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Evaluation

Intuition: good translations are fluent in the target language and faithful to the
original meaning.

Bleu score (Papineni et al., 2002):

I Compare to a human-generated reference translation

I Or, better: multiple references

I Weighted average of n-gram precision (across different n)

There are some alternatives; most papers that use them report Bleu, too.
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Warren Weaver to Norbert Wiener, 1947

One naturally wonders if the problem of translation could be conceivably treated as a
problem in cryptography. When I look at an article in Russian, I say: ‘This is really
written in English, but it has been coded in some strange symbols. I will now proceed
to decode.’
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Noisy Channel Models
Review

A pattern for modeling a pair of random variables, X and Y :

source −→ Y −→ channel −→ X

I Y is the plaintext, the true message, the missing information, the output

I X is the ciphertext, the garbled message, the observable evidence, the input

I Decoding: select y given X = x.

y∗ = argmax
y

p(y | x)

= argmax
y

p(x | y) · p(y)

p(x)

= argmax
y

p(x | y)︸ ︷︷ ︸
channel model

· p(y)︸︷︷︸
source model
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Bitext/Parallel Text

Let f and e be two sequences in V† (French) and V̄† (English), respectively.

Earlier, we defined p(F | e), the probability over French translations of English
sentence e (IBM Models 1 and 2).

In a noisy channel machine translation system, we could use this together with
source/language model p(e) to “decode” f into an English translation.

Where does the data to estimate this come from?

8 / 82



IBM Model 1
(Brown et al., 1993)

Let ` and m be the (known) lengths of e and f .
Latent variable a = 〈a1, . . . , am〉, each ai ranging over {0, . . . , `} (positions in e).
I a4 = 3 means that f4 is “aligned” to e3.
I a6 = 0 means that f6 is “aligned” to a special null symbol, e0.

p(f | e,m) =
∑̀
a1=0

∑̀
a2=0

· · ·
∑̀
am=0

p(f ,a | e,m)

=
∑

a∈{0,...,`}m
p(f ,a | e,m)

p(f ,a | e,m) =

m∏
i=1

p(ai | i, `,m) · p(fi | eai)

=

m∏
i=1

1

`+ 1
· θfi|eai =

(
1

`+ 1

)m m∏
i=1

θfi|eai
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Example: f is German

Mr President , Noah's ark was filled not with production factors , but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren , sondern Geschöpfe .

a = 〈4, . . .〉

p(f ,a | e,m) =
1

17 + 1
· θNoahs|Noah’s
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Example: f is German

Mr President , Noah's ark was filled not with production factors , but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren , sondern Geschöpfe .

a = 〈4, 5, . . .〉

p(f ,a | e,m) =
1

17 + 1
· θNoahs|Noah’s ·

1

17 + 1
· θArche|ark
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Example: f is German

Mr President , Noah's ark was filled not with production factors , but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren , sondern Geschöpfe .

a = 〈4, 5, 6, . . .〉

p(f ,a | e,m) =
1

17 + 1
· θNoahs|Noah’s ·

1

17 + 1
· θArche|ark

· 1

17 + 1
· θwar|was
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Example: f is German

Mr President , Noah's ark was filled not with production factors , but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren , sondern Geschöpfe .

a = 〈4, 5, 6, 8, . . .〉

p(f ,a | e,m) =
1

17 + 1
· θNoahs|Noah’s ·

1

17 + 1
· θArche|ark

· 1

17 + 1
· θwar|was ·

1

17 + 1
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Example: f is German

Mr President , Noah's ark was filled not with production factors , but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren , sondern Geschöpfe .

a = 〈4, 5, 6, 8, 7, . . .〉

p(f ,a | e,m) =
1
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Example: f is German

Mr President , Noah's ark was filled not with production factors , but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren , sondern Geschöpfe .

a = 〈4, 5, 6, 8, 7, ?, . . .〉

p(f ,a | e,m) =
1

17 + 1
· θNoahs|Noah’s ·

1

17 + 1
· θArche|ark

· 1

17 + 1
· θwar|was ·

1

17 + 1
· θnicht|not

· 1

17 + 1
· θvoller|filled ·

1

17 + 1
· θProductionsfactoren|?

15 / 82



Example: f is German

Mr President , Noah's ark was filled not with production factors , but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren , sondern Geschöpfe .

a = 〈4, 5, 6, 8, 7, ?, . . .〉

p(f ,a | e,m) =
1

17 + 1
· θNoahs|Noah’s ·

1

17 + 1
· θArche|ark

· 1

17 + 1
· θwar|was ·

1

17 + 1
· θnicht|not

· 1

17 + 1
· θvoller|filled ·

1

17 + 1
· θProductionsfactoren|?

Problem: This alignment isn’t possible with IBM Model 1! Each fi is aligned to at
most one eai!
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Example: f is English

Mr President , Noah's ark was filled not with production factors , but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren , sondern Geschöpfe .

a = 〈0, . . .〉

p(f ,a | e,m) =
1

10 + 1
· θMr|null
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Example: f is English

Mr President , Noah's ark was filled not with production factors , but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren , sondern Geschöpfe .

a = 〈0, 0, 0, . . .〉

p(f ,a | e,m) =
1

10 + 1
· θMr|null ·

1

10 + 1
· θPresident|null

· 1

10 + 1
· θ,|null
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Example: f is English

Mr President , Noah's ark was filled not with production factors , but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren , sondern Geschöpfe .

a = 〈0, 0, 0, 1, . . .〉

p(f ,a | e,m) =
1

10 + 1
· θMr|null ·

1

10 + 1
· θPresident|null

· 1

10 + 1
· θ,|null ·

1

10 + 1
· θNoah’s|Noahs
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Example: f is English

Mr President , Noah's ark was filled not with production factors , but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren , sondern Geschöpfe .

a = 〈0, 0, 0, 1, 2, . . .〉

p(f ,a | e,m) =
1

10 + 1
· θMr|null ·

1

10 + 1
· θPresident|null

· 1

10 + 1
· θ,|null ·

1

10 + 1
· θNoah’s|Noahs

· 1

10 + 1
· θark|Arche
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Example: f is English

Mr President , Noah's ark was filled not with production factors , but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren , sondern Geschöpfe .

a = 〈0, 0, 0, 1, 2, 3, . . .〉

p(f ,a | e,m) =
1

10 + 1
· θMr|null ·

1

10 + 1
· θPresident|null

· 1

10 + 1
· θ,|null ·

1

10 + 1
· θNoah’s|Noahs

· 1

10 + 1
· θark|Arche ·

1

10 + 1
· θwas|war
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Example: f is English

Mr President , Noah's ark was filled not with production factors , but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren , sondern Geschöpfe .

a = 〈0, 0, 0, 1, 2, 3, 5, . . .〉

p(f ,a | e,m) =
1

10 + 1
· θMr|null ·

1

10 + 1
· θPresident|null

· 1

10 + 1
· θ,|null ·

1

10 + 1
· θNoah’s|Noahs

· 1

10 + 1
· θark|Arche ·

1

10 + 1
· θwas|war

· 1

10 + 1
· θfilled|voller
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Example: f is English

Mr President , Noah's ark was filled not with production factors , but with living creatures .

Noahs Arche war nicht voller Produktionsfaktoren , sondern Geschöpfe .

a = 〈0, 0, 0, 1, 2, 3, 5, 4, . . .〉

p(f ,a | e,m) =
1

10 + 1
· θMr|null ·

1

10 + 1
· θPresident|null

· 1

10 + 1
· θ,|null ·

1

10 + 1
· θNoah’s|Noahs

· 1

10 + 1
· θark|Arche ·

1

10 + 1
· θwas|war

· 1

10 + 1
· θfilled|voller ·

1

10 + 1
· θnot|nicht
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How to Estimate Translation Distributions?

This is a problem of incomplete data: at training time, we see e and f , but not a.
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How to Estimate Translation Distributions?

This is a problem of incomplete data: at training time, we see e and f , but not a.

Classical solution is to alternate:

I Given a parameter estimate for θ, align the words.

I Given aligned words, re-estimate θ.

Traditional approach uses “soft” alignment.
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IBM Models 1 and 2, Depicted

x1 x2 x3 x4

hidden 
Markov 
model

y1 y2 y3 y4

f1 f2 f3 f4

IBM 1 
and 2 a1 a2 a3 a4

e e e e

26 / 82



Variations

I Dyer et al. (2013) introduced a new parameterization:

δj|i,`,m ∝ exp−λ
∣∣∣∣ im − j

`

∣∣∣∣
(This is called fast align.)

I IBM Models 3–5 (Brown et al., 1993) introduced increasingly more powerful
ideas, such as “fertility” and “distortion.”
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From Alignment to (Phrase-Based) Translation

Obtaining word alignments in a parallel corpus is a common first step in building a
machine translation system.

1. Align the words.

2. Extract and score phrase pairs.

3. Estimate a global scoring function to optimize (a proxy for) translation quality.

4. Decode French sentences into English ones.

(We’ll discuss 2–4.)

The noisy channel pattern isn’t taken quite so seriously when we build real systems,
but language models are really, really important nonetheless.
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Phrases?

Phrase-based translation uses automatically-induced phrases . . . not the ones given by
a phrase-structure parser.
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Examples of Phrases
Courtesy of Chris Dyer.

German English p(f̄ | ē)

das Thema

the issue 0.41
the point 0.72
the subject 0.47
the thema 0.99

es gibt
there is 0.96
there are 0.72

morgen tomorrow 0.90

fliege ich
will I fly 0.63
will fly 0.17
I will fly 0.13
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Phrase-Based Translation Model
Originated by Koehn et al. (2003).

R.v. A captures segmentation of sentences into phrases, alignment between them, and
reordering.

to the conference

Morgen  fliege ich nach Pittsburgh zur Konferenz

Tomorrow I will fly in Pittsburgh e

f
a

p(f ,a | e) = p(a | e) ·
|a|∏
i=1

p(f̄ i | ēi)
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Extracting Phrases
After inferring word alignments, apply heuristics.
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Extracting Phrases
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38 / 82



Extracting Phrases
After inferring word alignments, apply heuristics.
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Scoring Whole Translations

s(e,a;f) = log p(e)︸ ︷︷ ︸
language model

+ log p(f ,a | e)︸ ︷︷ ︸
translation model

Remarks:

I Segmentation, alignment, reordering are all predicted as well (not marginalized).

I This does not factor nicely.

I I am simplifying!

I Reverse translation model typically included.
I Each log-probability is treated as a “feature” and weights are optimized for Bleu

performance.
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Scoring Whole Translations

s(e,a;f) = log p(e)︸ ︷︷ ︸
language model

+ log p(f ,a | e)︸ ︷︷ ︸
translation model

+ log p(e,a | f)︸ ︷︷ ︸
reverse t.m.

Remarks:

I Segmentation, alignment, reordering are all predicted as well (not marginalized).

I This does not factor nicely.
I I am simplifying!

I Reverse translation model typically included.

I Each log-probability is treated as a “feature” and weights are optimized for Bleu
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Scoring Whole Translations

s(e,a;f) = βl.m. log p(e)︸ ︷︷ ︸
language model

+βt.m. log p(f ,a | e)︸ ︷︷ ︸
translation model

+ βr.t.m.log p(e,a | f)︸ ︷︷ ︸
reverse t.m.

Remarks:

I Segmentation, alignment, reordering are all predicted as well (not marginalized).

I This does not factor nicely.
I I am simplifying!

I Reverse translation model typically included.
I Each log-probability is treated as a “feature” and weights are optimized for Bleu

performance.
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Decoding: Example

Maria   no         dio  una   bofetada   a   la    bruja   verda
Mary not give a slap to the witch green

no

did not

did not give

slap

slap

by

to the

the

the witch

hag bawdy

green witch
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Decoding
Adapted from Koehn et al. (2006).

Typically accomplished with beam search.

Initial state: 〈◦ ◦ . . . ◦︸ ︷︷ ︸
|f |

, “”〉 with score 0

Goal state: 〈• • . . . •︸ ︷︷ ︸
|f |

, e∗〉 with (approximately) the highest score

Reaching a new state:

I Find an uncovered span of f for which a phrasal translation exists in the input
(f̄ , ē)

I New state appends ē to the output and “covers” f̄ .

I Score of new state includes additional language model, translation model
components for the global score.
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Decoding Example

Maria   no         dio  una   bofetada   a   la    bruja   verda
Mary not give a slap to the witch green

no

did not

did not give

slap

slap

by

to the

the

the witch

hag bawdy

green witch

〈◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦, “”〉, 0
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Decoding Example

Maria   no         dio  una   bofetada   a   la    bruja   verda
Mary not give a slap to the witch green

no

did not

did not give

slap

slap

by

to the

the

the witch

hag bawdy

green witch

〈• ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦, “Mary”〉, log pl.m.(Mary) + log pt.m.(Maria | Mary)
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Decoding Example

Maria   no         dio  una   bofetada   a   la    bruja   verda
Mary give a slap to the witch green

did not slap

slap

by

to the

the

the witch

hag bawdy

green witch

〈• • ◦ ◦ ◦ ◦ ◦ ◦ ◦, “Mary did not”〉,
log pl.m.(Mary did not) + log pt.m.(Maria | Mary)

+ log pt.m.(no | did not)
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Decoding Example

Maria   no         dio  una   bofetada   a   la    bruja   verda
Mary to the witch green

did not

slap

by

to the

the

the witch

hag bawdy

green witch

〈• • • • • ◦ ◦ ◦ ◦, “Mary did not slap”〉,
log pl.m.(Mary did not slap) + log pt.m.(Maria | Mary)

+ log pt.m.(no | did not) + log pt.m.(dio una bofetada | slap)
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Machine Translation: Remarks

Sometimes phrases are organized hierarchically (Chiang, 2007).

Extensive research on syntax-based machine translation (Galley et al., 2004), but
requires considerable engineering to match phrase-based systems.

Recent work on semantics-based machine translation (Jones et al., 2012); remains to
be seen!

Some good pre-neural overviews: Lopez (2008); Koehn (2009)
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Neural Machine Translation

Original idea proposed by Forcada and Ñeco (1997); resurgence in interest starting
around 2013.

Strong starting point for current work: Bahdanau et al. (2014). (My exposition is
borrowed with gratitude from a lecture by Chris Dyer.)

This approach eliminates (hard) alignment and phrases.

Take care: here, the terminology “encoder” and “decoder” are used differently than in
the noisy-channel pattern.
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High-Level Model

p(E = e | f) = p(E = e | encode(f))

=
∏̀
j=1

p(ej | e0, . . . , ej−1, encode(f))

The encoding of the source sentence is a deterministic function of the words in that
sentence.
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Building Block: Recurrent Neural Network
Review from earlier in the course!

I Each input element is understood to be an element of a sequence: 〈x1,x2, . . . ,x`〉
I At each timestep t:

I The tth input element xt is processed alongside the previous state st−1 to calculate
the new state (st).

I The tth output is a function of the state st.
I The same functions are applied at each iteration:

st = grecurrent(xt, st−1)

yt = goutput(st)
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Neural MT Source-Sentence Encoder

Ich möchte  ein  Bier
lookups

forward RNN

backward RNN [  ]
source sentence encoding

0

0

F is a d×m matrix encoding the source sentence f (length m).
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Decoder: Contextual Language Model

Two inputs, the previous word and the source sentence context.

st = grecurrent(eet−1 , Fat︸︷︷︸
“context”

, st−1)

yt = goutput(st)

p(Et = v | e1, . . . , et−1,f) = [yt]v

(The forms of the two component gs are suppressed; just remember that they (i) have
parameters and (ii) are differentiable with respect to those parameters.)

The neural language model we discussed earlier (Mikolov et al., 2010) didn’t have the
context as an input to grecurrent.
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Neural MT Decoder

[  ]
0
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Neural MT Decoder

[               ][  ]
0

a1⊤
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Neural MT Decoder

[               ][  ]
0

I’d    like     a    beer    STOP  

a1⊤
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Neural MT Decoder

[               ][  ]
0

I’d    like     a    beer    STOP  

[               ]
a1 a2⊤ ⊤
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Neural MT Decoder

[               ][  ]
0

I’d    like     a    beer    STOP  

[               ]
a1 a2⊤ ⊤
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Neural MT Decoder

[               ][  ]
0

I’d    like     a    beer    STOP  

[               ] [               ]
a1 a2 a3⊤ ⊤ ⊤
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Neural MT Decoder

[               ][  ]
0

I’d    like     a    beer    STOP  

[               ] [               ]
a1 a2 a3⊤ ⊤ ⊤
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Neural MT Decoder

[               ][  ]
0

I’d    like     a    beer    STOP  

[               ] [               ] [               ]
a1 a2 a3 a4⊤ ⊤ ⊤ ⊤
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Neural MT Decoder

[               ][  ]
0

I’d    like     a    beer    STOP  

[               ] [               ] [               ]
a1 a2 a3 a4⊤ ⊤ ⊤ ⊤
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Neural MT Decoder

[               ][  ]
0

I’d    like     a    beer    STOP  

[               ] [               ] [               ] [               ]
a1 a2 a3 a4 a5⊤ ⊤ ⊤ ⊤ ⊤
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Neural MT Decoder

[               ][  ]
0

I’d    like     a    beer    STOP  

[               ] [               ] [               ] [               ]
a1 a2 a3 a4 a5⊤ ⊤ ⊤ ⊤ ⊤
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Neural MT Decoder

[               ][  ]
0

I’d    like     a    beer    STOP  

[               ] [               ] [               ] [               ]
a1 a2 a3 a4 a5⊤ ⊤ ⊤ ⊤ ⊤

[               ]
[               ]
[               ]
[               ]
[               ]
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Computing “Attention”

Let Vst−1 be the “expected” input embedding for timestep t.
(Parameters: V.)

Attention is at = softmax
(
F>Vst−1

)
.

Context is Fat, i.e., a weighted sum of the source words’ in-context representations.
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Learning and Decoding

log p(e | encode(f)) =

m∑
i=1

log p(ei | e0:i−1, encode(f))

is differentiable with respect to all parameters of the neural network, allowing
“end-to-end” training.

Trick: train on shorter sentences first, then add in longer ones.

Decoding typically uses beam search.
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Remarks

We covered two approaches to machine translation:

I Phrase-based statistical MT following Koehn et al. (2003), including probabilistic
noisy-channel models for alignment (a key preprocessing step; Brown et al., 1993),
and

I Neural MT with attention, following Bahdanau et al. (2014).

Note two key differences:

I Noisy channel p(e)× p(f | e) vs. “direct” model p(e | f)

I Alignment as a discrete random variable vs. attention as a deterministic,
differentiable function

At the moment, neural MT is winning when you have enough data; if not,
phrase-based MT dominates.

When monolingual target-language data is plentiful, we’d like to use it! Recent neural
models try (Sennrich et al., 2016; Xia et al., 2016; Yu et al., 2017).
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Summarization
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Automatic Text Summarization

Mani (2001) provides a survey from before statistical methods came to dominate; more
recent survey by Das and Martins (2008).

Parallel history to machine translation:

I Noisy channel view (Knight and Marcu, 2002)

I Automatic evaluation (Lin, 2004)

Differences:

I Natural data sources are less obvious

I Human information needs are less obvious

We’ll briefly consider two subtasks: compression and selection
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Sentence Compression as Structured Prediction
(McDonald, 2006)

Input: a sentence

Output: the same sentence, with some words deleted

McDonald’s approach:
I Define a scoring function for compressed sentences that factors locally in the

output.
I He factored into bigrams but considered input parse tree features.

I Decoding is dynamic programming (not unlike Viterbi).

I Learn feature weights from a corpus of compressed sentences, using structured
perceptron or similar.
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Sentence Selection

Input: one or more documents and a “budget”

Output: a within-budget subset of sentences (or passages) from the input

Challenge: diminishing returns as more sentences are added to the summary.

Classical greedy method: “maximum marginal relevance” (Carbonell and Goldstein,
1998)

Casting the problem as submodular optimization: Lin and Bilmes (2009)

Joint selection and compression: Martins and Smith (2009)
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Topics We Didn’t Cover

I Applications:
I Sentiment and opinion analysis
I Information extraction
I Question answering (and information retrieval more broadly)
I Dialog systems

I Formalisms:
I Grammars beyond CFG and CCG
I Logical semantics beyond first-order predicate calculus
I Discourse structure
I Pragmatics

I Tasks:
I Segmentation and morphological analysis
I Coreference resolution and entity linking
I Entailment and paraphrase

I Toolkits (AllenNLP, Stanford Core NLP, NLTK, . . . )
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Recurring Themes

Most lectures included discussion of:

I Representations or tasks (input/output)

I Evaluation criteria

I Models (often with a few variations)

I Learning/estimation algorithms

I Inference algorithms

I Practical advice

I Linguistic, statistical, and computational perspectives

For each “kind of problem,” keep these elements separate in your mind, and reuse
them where possible.
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