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Bridging the Gap between Language and the World

In order to link NL to a knowledge base, we might want to design a formal way to
represent meaning.
Desiderata for a meaning representation language:

I represent the state of the world, i.e., a knowledge base

I query the knowledge base (e.g., verify that a statement is true, or answer a
question)

I handle ambiguity, vagueness, and non-canonical forms
I “I wanna eat someplace that’s close to UW”
I “something not too spicy”

I support inference and reasoning
I “can Karen eat at Schultzy’s?”
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Bridging the Gap between Language and the World
In order to link NL to a knowledge base, we might want to design a formal way to
represent meaning.
Desiderata for a meaning representation language:

I represent the state of the world, i.e., a knowledge base

I query the knowledge base (e.g., verify that a statement is true, or answer a
question)

I handle ambiguity, vagueness, and non-canonical forms
I “I wanna eat someplace that’s close to UW”
I “something not too spicy”

I support inference and reasoning
I “can Karen eat at Schultzy’s?”

Eventually (but not today):

I deal with non-literal meanings

I expressiveness across a wide range of subject matter
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A (Tiny) World Model

I Domain: Adrian, Brook, Chris, Donald, Schultzy’s Sausage, Din Tai Fung,
Banana Leaf, American, Chinese, Thai

I Property: Din Tai Fung has a long wait, Schultzy’s is noisy; Alice, Bob, and
Charles are human

I Relations: Schultzy’s serves American, Din Tai Fung serves Chinese, and Banana
Leaf serves Thai

Simple questions are easy:

I Is Schultzy’s noisy?

I Does Din Tai Fung serve Thai?
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A (Tiny) World Model

I Domain: Adrian, Brook, Chris, Donald, Schultzy’s Sausage, Din Tai Fung,
Banana Leaf, American, Chinese, Thai
a, b, c, d, ss, dtf , bl , am, ch, th

I Property: Din Tai Fung has a long wait, Schultzy’s is noisy; Alice, Bob, and
Charles are human
Longwait = {dtf },Noisy = {ss},Human = {a, b, c}

I Relations: Schultzy’s serves American, Din Tai Fung serves Chinese, and Banana
Leaf serves Thai
Serves = {(ss, am), (dtf , ch), (bl , th)},Likes = {(a, ss), (a, dtf ), . . .}

Simple questions are easy:

I Is Schultzy’s noisy?

I Does Din Tai Fung serve Thai?
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A Quick Tour of First-Order Logic

I Term: a constant (ss) or a variable
I Formula: defined inductively . . .

I If R is an n-ary relation and t1, . . . , tn are terms, then R(t1, . . . , tn) is a formula.
I If φ is a formula, then its negation, ¬φ, is a formula.
I If φ and ψ are formulas, then binary logical connectives can be used to create

formulas:
I φ ∧ ψ
I φ ∨ ψ
I φ⇒ ψ
I φ⊕ ψ

I If φ is a formula and v is a variable, then quantifiers can be used to create formulas:
I Universal quantifier: ∀v, φ
I Existential quantifier: ∃v, φ

Note: Leaving out functions, because we don’t need them in a single lecture on FOL
for NL.
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Translating Between FOL and NL

1. Schultzy’s is not loud

2. Some human likes Chinese

3. If a person likes Thai, then they aren’t friends with Donald

4. ∀x,Restaurant(x) ⇒ (Longwait(x) ∨ ¬Likes(a, x))
5. ∀x, ∃y,¬Likes(x, y)
6. ∃y,∀x,¬Likes(x, y)
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Translating Between FOL and NL

1. Schultzy’s is not loud ¬Noisy(ss)
2. Some human likes Chinese ∃x,Human(x ) ∧ Likes(x, ch)

3. If a person likes Thai, then they aren’t friends with Donald
∀x,Human(x ) ∧ Likes(x, th) ⇒ ¬Friends(x, d)

4. ∀x,Restaurant(x) ⇒ (Longwait(x) ∨ ¬Likes(a, x))
Every restaurant has a long wait or is disliked by Adrian.

5. ∀x,∃y,¬Likes(x, y)
Everybody has something they don’t like.

6. ∃y,∀x,¬Likes(x, y)
There exists something that nobody likes.
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Logical Semantics
(Montague, 1970)

The denotation of a NL sentence is the set of conditions that must hold in the (model)
world for the sentence to be true.

Every restaurant has a long wait or Adrian doesn’t like it.

is true if and only if

∀x,Restaurant(x) ⇒ (Longwait(x) ∨ ¬Likes(a, x))

is true.

This is sometimes called the logical form of the NL sentence.
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The Principle of Compositionality

The meaning of a NL phrase is determined by the meanings of its sub-phrases.
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The Principle of Compositionality

The meaning of a NL phrase is determined by the meanings of its sub-phrases.

I.e., semantics is derived from syntax.

We need a way to express semantics of phrases, and compose them together!
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λ-Calculus

(Much more powerful than what we’ll see today; ask your PL professor!)

Informally, two extensions:
I λ-abstraction is another way to “scope” variables.

I If φ is a FOL formula and v is a variable, then λv.φ is a λ-term, meaning: an
unnamed function from values (of v) to formulas (usually involving v)

I application of such functions: if we have λv.φ and ψ, then [λv.φ](ψ) is a
formula.
I It can be reduced by substituting ψ in for every instance of v in φ.
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λ-Calculus

(Much more powerful than what we’ll see today; ask your PL professor!)

Informally, two extensions:
I λ-abstraction is another way to “scope” variables.

I If φ is a FOL formula and v is a variable, then λv.φ is a λ-term, meaning: an
unnamed function from values (of v) to formulas (usually involving v)

I application of such functions: if we have λv.φ and ψ, then [λv.φ](ψ) is a
formula.
I It can be reduced by substituting ψ in for every instance of v in φ.

Example:
[[λx.λy.Friends(x, y)](b)](a) reduces to [λy.Friends(b, y)](a), which reduces to
Friends(b, a)
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Semantic Attachments to CFG

I NNP → Adrian {a}
I VBZ → likes {λf.λy.∀xf(x) ⇒ Likes(y, x)}
I JJ → expensive {λx.Expensive(x)}
I NNS → restaurants {λx.Restaurant(x)}
I NP → NNP {NNP.sem}
I NP → JJ NNS {λx.JJ.sem(x) ∧ NNS.sem(x)}
I VP → VBZ NP {VBZ.sem(NP.sem)}
I S → NP VP {VP.sem(NP.sem)}
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Example

S

NP

NNP

Adrian

VP

VBZ

likes

NP

JJ

expensive

NNS

restaurants
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Example

S : VP.sem(NP.sem)

NP : NNP.sem

NNP : a

Adrian

VP : VBZ.sem(NP.sem)

VBZ : . . .

likes

NP : λv.JJ.sem(v) ∧ NNS.sem(v)

JJ : λz.Expensive(z)

expensive

NNS : λw.Restaurant(w)

restaurants
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Example

S : VP.sem(NP.sem)

NP : NNP.sem

NNP : a

Adrian

VP : VBZ.sem(NP.sem)

VBZ : . . .

likes

NP : λv.Expensive(v) ∧ Restaurant(v)

JJ : λz.Expensive(z)

expensive

NNS : λw.Restaurant(w)

restaurants

λv.

λz.Expensive(z)︸ ︷︷ ︸
JJ.sem

 (v) ∧

λw.Restaurant(w)︸ ︷︷ ︸
NNS.sem

 (v)
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Example

...

VP : VBZ.sem(NP.sem)

VBZ : λf.λy.∀xf(x) ⇒ Likes(y, x)

likes

NP : λv.Expensive(v) ∧ Restaurant(v)

expensive restaurants
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Example

...

VP : λy.∀x,Expensive(x) ∧ Restaurant(x) ⇒ Likes(y, x)

VBZ : λf.λy.∀xf(x) ⇒ Likes(y, x)

likes

NP : λv.Expensive(v) ∧ Restaurant(v)

expensive restaurantsλf.λy.∀xf(x) ⇒ Likes(y, x)︸ ︷︷ ︸
VBZ.sem

λv.Expensive(v) ∧ Restaurant(v)︸ ︷︷ ︸
NP.sem


λy.∀x [λv.Expensive(v) ∧ Restaurant(v)] (x) ⇒ Likes(y, x)

λy.∀x,Expensive(x) ∧ Restaurant(x) ⇒ Likes(y, x)
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Example

S : VP.sem(NP.sem)

NP : NNP.sem

NNP : a

Adrian

VP : λy.∀x,Expensive(x) ∧ Restaurant(x) ⇒ Likes(y, x)

likes expensive restaurants
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Example

S : VP.sem(NP.sem)

NP : a

NNP : a

Adrian

VP : λy.∀x,Expensive(x) ∧ Restaurant(x) ⇒ Likes(y, x)

likes expensive restaurants
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Example

S : ∀x,Expensive(x) ∧ Restaurant(x) ⇒ Likes(a, x)

NP : a

NNP : a

Adrian

VP : λy.∀x,Expensive(x) ∧ Restaurant(x) ⇒ Likes(y, x)

likes expensive restaurants

λy.∀x,Expensive(x) ∧ Restaurant(x) ⇒ Likes(y, x)︸ ︷︷ ︸
VP.sem

 a︸︷︷︸
NP.sem


∀x,Expensive(x) ∧ Restaurant(x) ⇒ Likes(a, x)
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Graph-Based Representations
Abstract Meaning Representation (Banarescu et al., 2013)

want-01

boy

visit-01

city

name

“New” “York” “City”

ARG0

ARG1

ARG0
ARG1

name

op1 op2 op3

“The boy wants to visit New York City.”
Designed for (1) annotation-ability and (2) eventual use in machine translation.
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Combinatory Categorial Grammar
(Steedman, 2000)

CCG is a grammatical formalism that is well-suited for tying together syntax and
semantics.

Formally, it is more powerful than CFG—it can represent some of the context-sensitive
languages (which we do not have time to define formally).
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CCG Types

Instead of the “N” of CFGs, CCGs can have an infinitely large set of structured
categories (called types).

I Primitive types: typically S, NP, N, and maybe more
I Complex types, built with “slashes,” for example:

I S/NP is “an S, except that it lacks an NP to the right”
I S\NP is “an S, except that it lacks an NP to its left”
I (S\NP)/NP is “an S, except that it lacks an NP to its right, and its left”

You can think of complex types as functions, e.g., S/NP maps NPs to Ss.
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CCG Combinators

Instead of the production rules of CFGs, CCGs have a very small set of generic
combinators that tell us how we can put types together.

Convention writes the rule differently from CFG: X Y ⇒ Z means that X and Y
combine to form a Z (the “parent” in the tree).
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Application Combinator

Forward (X/Y Y ⇒ X) and backward (Y X\Y ⇒ X)
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Application Combinator

Forward (X/Y Y ⇒ X) and backward (Y X\Y ⇒ X)

NP

NP/N

the

N

dog
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Application Combinator

Forward (X/Y Y ⇒ X) and backward (Y X\Y ⇒ X)

NP

NP/N

the

N

N/N

yellow

N

dog
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Application Combinator

Forward (X/Y Y ⇒ X) and backward (Y X\Y ⇒ X)

S

NP

NP/N

the

N

dog

S\NP

(S\NP)/NP

bit

NP

John
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Conjunction Combinator

X and X ⇒ X

NP

NP

cats

and NP

dogs
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Conjunction Combinator

X and X ⇒ X

S

NP

John

S\NP

S\NP

(S\NP)/NP

ate

NP

anchovies

and S\NP

(S\NP)/NP

drank

NP

beer
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Conjunction Combinator

X and X ⇒ X

S

NP

NP/N

the

N

dog

S\NP

(S\NP)/NP

(S\NP)/NP

bit

and (S\NP)/NP

infected

NP

John
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Composition Combinator

Forward (X/Y Y/Z ⇒ X/Z) and backward (Y \Z X\Y ⇒ X\Z)

S

NP

I

S\NP

(S\NP)/NP

(S\NP)/(S\NP)

would

(S\NP)/NP

prefer

NP

olives
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Composition Combinator

Forward (X/Y Y/Z ⇒ X/Z) and backward (Y \Z X\Y ⇒ X\Z)

S

NP

I

S\NP

(S\NP)/(S\NP)

would

S \NP

(S\NP)/NP

prefer

NP

olives
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Type-Raising Combinator
Forward (X ⇒ Y/(Y \X)) and backward (X ⇒ Y \(Y/X))

S

S/NP

S/NP

S/(S\NP)

NP

I

(S\NP)/NP

love

and S/NP

S/(S\NP)

NP

Karen

(S\NP)/NP

hates

NP

chocolate
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Back to Semantics

Each combinator also tells us what to do with the semantic attachments.

I Forward application: X/Y : f Y : g ⇒ X : f(g)

I Forward composition: X/Y : f Y/Z : g ⇒ X/Z : λx.f(g(x))

I Forward type-raising: X : g ⇒ Y/(Y \X) : λf.f(g)
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CCG Lexicon

Most of the work is done in the lexicon!

Syntactic and semantic information is much more formal here.

I Slash categories define where all the syntactic arguments are expected to be

I λ-expressions define how the expected arguments get “used” to build up a FOL
expression

Extensive discussion: Carpenter (1997)
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Some Topics We Don’t Have Time For

I Tasks, evaluations, annotated datasets (e.g., CCGbank, Hockenmaier and
Steedman, 2007)

I Learning for semantic parsing (Zettlemoyer and Collins, 2005) and CCG parsing
(Clark and Curran, 2004a)

I Using CCG to represent other kinds of semantics (e.g., predicate-argument
structures; Lewis and Steedman, 2014)

I Integrating continuous representations in semantic parsing (Lewis and Steedman,
2013; Krishnamurthy and Mitchell, 2013)

I Supertagging (Clark and Curran, 2004b) and making semantic parsing efficient
(Lewis and Steedman, 2014)

I Grounding meaning in visual (or other perceptual) experience
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