Natural Language Processing (CSE 517): Introduction

Noah Smith
© 2018

University of Washington
nasmith@cs.washington.edu

March 28, 2018
What is NLP?

NL ∈ \{Mandarin Chinese, English, Spanish, Hindi, \ldots, Lushootseed\}

Automation of:

- analysis (NL → \mathcal{R})
- generation (\mathcal{R} → NL)
- acquisition of \mathcal{R} from knowledge and data

What is \mathcal{R}?
analysis
generation

R

NL
What does it mean to “know” a language?
Levels of Linguistic Knowledge

- speech
- phonetics
- phonology
- orthography
- morphology
- lexemes
- syntax
- semantics
- pragmatics
- discourse

"shallower"

"deeper"
ลูกศิษย์วัดกระทิงยังยื้อปิดถนนทางขึ้นไปนมัสการพระบาทئةเขีลิมภูฏ หวิดปะทะกับเจ้าถิ่นที่ออกมาเผชิญหน้าเพราะเดือดร้อนสัญจรไม่ได้ ผวจ.เร่งทุกฝ่ายเจรจาก่อนที่ชื่อเสียงของจังหวัดจะเสียหายไปมากกว่านี้ พร้อมเสนอหยุดจัดงาน 15 วัน....
uygarlaştıramadıklarımızdan mıssınızcasına
“(behaving) as if you are among those whom we could not civilize”

TIFGOSH ET HA-LELED BA-GAN
“you will meet the boy in the park”

unfriend, Obamacare, Manfuckinghattan
The Challenges of “Words”

- Segmenting text into words (e.g., Thai example)
- Morphological variation (e.g., Turkish and Hebrew examples)
- Words with multiple meanings: *bank, mean*
- Domain-specific meanings: *latex*
- Multiword expressions: *make a decision, take out, make up, bad hombres*
ikr smh he asked fir yo last name

so he can add u on fb lololol
Example: Part-of-Speech Tagging

I know, right shake my head
 ikr smh he asked fir yo last name

so he can add u on fb lololol
Example: Part-of-Speech Tagging

I know, right shake my head
for your

ikr smh he asked for your last name
!

GOV PD AN
interjection acronym pronoun verb prep. det. adj. noun

so he can add u on fb lololol

POVVOPO
preposition proper noun

you Facebook laugh out loud
Syntax

NP vs. NP

NP

NP

Adj. natural

Noun language

Noun

processing

Adj. natural

NP

NP

Noun language

Noun

processing
Morphology + Syntax

A ship-shipping ship, shipping shipping-ships.
We saw the woman with the telescope wrapped in paper.
We saw the woman with the telescope wrapped in paper.

- Who has the telescope?
We saw the woman with the telescope wrapped in paper.

- Who has the telescope?
- Who or what is wrapped in paper?
Syntax + Semantics

We saw the woman with the telescope wrapped in paper.

- Who has the telescope?
- Who or what is wrapped in paper?
- An event of perception, or an assault?
Every fifteen minutes a woman in this country gives birth.

– Groucho Marx

Semantics
Every fifteen minutes a woman in this country gives birth. Our job is to find this woman, and stop her!

– Groucho Marx
Can \mathcal{R} be “Meaning”?

Depends on the application!
- Giving commands to a robot
- Querying a database
- Reasoning about relatively closed, grounded worlds

Harder to formalize:
- Analyzing opinions
- Talking about politics or policy
- Ideas in science
Why NLP is Hard

1. Mappings across levels are complex.
 ▶ A string may have many possible interpretations in different contexts, and resolving **ambiguity** correctly may rely on knowing a lot about the world.
 ▶ **Richness**: any meaning may be expressed many ways, and there are immeasurably many meanings.
 ▶ Linguistic **diversity** across languages, dialects, genres, styles, ...

2. Appropriateness of a representation depends on the application.

3. Any \mathcal{R} is a theorized construct, not directly observable.

4. There are many sources of variation and noise in linguistic input.
Desiderata for NLP Methods

(ordered arbitrarily)

1. Sensitivity to a wide range of the phenomena and constraints in human language
2. Generality across different languages, genres, styles, and modalities
3. Computational efficiency at construction time and runtime
4. Strong formal guarantees (e.g., convergence, statistical efficiency, consistency, etc.)
5. High accuracy when judged against expert annotations and/or task-specific performance
To be successful, a machine learner needs bias/assumptions; for NLP, that might be linguistic theory/representations.

- \mathcal{R} is not directly observable.

- Early connections to information theory (1940s)

- Symbolic, probabilistic, and connectionist ML have all seen NLP as a source of inspiring applications.
NLP = Linguistics

- NLP must contend with NL data as found in the world
- NLP \approx computational linguistics
- Linguistics has begun to use tools originating in NLP!
Fields with Connections to NLP

- Machine learning
- Linguistics (including psycho-, socio-, descriptive, and theoretical)
- Cognitive science
- Information theory
- Logic
- Theory of computation
- Data science
- Political science
- Psychology
- Economics
- Education
The Engineering Side

- Application tasks are difficult to define formally; they are always evolving.
- Objective evaluations of performance are always up for debate.
- Different applications require different \mathcal{R}.
- People who succeed in NLP for long periods of time are foxes, not hedgehogs.
Today’s Applications

- Conversational agents
- Information extraction and question answering
- Machine translation
- Opinion and sentiment analysis
- Social media analysis
- Rich visual understanding
- Essay evaluation
- Mining legal, medical, or scholarly literature
Factors Changing the NLP Landscape
(Hirschberg and Manning, 2015)

- Increases in computing power
- The rise of the web, then the social web
- Advances in machine learning
- Advances in understanding of language in social context
Administrivia
Course Website

http://courses.cs.washington.edu/courses/cse517/18sp/
Noah (instructor):

- UW CSE professor since 2015, teaching NLP since 2006, studying NLP since 1998, first NLP program in 1991
- Research interests: machine learning for structured problems in NLP, NLP for social science

TAs: Dianqi and Kelvin
Outline of CSE 517

1. **Probabilistic language models**, which define probability distributions over text passages. (about 2 weeks)
2. **Text classifiers**, which infer attributes of a piece of text by “reading” it. (about 1 week)
3. **Sequence models** (about 1 week)
4. **Parsers** (about 2 weeks)
5. **Semantics** (about 2 weeks)
6. **Machine translation** (about 1 week)
Readings

- Main reference text: Eisenstein (2018). Download it now!
- Course notes from the instructor and others
- Research articles

Lecture slides will include references for deeper reading on some topics.
Evaluation

- Approximately five assignments (A1–5), completed individually (50%).
- Project, in a team of 1–3 (50%).
Evaluation

- Approximately five assignments (A1–5), completed individually (50%).
 - Some pencil and paper, mostly programming
 - Graded mostly on your writeup (so please take written communication seriously!)
- Project, in a team of 1–3 (50%).
Am I Ready for CSE 517?

- The course is designed for CSE Ph.D. students.
 - There will be programming
 - There will be math (e.g., conditional probability, Lagrange multipliers, gradient descent, the chain rule from calculus)
 - There will be linguistics (ideas from syntax, lexical semantics, frame semantics, and compositional semantics)
- In 2016, about a third of the course was from outside CSE; they worked *hard*
- We are here to help, but if you need extreme amounts of help, we’ll advise you drop the course.
- It’s your call!

Fill out the request for an add code here:
https://goo.gl/forms/CbSbCV1NZo6g53723
To-Do List

- If you’re not registered and need an add code, fill out the form at https://goo.gl/forms/CbSbCV1NZ06g53723
- Print, sign, and return the academic integrity statement on the course web page, http://courses.cs.washington.edu/courses/cse517/18sp/academic-integrity.pdf