity = |V|

» Assign probability of 0 to anything = perplexity = oo
» This motivates a stricter constraint than we had before:
» Forany & € VT, p(x) >0
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Perplexity

» Perplexity on conventionally accepted test sets is often reported in papers.
» Generally, | won't discuss perplexity numbers much, because:

» Perplexity is only an intermediate measure of performance.
» Understanding the models is more important than remembering how well they
perform on particular train/test sets.

» If you're curious, look up numbers in the literature; always take them with a grain
of salt!
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Immediate Objections

1. Why would we want to do this?

2. Are the nonnegativity and sum-to-one constraints really necessary?
3. Is "finite V" realistic?

D@
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Is “finite V" realistic?

No
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Is “finite V" realistic?

No
no
n0
-no
notta
o
/no
//no
(no
Ino
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The Language Modeling Problem

Input: 1., (“training data")
Output: p: VI — R*
® p should be a “useful” measure of plausibility (not grammaticality).
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A Trivial Language Model

_ M|z =z} Can (2)

p(z) p -~
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A Trivial Language Model

What if « is not in the training data?
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Using the Chain Rule

p(X1 =21 | Xo = 20)
- p(Xo = x2 | Xoa = x0.1)
p(X =x)=| - p(Xs=ua3| X2 =z0:2)

- p(Xe = O | Xow—1 = z0.0-1)
¢

= Hp(Xj =z | Xoyj—1 = Z0:j—1)
j=1
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Unigram Model

14

p( X =x)= Hp(Xj = x;j | Xojj—1 = Zoj-1)

j=1

L l
assumption ~
= [Iro(X; =aj) =[] 0s, ~
Jj=1

Maximum likelihood estimate:

s d, g | [y = v}
YveV,o, = N

— Cwl:n (U)
N

J— n .
where N =" | |x;|.
Also known as “relative frequency estimation.”
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Relative Frequency Estimation is the MLE
(Unigram Model)

The maximum likelihood estimation problem:

max pe(mlzn)
0cnlVI
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Relative Frequency Estimation is the MLE
(Unigram Model)

Logarithm is a monotonic function.

max pg(Ti.,) = exp max logpg(zcl n)
ocAVI ocAVI
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Relative Frequency Estimation is the MLE
(Unigram Model)

Each sequence is an independent sample from the model.

n
max lo Z1.,) = max lo x;
Jnax g po(T1:n) o, g};[lpe( i)
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Relative Frequency Estimation is the MLE
(Unigram Model)

Plug in the form of the unigram model.

n n 4
max log Hpg(a:i) = max log H H Oz,
i=1

v Vv
eV fcAV Pl geaie
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Relative Frequency Estimation is the MLE
(Unigram Model)

Log of product equals sum of logs.

n 4
max logHHH[wi}j = max ZZIOge[%]J

Vi VI
oen 1o oenlVl = =
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Relative Frequency Estimation is the MLE
(Unigram Model)

Convert from tokens to types.

max log 6 max Ce
Z Z @il = Z 1

0cAIVI “ —1 4 OeAIVI

v) log 6,
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Relative Frequency Estimation is the MLE
(Unigram Model)

Convert to a minimization problem (for consistency with textbooks).

max Cxy., (V) 1logl, = min — g Cxy., (V) log B,
ocAlVI ’ ocAVI :
veEV veEV
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Relative Frequency Estimation is the MLE
(Unigram Model)

Lagrange multiplier to convert to a less constrained problem.

min — Z Cay., (V) log 0,

VI
[7ISYAN ey

= max min — Z Cxy., (V) 10g 0, — 10 (1 - ZHU>

>0 VI
= BeRzo veY vey

= min max — Z Cay. (V) log Oy — 1 (1 - Z QU)

VI >0
OeR, H= veY veEY

Intuitively, if ZOU gets too big, u will push toward +oo.
veEVY

For more about Lagrange multipliers, see Dan Klein's tutorial (reference at the end of these slides).
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Relative Frequency Estimation is the MLE
(Unigram Model)

Use first-order conditions to solve for 8 in terms of u.

min max — Z Cay. (V) log 0y — 1 (1 - Z GU)

VI >0
OeR, H= veY

veY
fixing p, for all v, set: 0 = 0
00,
_ Czévn(v) +u
0, = Cay.n (V)
7

48 /58



Relative Frequency Estimation is the MLE
(Unigram Model)

Plug in for each 6,.

min max — Z Cay., (V) log 0y — 1 (1 - Z 91;)

VI >0
OeR = veY

veY
— max — ZC (U) log Cwlzn(v) _ M 1 _ Z Cwlzn(v)
=y o H vy P

Remember: |Yv € V.0, =

le:n <U)
7
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Relative Frequency Estimation is the MLE
(Unigram Model)

Rearrange terms (alog ¢ = aloga —alogb and N = chm (v)).

veVY
Cwlz (U) C:El; (U)
— . log 2\ [ = “Zun )
i~ 3 cay (0 22 ( e
veEV veEV
= max— ) Cay, (v)logcg,., (v) + Nlogpu — p+ N
>
vey

Remember: |Yv € V, 0, = Cay.n (V)

“
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Relative Frequency Estimation is the MLE
(Unigram Model)

Use first-order conditions to solve for .

max — Z Cxy., (V) 10gcg,, (V) + Nlogp —pu+ N

#20 veY
set: 0 = 2
op
N
=— -1
7
p=N

Remember: |Yv € V, 0, = w
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Relative Frequency Estimation is the MLE
(Unigram Model)

Plug in for u.

I/I};ié{ - ze‘:) cml:n (U) log cml:n (U) + N log H - H + N
v

=— Z Cxy., (V) 10g g, (v) + Nlog N
veVY

v eV, 0, = ‘wnl®)

Cey.p, (v)

“

N

.. and that’s the relative frequency estimate!
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Unigram Models: Assessment

Pros: Cons:

» “Bag of words” assumption is
> Easy to understand linguistically inaccurate

> p(the the the the) >

» Cheap p(l want ice cream)
» Good enough for information retrieval > Data sparseness; high variance in the
(maybe) estimator

» “Out of vocabulary” problem
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Markov Models = n-gram Models

14

p(X =z) = [[p(X; = zj | Xoj-1 = z0,5-1)
j=1

¢
assumption
= Hpe(Xj =25 | Xjnt1j-1 = Tjnt1j-1)
Jj=1

(n — 1)th-order Markov assumption = n-gram model
» Unigram model is the n =1 case
» For a long time, trigram models (n = 3) were widely used

» 5-gram models (n = 5) were common in MT for a time
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Estimating n-Gram Models

unigram

Pe(iU) = ezj

1

14

<

Parameters: 6,

bigram

¢
H 99«“1\%‘—1
=1

0

v|v’

trigram

¢
H O ks 2z; 1
Jj=1

0

v|v!v’

Yv ey YoeV, v e VU{O} WweV v, v eVu{O}
MLE: c(v) c(v'v) c(v"v'v)
N > uey c(v'u) > uey c(v"v'u)
Ggeneral case:
c(hv)
H O j12; i1 Oujh, voev.ne@uop > ey c(hu)
u

J=1
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The Problem with MLE

» The curse of dimensionality: the number of parameters grows exponentially in n

» Data sparseness: most n-grams will never be observed, even if they are
linguistically plausible

» No one actually uses the MLE!
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Smoothing

A few years ago, I'd have spent a whole lecture on this! ®

» Simple method: add A > 0 to every count (including zero-counts) before
normalizing
» What makes it hard: ensuring that the probabilities over all sequences sum to one
» Otherwise, perplexity calculations break

» Longstanding champion: modified Kneser-Ney smoothing (Chen and Goodman,
1998)

» Stupid backoff: reasonable, easy solution when you don't care about perplexity
(Brants et al., 2007)
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