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Latent Dirichlet Allocation
(Blei et al., 2003)

Widely used today.

p(x) =

∫
γ

∑
z∈{1,...,k}`

p(x, z,γ) dγ

p(x, z,γ) = Dirα(γ)
∏̀
i=1

γzi θxi|zi

Parameters:

I α ∈ Rk
>0

I θ∗|z ∈ 4V , ∀z ∈ {1, . . . , k}

There is no closed form for the MLE!
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Understanding LDA
Models with k = 3 (left) and k = 2 (right):
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I Unigram model estimates one “topic” for the whole corpus.
I PLSA places each document at one point in the topic simplex.
I LDA estimates a posterior distribution in the “topic simplex” for each document

(and its vertices).
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LDA

Topics discovered by LDA-like models continue to be interesting:
I As a way of interacting with and exploring large corpora without reading them.

I But this is hard to evaluate!

I As a “pivot” for relating to other variables like author (Rosen-Zvi et al., 2004),
geography (Eisenstein et al., 2010), and many more.

LDA is also extremely useful as a pedagogical gateway to Bayesian modeling of text
(and other discrete data).

I It’s right on the boundary between “easy” and “hard” Bayesian models.
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Three Kinds of Cotext

If we consider a word token at a particular position i in text to be the observed value
of a random variable Xi, what other random variables are predictive of/related to Xi?

1. the document containing i (a moderate-to-large collection of other words) −→
topic models

2. the words that occur within a small “window” around i (e.g., xi−2, xi−1, xi+1,
xi+2, or maybe the sentence containing i) −→ distributional semantics

3. a sentence known to be a translation of the one containing i −→ translation
models
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Local Contexts: Distributional Semantics

Within NLP, emphasis has shifted from topics to the relationship between v ∈ V and
more local contexts.

For example: LSI/A, but replace documents with “nearby words.” This is a way to
recover word vectors that capture distributional similarity.

These models are designed to “guess” a word at position i given a word at a position
in {i− w, . . . , i− 1} ∪ {i+ 1, . . . , i+ w}.

Sometimes such methods are used to “pre-train” word vectors used in other, richer
models (like neural language models).

6 / 32



Word2vec
(Mikolov et al., 2013a,b)

Two models for word vectors designed to be computationally efficient.
I Continuous bag of words (CBOW): p(v | c)

I Similar in spirit to the feedforward neural language model we saw before (Bengio
et al., 2003)

I Skip-gram: p(c | v)

It turns out these are closely related to matrix factorization as in LSI/A (Levy and
Goldberg, 2014)!
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Skip-Gram Model

p(C = c | X = v) =
1

Zv
exp c>c vv

I Two different vectors for each element of V: one when it is “v” (v) and one when
it is “c” (c).

I Like the log-bilinear model we saw before, normalization term Zv is expensive, so
approximations are required for efficiency.

I Can expand this to be over the whole sentence or document, or otherwise choose
which words “count” as context.
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Word Vector Evaluations
See http://wordvectors.org for a suite of examples.

Several popular methods for intrinsic evaluations:

I Do (cosine) similarities of pairs of words’ vectors correlate with judgments of
similarity by humans?

I TOEFL-like synonym tests, e.g., rug
?→ {sofa, ottoman, carpet, hallway}

I Syntactic analogies, e.g., “walking is to walked as eating is to what?” Solved via:

min
v∈V

cos (vv,vwalking − vwalked + veating)
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Word Vector Evaluations
See http://wordvectors.org for a suite of examples.

Several popular methods for intrinsic evaluations:

I Do (cosine) similarities of pairs of words’ vectors correlate with judgments of
similarity by humans?

I TOEFL-like synonym tests, e.g., rug
?→ {sofa, ottoman, carpet, hallway}

I Syntactic analogies, e.g., “walking is to walked as eating is to what?” Solved via:

min
v∈V

cos (vv,vwalking − vwalked + veating)

Also: extrinsic evaluations on NLP tasks that can use word vectors (e.g., sentiment
analysis).
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An Older Approach to Word Representation

Recall the class-based bigram model:

p(xi | xi−1) = p(xi | zi) · p(zi | zi−1)
= θxi|zi · γzi|zi−1

p(x, z) = πz0
∏̀
i=1

θxi|zi · γzi|zi−1

This is like a topic model where topic distributions are bigram distributed!

If we treat each z as latent—like in a topic model—we get to something very famous,
called the hidden Markov model (HMM).
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Comparing Five Models
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Brown Clustering

There is a whole lot more to say about HMMs, which we’ll save for later.

Brown et al. (1992) focused on the case where each v ∈ V is constrained to belong to
only one cluster, cl(v).

They developed a greedy way to cluster words hierarchically.
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Brown Clustering: Sketch of the Algorithm

Given: k (the desired number of clusters)

I Initially, every word v belongs to its own cluster.
I Repeat V − k times:

I Find the pairwise merge that gives the greatest value for p(x1:n, z1:n).

It turns out this is equivalent to PMI for adjacent cluster values!

This is very expensive; Brown et al. (1992) and others (later) introduced tricks for
efficiency. See Liang (2005) and Stratos et al. (2014), for example.
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Added Bonus to Brown Clusters

If you keep track of every merge, you have a hierarchical clustering.

Each cluster is a binary tree with words at the leaves and internal nodes corresponding
to merges.

Indexing the merge-pairs by 0 and 1 gives a bit-string for each word; prefixes of each
word’s bit string correspond to the hierarchical clusters it belongs to.

These can be seen as word embedings!
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Brown Clusters from 56,000,000 Tweets
http://www.cs.cmu.edu/~ark/TweetNLP/cluster_viewer.html
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Three Kinds of Cotext

If we consider a word token at a particular position i in text to be the observed value
of a random variable Xi, what other random variables are predictive of/related to Xi?

1. the document containing i (a moderate-to-large collection of other words) −→
topic models

2. the words that occur within a small “window” around i (e.g., xi−2, xi−1, xi+1,
xi+2, or maybe the sentence containing i) −→ distributional semantics

3. a sentence known to be a translation of the one containing i −→ translation
models
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Bitext

Let f and e be two sequences in V† (French) and V̄† (English), respectively.

We’re going to define p(F | e), the probability over French translations of English
sentence e.

In a noisy channel machine translation system, we could use this together with
source/language model p(e) to “decode” f into an English translation.

Where does the data to estimate this come from?
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IBM Model 2
(Brown et al., 1993)

Let ` and m be the (known) lengths of e and f .

Latent variable a = 〈a1, . . . , am〉, each ai ranging over {0, . . . , `} (positions in e).

I E.g., a4 = 3 means that f4 is “aligned” to e3.

p(f | e,m) =
∑

a∈{0,...,n}m
p(f ,a | e,m)

p(f ,a | e,m) =

m∏
i=1

p(ai | i, `,m) · p(fi | eai)

= δai|i,`,m · θfi|eai
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IBM Model 2, Depicted
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Parameter Estimation

Use EM!

E step: calculate posteriors over all ai, and then soft counts (left as an exercise: what
soft counts do you need?)

M step: use relative frequency estimation from soft counts to get δ and θ
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Variations

I IBM Model 1 is the same, but fixes δj|i,`,m = 1
`+1 .

I Log-likelihood is convex!
I Often used to initialize IBM Model 2.

I Dyer et al. (2013) introduced a new parameterization:

δj|i,`,m ∝ exp−λ
∣∣∣∣ im − j

`

∣∣∣∣
(This is called fast align.)

I IBM Models 3–5 (Brown et al., 1993) introduced increasingly more powerful
ideas, such as “fertility” and “distortion.”
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Wow! That was a lot of models!

We covered:

I Topic models: LSI/A, PLSA, LDA

I Distributional semantics models: Skip-gram, Brown clustering

I Translation models: IBM 1 and 2

All of them are probabilistic models that capture patterns of cooccurrence between
words and cotext.

They do not have: morphology (word-guts), syntax (sentence structure), or translation
dictionaries . . .
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