
Natural Language Processing (CSE 517):
Sequence Models

Noah Smith
c© 2018

University of Washington
nasmith@cs.washington.edu

April 25, 2018

1 / 46

Where We Are

I Language models

I Text classification

I Linguistic analysis

I Generation

2 / 46

Linguistic Analysis: Overview

Every linguistic analyzer is comprised of:

1. Theoretical motivation from linguistics and/or the text domain

2. An algorithm that maps V† to some output space Y.
I In this class, I’ll start with abstract algorithms applicable to many problems.

3. An implementation of the algorithm
I Once upon a time: rule systems and crafted rules
I Most common now: supervised learning from annotated data
I Frontier: less supervision (semi-, un-, distant, . . .)

3 / 46

Sequence Labeling

After text classification (V† → L), the next simplest type of output is a sequence
labeling.

〈x1, x2, . . . , x`〉 7→ 〈y1, y2, . . . , y`〉

Every word (or character) gets a label in L.
Example problems:

I part-of-speech tagging (Church, 1988)

I spelling correction (Kernighan et al., 1990)

I word alignment (Vogel et al., 1996)

I named-entity recognition (Bikel et al., 1999)

I compression (Conroy and O’Leary, 2001)

4 / 46

The Simplest Sequence Labeler

Define features of a labeled word in context: φ(x, i, y).

Train a classifier, e.g.,

ŷi = argmax
y∈L

s(x, i, y)

linear
= argmax

y∈L
w · φ(x, i, y)

5 / 46

The Simplest Sequence Labeler

Define features of a labeled word in context: φ(x, i, y).

Train a classifier, e.g.,

ŷi = argmax
y∈L

s(x, i, y)

linear
= argmax

y∈L
w · φ(x, i, y)

Sometimes this works!

6 / 46

The Simplest Sequence Labeler

Define features of a labeled word in context: φ(x, i, y).

Train a classifier, e.g.,

ŷi = argmax
y∈L

s(x, i, y)

linear
= argmax

y∈L
w · φ(x, i, y)

Sometimes this works!

We can do better when there are predictable relationships between Yi and Yi+1.

7 / 46

Generative Sequence Labeling: Hidden Markov Models

p(x,y) = πy0

`+1∏
i=1

θxi|yi · γyi|yi−1

For each state/label y ∈ L:

I θ∗|y is the “emission” distribution

I γ∗|y is called the “transition” distribution

We saw this model before (Brown clustering). Differences:

I We used “z” before, now it’s “y”

I Before, we wanted to discover each yi (“unsupervised”)

I Now, we want to map x 7→ y, defined within a task (might be supervised or not)

8 / 46

Graphical Reprsentation of Hidden Markov Models

x1 x2 x3 x4

!

y1 y2 y3 y4

γ

y0 y5

π x5

Note: handling of beginning and end of sequence is a bit different than before. From
here on, ignore last x since θ8|8 = 1.

9 / 46

Factor Graph Representation of Hidden Markov Models

x1 x2 x3 x4

!

y1 y2 y3 y4

γ

γ

y0 y5

x1 x2 x3 x4

y1 y2 y3 y4y0 y5γ γ γ γ

! ! ! !

π

π

10 / 46

A More General Form
Twice now, we’ve made the move from generative models based on repeated “rolls of
dice” to discriminative models based on feature representations.

I Language modeling

I Text classification

In the structured case, we can do the same thing.

argmax
y∈L`+1

p(y0)

`+1∏
i=1

p(xi, yi | yi−1)

= argmax
y∈L`+1

log p(y0) +

`+1∑
i=1

log p(xi, yi | yi−1)

= argmax
y∈L`+1

`+1∑
i=1

w · φ(xi, yi, yi−1)

In this case, each Yi “interacts” with Yi−1 and Yi+1 directly.
11 / 46

Structured vs. Not

x1 x2 x3 x4

y1 y2 y3 y4y0 y5

x

y1 y2 y3 y4

Each of these has an advantage over the other:

I The HMM lets the different labels “interact.”

I The simple unstructured classifier makes all of x available for every decision.

12 / 46

A More Powerful Solution

Slightly more generally, define features of adjacent labels in context: φ(x, i, y, y′).

Features can depend on any words at all; this turns out not to affect asymptotic cost
of prediction!

13 / 46

Local Pairwise Classifier

(ŷi, ŷi+1) = argmax
y,y′∈L

w · φ(x, i, y, y′)

14 / 46

Local Pairwise Classifier

(ŷi, ŷi+1) = argmax
y,y′∈L

w · φ(x, i, y, y′)

x

y0 y1 y2 y3 y4

y1 y2 y3 y5y4

15 / 46

Local Pairwise Classifier

(ŷi, ŷi+1) = argmax
y,y′∈L

w · φ(x, i, y, y′)

x

y0 y1 y2 y3 y4

y1 y2 y3 y5y4

16 / 46

Local Pairwise Classifier

(ŷi, ŷi+1) = argmax
y,y′∈L

w · φ(x, i, y, y′)

x

y0 y1 y2 y3 y4

y1 y2 y3 y5y4

The problem is with disagreements: what if the Y1:2 prediction and the Y2:3 prediction
do not agree about Y2?

17 / 46

Even More Powerful: “Global” Prediction

As with the pairwise model, define features of adjacent labeled words in context:
φ(x, i, y, y′)

“Structured” classifer/predictor:

ŷ = argmax
y∈L`+1

`+1∑
i=1

w · φ(x, i, yi, yi−1)

18 / 46

Even More Powerful: “Global” Prediction

As with the pairwise model, define features of adjacent labeled words in context:
φ(x, i, y, y′)

“Structured” classifer/predictor:

ŷ = argmax
y∈L`+1

`+1∑
i=1

w · φ(x, i, yi, yi−1)

x

y0 y1 y2 y3 y5y4

19 / 46

Even More Powerful: “Global” Prediction
As with the pairwise model, define features of adjacent labeled words in context:
φ(x, i, y, y′)
“Structured” classifer/predictor:

ŷ = argmax
y∈L`+1

`+1∑
i=1

w · φ(x, i, yi, yi−1)

x

y0 y1 y2 y3 y5y4

This is a fundamentally different kind of problem, demanding new:
I predicting (“decoding”) algorithms
I training algorithms (to be discussed later) 20 / 46

Prediction with HMMs

We’ll start with the classical HMM, then return later to the featurized case.

argmax
y∈L`+1

p(y0)

`+1∏
i=1

p(xi, yi | yi−1)

How to optimize over |L|` choices without explicit enumeration?

21 / 46

Prediction with HMMs

We’ll start with the classical HMM, then return later to the featurized case.

argmax
y∈L`+1

p(y0)

`+1∏
i=1

p(xi, yi | yi−1)

How to optimize over |L|` choices without explicit enumeration?

Key: exploit the conditional independence assumptions:

Yi⊥Y 1:i−2 | Yi−1
Yi⊥Y i+2:` | Yi+1

22 / 46

Part-of-Speech Tagging Example

I suspect the present forecast is pessimistic .

noun • • • • • •
adj. • • • •
adv. •
verb • • • •
num. •
det. •
punc. •

With this very simple tag set, 78 = 5.7 million labelings.
(Even restricting to the possibilities above, 288 labelings.)

23 / 46

Two Obvious Solutions

Brute force: Enumerate all solutions, score them, pick the best.

Greedy: Pick each ŷi according to:

ŷi = argmax
y∈L

p(y | ŷi−1) · p(xi | y)

What’s wrong with these?

24 / 46

Conditional Independence

We can get an exact solution in polynomial time!

Yi⊥Y 1:i−2 | Yi−1
Yi⊥Y i+2:` | Yi+1

Given the adjacent labels to Yi, others do not matter.

Let’s start at the last position, ` . . .

25 / 46

The End of the Sequence

x1 x2 . . . x`
y

y′

...

ylast

x1 x2 x3 x4

y1 y2 y3 y4y0 y5

p(Y` = y | x,y1:(`−1)) = p(Y` = y | X` = x`, Y`−1 = y`−1, Y`+1 = 8′)

= γ8|y · θx`|y · γy|y`−1

The decision about Y` is a function of y`−1, x, and nothing else!

26 / 46

High-Level View of Viterbi

I The decision about Y` is a function of y`−1, x, and nothing else!

I If, for each value of y`−1, we knew the best y1:(`−1), then picking y` (and y`−1)
would be easy.

I Idea: for each position i, calculate the score of the best label prefix y1:i ending in
each possible value for Yi.

I With a little bookkeeping, we can then trace backwards and recover the best label
sequence.

27 / 46

High-Level View of Viterbi

I The decision about Y` is a function of y`−1, x, and nothing else!

I If, for each value of y`−1, we knew the best y1:(`−1), then picking y` (and y`−1)
would be easy.

I Idea: for each position i, calculate the score of the best label prefix y1:i ending in
each possible value for Yi.

I With a little bookkeeping, we can then trace backwards and recover the best label
sequence.

28 / 46

High-Level View of Viterbi

I The decision about Y` is a function of y`−1, x, and nothing else!

I If, for each value of y`−1, we knew the best y1:(`−1), then picking y` (and y`−1)
would be easy.

I Idea: for each position i, calculate the score of the best label prefix y1:i ending in
each possible value for Yi.

I With a little bookkeeping, we can then trace backwards and recover the best label
sequence.

29 / 46

High-Level View of Viterbi

I The decision about Y` is a function of y`−1, x, and nothing else!

I If, for each value of y`−1, we knew the best y1:(`−1), then picking y` (and y`−1)
would be easy.

I Idea: for each position i, calculate the score of the best label prefix y1:i ending in
each possible value for Yi.

I With a little bookkeeping, we can then trace backwards and recover the best label
sequence.

30 / 46

Recurrence

First, think about the score of the best sequence.

Let si(y) be the score of the best label sequence for x1:i that ends in y. It is defined
recursively:

s`(y) = γ8|y · θx`|y ·max
y′∈L

γy|y′ · s`−1(y′)

31 / 46

Recurrence

First, think about the score of the best sequence.

Let si(y) be the score of the best label sequence for x1:i that ends in y. It is defined
recursively:

s`(y) = γ8|y · θx`|y ·max
y′∈L

γy|y′ · s`−1(y′)

s`−1(y) = θx`|y ·max
y′∈L

γy|y′ · s`−2(y′)

32 / 46

Recurrence

First, think about the score of the best sequence.

Let si(y) be the score of the best label sequence for x1:i that ends in y. It is defined
recursively:

s`(y) = γ8|y · θx`|y ·max
y′∈L

γy|y′ · s`−1(y′)

s`−1(y) = θx`|y ·max
y′∈L

γy|y′ · s`−2(y′)

s`−2(y) = θx`|y ·max
y′∈L

γy|y′ · s`−3(y′)

33 / 46

Recurrence

First, think about the score of the best sequence.

Let si(y) be the score of the best label sequence for x1:i that ends in y. It is defined
recursively:

s`(y) = γ8|y · θx`|y ·max
y′∈L

γy|y′ · s`−1(y′)

s`−1(y) = θx`|y ·max
y′∈L

γy|y′ · s`−2(y′)

s`−2(y) = θx`|y ·max
y′∈L

γy|y′ · s`−3(y′)

...

si(y) = θxi|y ·max
y′∈L

γy|y′ · si−1(y′)

34 / 46

Recurrence
First, think about the score of the best sequence.
Let si(y) be the score of the best label sequence for x1:i that ends in y. It is defined
recursively:

s`(y) = γ8|y · θx`|y ·max
y′∈L

γy|y′ · s`−1(y′)

s`−1(y) = θx`|y ·max
y′∈L

γy|y′ · s`−2(y′)

s`−2(y) = θx`|y ·max
y′∈L

γy|y′ · s`−3(y′)

...

si(y) = θxi|y ·max
y′∈L

γy|y′ · si−1(y′)

...

s1(y) = θx1|y ·max
y′∈L

γy|y′ · πy′

35 / 46

Viterbi Procedure (Part I: Prefix Scores)

x1 x2 . . . x`
y

y′

...

ylast

36 / 46

Viterbi Procedure (Part I: Prefix Scores)

x1 x2 . . . x`
y s1(y)

y′ s1(y
′)

...

ylast s1(y
last)

s1(y) = θx1|y ·max
y′∈L

γy|y′ · πy′

37 / 46

Viterbi Procedure (Part I: Prefix Scores)

x1 x2 . . . x`
y s1(y) s2(y)

y′ s1(y
′) s2(y

′)
...

ylast s1(y
last) s2(y

last)

si(y) = θxi|y ·max
y′∈L

γy|y′ · si−1(y′)

38 / 46

Viterbi Procedure (Part I: Prefix Scores)

x1 x2 . . . x`
y s1(y) s2(y) s`(y)

y′ s1(y
′) s2(y

′) s`(y
′)

...

ylast s1(y
last) s2(y

last) s`(y
last)

s`(y) = γ8|y · θx`|y ·max
y′∈L

γy|y′ · s`−1(y′)

39 / 46

References I

Daniel M. Bikel, Richard Schwartz, and Ralph M. Weischedel. An algorithm that learns what’s in a name.
Machine learning, 34(1–3):211–231, 1999.

Kenneth W. Church. A stochastic parts program and noun phrase parser for unrestricted text. In Proc. of
ANLP, 1988.

John M. Conroy and Dianne P. O’Leary. Text summarization via hidden Markov models. In Proc. of SIGIR,
2001.

Mark D. Kernighan, Kenneth W. Church, and William A. Gale. A spelling correction program based on a noisy
channel model. In Proc. of COLING, 1990.

Stephan Vogel, Hermann Ney, and Christoph Tillmann. HMM-based word alignment in statistical translation. In
Proc. of COLING, 1996.

40 / 46

References I

Daniel M. Bikel, Richard Schwartz, and Ralph M. Weischedel. An algorithm that learns what’s in a name.
Machine learning, 34(1–3):211–231, 1999.

Kenneth W. Church. A stochastic parts program and noun phrase parser for unrestricted text. In Proc. of
ANLP, 1988.

John M. Conroy and Dianne P. O’Leary. Text summarization via hidden Markov models. In Proc. of SIGIR,
2001.

Mark D. Kernighan, Kenneth W. Church, and William A. Gale. A spelling correction program based on a noisy
channel model. In Proc. of COLING, 1990.

Stephan Vogel, Hermann Ney, and Christoph Tillmann. HMM-based word alignment in statistical translation. In
Proc. of COLING, 1996.

41 / 46

