CSE 517: Natural Language
Processing

Deep Learning
Winter 2017/

Yejin Choi
University of Washington

3 L A g 0 e i .‘
\ .| R &

o o e
i el
I
:E !
N =

Next several slides are from Carlos Guestrin, Luke Zettlemoyer

Straight
Ahead

30 Output

Units

30x32 Sensor
Input Retina

|
luman Neurons
Axonal Qization

\ Axon from another cell

Switching time

¢« ~0.001 second e
Number of neurons
— ’|O1O

ConneCtionS per neuronCellbodyorSoma
_ 104—5

Scene recognition time

— 0.1 seconds

Number of cycles per scene recognition?
— 100 - much parallel computation!

Synapse

Nucleus (/

Synapses

Perceptron as a Neural Network

4
1if Y w.x.>0
g:{ i=0 !

-1 otherwise

This is one neuron:

— Input edges x; ... x,, along with basis
— The sum is represented graphically
— Sum passed through an activation function g

i
0.9

Sigmoid Neuron:

0.3F

0.2+
0.1}

0 i)
-10 -5 0 5 10

Just change g!

* Why would we want to do this?

* Notice new output range [0,1]. What was it before?
e Look familiar?

Optimizing a neuron |2 s() = f/(s()g'@

We train to minimize sum-squared error

(W) = %Z[yj —g(wo+zwix§>12

— —Z[yg — g(wo +sz

o . | |
5 —g(wo +) wix]) = zjg' (wo +) wiz))

) 7

oUL(W)
8’(1)2'

= =Y Iy — glwo + > wig))] @ ¢'(wo + > wia))
j i i

Solution just depends on g': derivative of activation function!

Sigmoid units: have to differentiate
9

ag(y) = Y gwo+ Y wh] # g/ (wo + 3 wiad)
() j 7 ()
1 /
9(z) = 7= 9@ =9@)1-g))

Ww; wi—l—nZazgéj
J

= [y —g(wo+ Y wiz)]g/ (1 - ¢)

¢ = glwg+ Y wiz))

Perceptron, linear classification,
Boolean functions: x.€{0,1}

Can learn x; v x,7.
¢« 0.5+ x,+ X% |
Can learn x; A x,?7
o« 1.5+ x4+ x5 |
Can learn any conjunction or disjunction?
e 05+ x,+ ... +x,

¢ (-n+0.5) + x4+ ... +x,

Can learn majority?

o (-0.5*n)+ x;+ ... +x,

What are we missing? The dreaded XOR!,
etc.

Going beyond linear classitication

Solving the XOR problem
Y = X4 XOR X5= (X1 A _‘X2) V (X2 /_'X1)

V1 — (X1 A\ _'X2)

— —1 .5+2X1—X2
Vo = (Xy A T1X4)

— —1 .5+2X2—X1
Y = ViV Vy

— —O.5+V1 +V2

Hidden layer

* Single unit:

out(x) = g(wg+ Z W;T;)

* T-hidden layer:
out(x) = g (wo+zwl;9(wé+zwfxi)‘)
k i

* No longer convex function!

»

Q

Example s
ata Tor SIS RN
with hidden
A target function:
‘ d ye r Input Output
10000000 — 10000000
01000000 — 01000000
00100000 — 00100000
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
00000001 — 00000001

Can this be learned??

A network:

Learned
weights for
hidden layer

Learned hidden layer representation:

Input Hidden Output
Values

10000000 — .89 .04 .08 — 10000000
01000000 — .01 .11 .88 — 01000000
00100000 — .01 .97 .27 — 00100000
00010000 — .99 .97 .71 — 00010000
00001000 — .03 .05 .02 — 00001000
00000100 — .22 .99 .99 — 00000100
00000010 — .80 .01 .98 — 00000010
00000001 — .60 .94 .01 — 00000001

Why “representation learning”?

* MaxEnt (multinomial logistic regression):
y = softmax(w - f(x,y))

'\ You design the feature vector

e NNs: vy = softmax(w-o(Ux))

y = softmax(w - o(U"™ (N\g (UP (UM 2))))

\ Feature representations

are "learned” through
hidden layers

Very deep models in computer

Vision

.
R o

'Inception 5 (GoogLeNet)
q
1
g

Inception 7a

'Going Deeper with Convolutions, [C. Szegedy et al, CVPR 2015]

RECURRENT NEURAL
NETWORKS

Recurrent Neural Networks (RNNs)

Each RNN unit computes a new hidden state using the previous

state and a new input he = f(xe, he1)
Each RNN unit (optionally) makes an output using the current hidden
state y; = softmax(V h;)
he € RV
Hidden states are continuous vectors

— Can represent very rich information
— Possibly the entire history from the beginning

Parameters are shared (tied) across all RNN units (unlike feedforward

NNs) | | w

Recurrent Neural Networks (RNNs)

 Generic RNNs: hy = f(ay, hi—1)
y; = softmax(V hy)

* Vanilla RNN: hi = tanh(Uz; + Why_1 + b)
y; = softmax(V h;)

Recurrent Neural Networks (RNNs)

 Generic RNNs: hy = f(ay, hi—1)
e Vanilla RNNs: hy = tanh(U:Et + Whi_1 + b)
« LSTMs (Long Short-term Memory Networks):

1t = O’(U(i)xt + W(i)ht_l 4 b(i))
fi =Dz, + WHh_y +)
or = o(U Wz, + WOhy_y 4 b))
¢ = tanh(U Wz, + WOh,_1 + b(9)

) ~ There are many
Ct = ocCci_1+1:0¢C oL
t ft t—1 t t \ known variations

hi = o o tanh(c;) to this set of
equations!
C1 C, C3 | Cy C; : cell state
> > > ——3
h, h, |) hsy |) hy h;: hidden state
X2 X3 X4

Many uses of RNNs

1. Classitication (seq to one)

* |Input: a sequence
« Qutput: one label (classification)
« Example: sentiment classification

he = f(xt, he—1)
y = softmax(V h,,)

Many uses of RNNs
2. one to seq

* Input: one item

 Qutput: a sequence
P . hy = f(xta ht—l)

e Example: Image captionin
xamp J PHONING y; = softmax(V h;)

Cat sitting on top of ...
hy h, hs hy
f 1 1 t

Many uses of RNNs
3. sequence tagging

Input: a sequence
Output: a sequence (of the same length)
Example: POS tagging, Named Entity Recognition

How about Language Models?

— Yes! RNNs can be used as LMs!

— RNNs make markov assumption: T/F? he = f(xe, hi—1)
y; = softmax(V h;)

Many uses of RNNs
4. Language models

Input: a sequence of words
hy = f($t7 ht—l)

Output: one next word
y; = softmax(V h;)

Output: or a sequence of next words
During training, x_t is the actual word in the training sentence.

During testing, x_t is the word predicted from the previous time
step.

Does RNN LMs make Markov assumption?

Many uses of RNNs
5. seq2seq (aka “encoder-decoder”)

* |Input: a sequence
« Qutput: a sequence (of different length)
« Examples?

he = f(ze, he—1)
y: = softmax(V h;)

Many uses ot RNNs
4. segZseq (aka "encoder-decoder”)

« Conversation and Dialogue
Machine Translation

ENCODER Reply
- Yes, what's up? — <END>
. M —— - M G AT YO A I L
o) (a] [p= -
| ois oo e . | g'“\L e
l I I I £ I g R S S
Are you free tomorrow? <START>

DECODER

Incoming Email
Figure from http://www.wildml.com/category/conversational-agents/

Many uses ot RNNs
4. segZseq (aka "encoder-decoder”)

Parsing!
- "Grammar as Foreign Language” (Vinyals et al., 2015)

S

|

| ~ N
NNP VBZ NP
PN
DT NN

(S (NP NNP)np (VP VBZ (NP DT NN)xp)vp -)s

John has a dog

Recurrent Neural Networks (RNNs)

 Generic RNNs: hy = f(ay, hi—1)
y; = softmax(V hy)

* Vanilla RNN: hi = tanh(Uz; + Why_1 + b)
y; = softmax(V h;)

Recurrent Neural Networks (RNNs)

 Generic RNNs: hy = f(ay, hi—1)
e Vanilla RNNs: hy = tanh(U:Et + Whi_1 + b)
« LSTMs (Long Short-term Memory Networks):

1t = O’(U(i)xt + W(i)ht_l 4 b(i))
fi =Dz, + WHh_y +)
or = o(U Wz, + WOhy_y 4 b))
¢ = tanh(U Wz, + WOh,_1 + b(9)

) ~ There are many
Ct = ocCci_1+1:0¢C oL
t ft t—1 t t \ known variations

hi = o o tanh(c;) to this set of
equations!
C1 C, C3 | Cy C; : cell state
> > > ——3
h, h, |) hsy |) hy h;: hidden state
X2 X3 X4

LSTMS (LONG SHORT-TERM MEMORY
NETWORKS

O—P>—>—<

Neural Network Pointwise Copy
L ayer Operation Transfer

Figure by Christopher Olah (colah.github.io)

LSTMS (LONG SHORT-TERM MEMORY
NETWORKS

F(i)91F]T10idi Forget gate: forget the past or not
' > ft:O'(U(f)CCt—FW(f)ht_l—i—b(f))

fi

Tt

Figure by Christopher Olah (colah.github.io)

LSTMS (LONG SHORT-TERM MEMORY

s(i)g1moid: Forget gate: forget the past or not
[0.1] fr= oUWz, + WHh,_y +)
tanh: " Input gate: use the input or not
[-1,1] NN T, iy = J(U(i)xt +WDh, |+ b(i))

New cell content (temp):
¢ = tanh(U©@z;, + WO hy_y + b))

%

("
0) tanh

Tt

Figure by Christopher Olah (colah.github.io)

LSTMS (LONG SHORT-TERM MEMORY
NETWORKS

F(i)91F]T10idi Forget gate: forget the past or not
' > ft:U(U(f)$t+W(f)ht_1—|—b(f))

tanh: i Input gate: use the input or not

[-1.1] [TTATTTT it = o(UW g + WOh, 1 4 5@)

New cell content (temp):
¢ = tanh(U©@z;, + WO hy_y + b))

% - mix old cell with the new temp cell
t

ct = ftoci_1+ 1t 0

Figure by Christopher Olah (colah.github.io)

LSTMS (LONG SHORT-TERM MEMORY
NETWORKS

Output gate: output from the Forget gate: forget the past or not
new cell or not fr=o(UD gz + WDhy_y + b0
O = U(U(O)xt +Wh,_, + b(o))

Input gate: use the input or not
Hidden state: i = o(UDz, + WOh,_| + @)
ht = o4 o tanh(cy)

New cell content (temp):

¢ = tanh(U @z, + W h,_y + b))

htT
New cell content:

- mix old cell with the new temp cell

ct = froci_1 + 106

Figure by Christopher Olah (colah.github.io)

LSTMS (LONG SHORT-TERM MEMORY

NE]

Forget gate: forget the past or not
Input gate: use the input or not

Output gate: output from the new
cell or not

"WORKS

fi = J(U(f)xt s W(f)ht—l s b(f))
1 = U(U(i)wt + W(i)ht_l + b(i))
0oy = (U zy + WO hy_y + b))

New cell content (temp):
New cell content:

- mix old cell with the new temp cell

Hidden state:
hy = 04 o tanh(c;)

C~t = tanh(U(c)xt + W(C) ht—l + b(c))

ct = ftoci—1 + 106

D,

A

4)
) —(n

Ganh>
T r’% T
(0] (0] tanh (0]
poees (), ,

Ct—1 =

he—q —Vq
|
(x)

vanishing gradient problem for
RNNs.

s @ @ @ O O O O

Hidden
Layer

Time

nputs O O O O O O
1 2 3 4 5 6 7

« Theshadingof the nodes in the unfolded network indicates their

sensitivity to the inputs at time one (the darker the shade, the greater
the sensitivity).

« The sensitivity decays over time as new inputs overwrite the activations
of the hidden layer, and the network ‘forgets’ the first inputs.

Example from Graves 2012

Preservation of gradient information by
LSTM

= ZTTTY7 0T

- - - O - O -
Hidden
s @@ @@ @@ O
- - - - - O

@)

Forget gat /
Input gate
Inputs
Time 1 2 3 4 5 6 7

For simplicity, all gates are either entirely open ('O’) or closed ('—).
The memory cell ‘remembers’ the first inputas long as the forget gate is
open and the input gate is closed.

The sensitivity of the output layer can be switched on and off by the output
gate without affecting the cell.

Example from Graves 2012

Recurrent Neural Networks (RNNs)

 Generic RNNs: hy = f(ay, hi—1)
e Vanilla RNNs: hy = tanh(U:Et + Whi_1 + b)
« GRUs (Gated Recurrent Units):

2 =o(UPz, + WEh,_y +03))
re = oUWz + W h g +01)
he = tanh(U(h)a:t + W) (reohy_1) + b(h))

~ Z: Update gate
hy = (1 — Zt) oht_1 4 2zt 0 hy \ R: Rssetgaae
Less parameters
I 1 1 1 thah LSTI\/Is..
Easier to train for
| | comparable
1 2 3 4 performance!

Gates

» Gates contextually control information
flow

* Open/close with sigmoid

* In LSTMs and GRUs, they are used to
(contextually) maintain longer term history

Bi-directional RNNs

Outputs e Yt—1 Y Yt+1

s
Backward Layer <«—— Zt:/} Wt > %hq

, — — [—=
Forward Layer ht_1 \ h Kh AR
[nputs e Tt—1 Ty Tt41

« Can incorporate context from both directions
* Generally improves over uni-directional RNNs

39

Google NMT (Oct 2016)

‘.~
~.

'''''

aeeeecscscsccseccrccecsflosecreccccecceNMoecnccaccocccccscscccscoma,

(57() - @ crus

= GPU3 |
2% GPU2 |
A :

0 GPU1§

i GPUS

8 §layers

i GPU3

i GPU2

—-—> Attention

i GPU2 i

§ GPU1§

Recursive Neural Networks

« Sometimes, inference over a tree structure makes more sense
than sequential structure

* An example of compositionality in ideological bias detection
(red = conservative, blue - liberal, gray < neutral) in which
modifier phrases and punctuation cause polarity switches at
higher levels of the parse tree

They “ deathtax ” and created a its adverse effects

dubbed it big lie about on small
the businesses

Example from lyyer et al., 2014

Recursive Neural Networks

 NNs connected as a tree
« Tree structure is fixed a priori
« Parameters are shared, similarly as RNNs

Pe = so-called climate change
x.=(000000>
o P \»

W WR

~_ Pc= climate change

P
xd=CooooooD Xc=<'8;°°”>
Wy = so-called WL W

o
Xa=C.OOOOO) xb=CO..000>

w, = climate wy, = change

Example from lyyer et al., 2014

Tree LSTMs

Figure 1: Top: A chain-structured LSTM net-
work. Bottom: A tree-structured LSTM network
with arbitrary branching factor.

Are tree LSTMs more

expressive than sequence

LSTMs?

|.e., recursive vs recurrent

When Are Tree Structures
Necessary for Deep
Learning of
Representations?

Jiwei Li, Minh-Thang
Luong, Dan Jurafsky and

Eduard Hovy. EMNLP,
2015.

43

Neural Probabilistic Language Model (Bengio 2003)

i-th output = P(w, = i| context)

softmax
[X J 000)
A
most | computation here * \
\
\
\
1
tanh !
. I
I .- o0) ,
| !
! /
1 ’
1 ’
/
7’
C(Wt_n+ C(Wt_Z) C(Wt_l) . 7
(e o .. @) (ee - 9)
Table . ~., Matrix C R
!ooé—up shared parameters
n across words

index for w;_, 11 index for w;_» index for w;_;
44

Neural Probabilistic Language Model (Bengio 2003)

i-th output = P(w, = i | context)
Lome Each word prediction is
RN a separate feed forward
\ neural network
s } « Feedforward NNLM is a
/A w—— Markovian language
/ \ model
L [clna) clna) « Dashed lines show

optional direct
connections

shared parameters
across words

index for wy_, 41 index for w;_» index for w;_;

NNppp1(x) = [tanh(xW?! + b?), x] W? + b?

» W! € R%nxdhia phl ¢ R1*id: first affine transformation

» W2 ¢ R(dhiatdin)*xdoue h2 ¢ R1*dout: second affine transformation 45

LEARNING:
BACKPROPAGATION

Next 10 slides on back propagation are adapted from Andrew Rosenberg

—rror Backpropagation

o Y 1 2 3
Model parameters: 5 _ fwh w® w®)

for brevity: 6 = {w,;, w;x, wi}

'\ k
21\ '
Sle<>

—rror Backpropagation

* Model parameters:0 = {w;;, wjx, wi}

* Leta andz be the input and output of each

node

a; J a 2k a; 2

2
l Wij ok l J

>
»’z‘

< O

Wk

Yol

"

L7

y

/

Q

X

\
\

€T D
48

—rror Backpropagation

zj = g(a;)

* Leta andz be the input and output of each

node
a; = wazz ap — a; =

1

zj = glaj) 2k = 2 =

* Leta andz be the input and output of each
node

a; = Zwijzi ap = ijkzj a; = Zwklzk
P J k
zj =gla;) zx=glar) 2z = g(a)

; <j a Zk aj 2

b l Lok ll
70>

«— X

Wk

4

11 -
) z ’z“ .0

\
\

7 A\

€T D

Training: minimize loss

N
1
N Z L(yn — f(@n)) Empirical Risk Function
=0

1 N

¥ 2 5~ f@)’

Training: minimize loss

N
1
N Z L(yn — f(@n)) Empirical Risk Function
=0

1 N

¥ 25 = f(2)’

;é; (y 9 (Z wiig (Z o (2 “’>)>)

Taking Partial Derivatives...

hidden layer 1 hidden layer 2 hidden layer 3

input laver

7
i
2
N
A
-
.';."/’1 - T
»
»
0/
o
5
¥,

7.
e g rie .“\ !
¢ L =
2Z AR s A NN e
A A0 O el -, A TSN ,".(',0-‘ ‘..,“ P A ",.!
‘ AT '_;'l:‘. RN g\‘-";v.l; LA NN g‘,-:’?,‘}' Ry
A N L NSV SRS AR S SN I
AT A S~ RSP S NGRS AN A T -
NS NI AL - f.,%’o“ YA ST "0'}/, '\Qo" > i\‘.-..‘.-.’_o"' - 'o"/'/,
ETOR, Tl R S RSN R VAT SIS AT
s AV ly) P .,.\, “n\ P e Yoty T 4 T el 8 /‘. P QA 5%
ot g B S 7y N O ’ KA At ST TN ’ Y R
'Q'Q'-:F.‘ . o 'a'.-‘.oé’:t NS -':0;73. ‘-‘V;.:' £y A 0:.%’.0: .
LT 4 - SR ATV T A TN . e FATHNT A X .
v Wi “:3"0“;/' ‘?’2’-‘- o . R R S A S RO SANN
o arhs B A S M A e e e N AN Py s e N
> b‘a..".' i "‘ -~ &, 'o"' "‘.’"‘-‘0'\\. .-}'0*"*’@'"3' - -'°"0'\\.
S e _\.:g oy ;z.o:.f (¢ = -;.;oé f‘v,.:;‘_-" ‘ Ve AW
o 73 ‘,: R Yo “) — e N, LA -V

- U B
oA . . i~ .
s anes @20 NS @5 s S @8 203
PR AN S o Tl g iy M A Ve N T gy M T
ORI RSN IERE PRI, LT LS
= ;

o~ e N -

i W A SN NIt S A SV
AN AR Z

E . N S e 4 o LAY AT I N SRS
7S o §‘:‘\;r FATK RIS \';.:f T Y PN ‘w’ /

x| ' \ ’ o ’ P o Y L ’ ‘ o \ /

z:l;’:'*._% “'*\\\% Z9"Q‘ ‘«\Q\\‘ %‘}’A’wf“ A\Q&' / /

N

. g v, . - b
.// o ": > AN :‘;’:.’flg Ao 2NN 4 N2V AN
~ -
S
BN ‘v.f,h/’ N\

TSN NN = @
% § 4 '\\

Optimize last layer weights wy

OR 1 Z oL,
5wkz day r,

gl

L, =

8al,n

8wkl

|

1

5 (

Yn —

—rror Backpropagation

f(xn))Q

Calculus chain rule

—rror Backpropagation

1

2
Optimize last layer weights wy Ly = 2 (Yn — f(zn))

- Z dai,n Calculus chain rule
3wkl 3al n| | Owg

OR B 1 Z 8%(yn_g<al,n))2 8al,n
8wkl B N - 8al,n 8wkl

—rror Backpropagation

1

2
Optimize last layer weights wy Ly = 2 (Yn — f(zn))

- Z dai,n Calculus chain rule
3wkl 3al n| | Owg

OR B 1 Z a%(yn_g(al,n>)2 8Zlc,n'wlcl
8wkl B N - 8al,n 8wkl

Crror Backpropagation

1 2
Optimize last layer weights wy Ly = 2 (Yn — f(zn))

- Z dai,n Calculus chain rule
5wkl 3al n| | Owg

8wkl N Z [aal ialn))] [azggskl] = %Z = — 21,0)9 (a1,n)] 28,m

Optimize last Iayer weights wy

‘_Z[aaln

8U%l
OR 1

3ahn_
Owy; |

OZk nWki

592(yn-—-g(ahn))
j;:l: 8ahn

|

aU%l N

aU%l

1
2

(yn

—rror Backpropagation

L, =

f(xn))Q

Calculus chain rule

I Zk,n

—rror Backpropagation

Repeat for all previous layers

OR (’9al,n
8wkl B N Z laal n] lawkl i -
8R o 80,]{;,71
Ow;, N Z laak n| | Owji |

OR 1 [8Ln | 8aj,n]

8wij N | 8'w7;j

Backprop Recursion

= g(a,)

.Zk

OR 1 0L, | [Oakn]
Owjr N;[f)ak,n_ _861L:jk_ Z[Z(Sl”wklg ak”]ZJ“_Z‘SanM
OR 1 0L, ||[0a;n]

Learning: Gradient Descent

t+1 _ t 8R
Wy ; = Wi — U—wij
t+1 _ t aR
Wit = wi, —n—
j j Wit
t+1 _ t aR
Wi = Wy —N—

Backpropagation

Starts with a forward sweep to compute all the intermediate function 23

values d: OR
Through backprop, computes the partial derivatives recursivety w;;

A form of dynamic programming

— Instead of considering exponentially many paths between a weight w_ij and the final loss
(risk), store and reuse intermediate results.

A type of automatic differentiation. (there are other variants e.g., recursive

differentiation onlv throuah forward npropaaation.
Inputs Outputs

R ———— -

Forward

.
€==== »«'ﬁ‘w(------- Gradient
/': 0 :’\

't' ‘v.v ;01

Backpropagation
Primary Interface Language
TensorFlow (https://www.tensorflow.org/) * Python
Torch (http://torch.ch/) * Lua
Theano (http://deeplearning.net/software/theanoy) Python
CNTK (https://github.com/Microsoft/CNTK) o C++

cnn (https://github.com/clab/cnn) o« C++
Caffe (http://caffe.berkeleyvision.org/) « C++
Forward Inputs Outputs

R ———— -

<-- »«'ﬁvm (------- Gradient

l
/ "A‘(‘A‘v \

"v. Vi '0 “

/‘3 %

Cross Entropy Loss (aka log loss, logistic
Ioss)
Cross Entropy Zp log q(y)

\\ Predicted prob
Related quantities H(p) = Zp(y)log p(y) True prob
— Entropy

— KL divergence (the distance between two distributions p and g)

Di1(pllg) = Zp log y;

H(p7Q)_EP[log q] = H(p) + Dk 1(pllq)

Use Cross Entropy for models that should have more probabilistic
flavor (e.qg., language models)

Use Mean Squared Error loss for models that focus on
correct/incorrect predictions
MSE

=S f@)

RNN Learning: Backprop Through Time
(BPTT)

Similar to backprop with non-recurrent NNs

But unlike feedforward (non-recurrent) NNs, each unit in
the computation graph repeats the exact same
parameters...

Backprop gradients of the parameters of each unit as if
they are different parameters

When updating the parameters using the gradients, use
the average gradients throughout the entire chain of
units.

N

LEARNING: TRAINING DEEP
NETWORKS

Vanishing / exploding Gradients

* Deep networks are hard to train
» Gradients go through multiple layers

* The multiplicative effect tends to lead to
exploding or vanishing gradients

e Practical solutions w.r.t.
— network architecture

— numerical operations

Vanishing / exploding Gradients

* Practical solutions w.r.t. network
architecture
— Add skip connections to reduce distance
 Residual networks, highway networks, ...

— Add gates (and memory cells) to allow longer
term memory
« LSTMs, GRUs, memory networks, ...

Gradients of deep networks

NNjzyer(x) = ReLU(xW?! + b?)

» Can have similar issues with vanishing gradients.

oL oL
ahn—l,j,, . ; N.Jjn Jn—1.Jn ahn,jn

Effects of Skip Connections on Gradients

* Thought Experiment: Additive Skip-Connections

1 1
NNs(x) = 5 ReLU(xW?! +b') + SX
h,
|
hn—l
-
oL oL
" = 1 1(h 0)W
R =yt B P LTS LS vy
2

Effects of Skip Connections on Gradients

* Thought Experiment: Dynamic Skip-Connections

NNgo(x) = (1—t)ReLU(xW?! +b') + tx
t = o(xW'+b")
W! ¢ R%idxdhid
W e Rebax

nghway Network (Srivastava et al., 2015)

* A plain feedforward neural network:
y = H(x, Wg).

— H is a typical affine transtormation followed by a non-
linear activation

» Highway network:
Y = H(X,WH) T(X,WT) + X - C(X, Wc)

— Tis a "transform gate”
— Cis a “carry gate”
— Often C = 1-T for simplicity

Residual Networks

e Plaint net

anytwo
stacked layers

« ResNet (He et al. 2015): first very deep (152 layers)
network successfully trained for object recognition

"

weight

layer

relu
\ 4

weight

layer

Hx) ¥

relu

* Residual net

F(x)

Hx)=F(x)+x

X

weight layer

lrelu

weight layer

identity
X

Residual Networks

e Plaint net

"

weight layer

anytwo
stacked layers v relu

weight layer

relu
H(x) Y

* Residual net

X

weight layer

F(x)

lrelu

weight layer

Hx)=F(x)+x

F(x) is a residual mapping with respect to identity

Direct input connection +x leads to a nice property w.r.t. back
propagation --- more direct influence from the final loss to any

deep layer

identity
X

In contrast, LSTMs & Highway networks allow for long distance
input connection only through “gates”.

Residual Networks

Revolution of Depth

"
A
| 11x11 conv, 96, /4, pool/2 | | 3x3 conv, 64 | ==
AlexNet, 8 layers VGG, 19 layers GoogleNet, 22 layers mmemm
[55 conv, 256, pool/2] [3x3conv, 64, pool/2] R O
(ILSVRC 2012) e (ILSVRC 2014) (ILSVRC 2014) .
x3 conv, 384] [3x3 conv, 128 | NN G
v v B B
[3x3 conv, 384 | [3x3 conv, 128, pool/2 | == (-]
v v = "
[3x3 conv, 256, pool/2] [3x3 conv, 256 | =0 0 ED 60 R
v v) B o
[fc, 4096 | [3x3 conv, 256 | =
v v £ o B B
[fc, 4096 | [3x3 conv, 256 | A O [
v L 2 W
[fc, 1000 | [3x3 conv, 256, pool/2 | 5 L s
v ENEAER @
[3x3 conv, 512 | (-} =
v 2 0 0 O
[3x3 conv, 512 | [Snngsemg == 1 == |
v =
[3x3 conv, 512 | R SR EE R
v
[3x3 conv, 512, pool/2 | “mmm
v ==
[3x3 conv, 512 | A A B ER
v = B
[3x3 conv, 512 | =
v & o e 6
[3x3 conv, 512 | A A B3
v
[3x3 conv, 512, pool/2] x
v L]
[fc, 4096 | A
v
[fc, 4096 | g
2
[fc, 1000 | -

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recogr:ition”. CVPR 201t
76

Residual Networks

Revolution of Depth

AlexNet, 8 layers % VGG, 19 layers ResNet, 152 layers
(ILSVRC 2012) (ILSVRC 2014) (ILSVRC 2015)

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

77

Residual Networks

Revolution of Depth 28.2
‘ 152 layers ’ '

\ 16.4

\ 11.7
22 layers 19 layers ’

\

6.7 7.3

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

/8

nghway Network (Srivastava et al., 2015)

* A plain feedforward neural network:
y = H(x, Wg).

— H is a typical affine transtormation followed by a non-
linear activation

» Highway network:
Y = H(X,WH) T(X,WT) + X - C(X, Wc)

— Tis a "transform gate”
— Cis a “carry gate”
— Often C = 1-T for simplicity

@Schmidhubered

80

Vanishing / exploding Gradients

* Practical solutions w.r.t. numerical operations

— Gradient Clipping: bound gradients by a max
value

— Gradient Normalization: renormalize gradients
when they are above a fixed norm

— Careful initialization, smaller learning rates

— Avoid saturating nonlinearities (like tanh, sigmoid)
e RelLU or hard-tanh instead

Sigmoid

Often used for gates

Pro: neuron-like,
differentiable

Con: gradients saturate to
zero almost everywhere
except X near zero =>
vanishing gradients

Batch normalization helps

Tanh

e Often used for
hidden states & cells tanh(z) = et —e”
in RNNs, LSTMs er + e %

e Pro: differentiable,
often converges
tfaster than sigmoid

X

tanh’(x) = 1 — tanh®(x)

tanh(z) = 20(2x) — 1
« Con: gradients easily anh(z) = 20(2z)

saturate to zero =>
vanishing gradients

* Pro: computationally

Hard Tanh

cheaper

Con: saturates to
zero easily, doesn't
differentiate at 1, -1

-1.0

1 t< -1
hardtanh(t) = ¢t —-1<t<1

1 t > 1

\

10

05

0.0

Rel.U

Pro: doesn't saturate for
x > 0, computationally

cheaper, induces sparse
NNs

Con: non-differentiable
at O

Used widely in deep
NN, but not as much in
RNNs

We informally use
subgradients:

ReLU(z) = max(0, x)

p

1 x>0
dReLU(x)
=40 x <0
dx
\1 or0 o.w

Vanishing / exploding Gradients

* Practical solutions w.r.t. numerical operations

— Gradient Clipping: bound gradients by a max
value

— Gradient Normalization: renormalize gradients
when they are above a fixed norm

— Careful initialization, smaller learning rates

— Avoid saturating nonlinearities (like tanh, sigmoid)
e RelLU or hard-tanh instead

— Batch Normalization: add intermediate input
normalization layers

86

Batch Normalization

Input: Values of x over a mini-batch: B = {x1_ . };
Parameters to be learned: v, 3
Output: {y; = BN, g(i)}

| & .
U — — Z XTi // mini-batch mean
mi
1 ™m
O — - 2:(56Z — 1B)* // mini-batch variance
i—1
—~ Xy — .
T — — 1B // normalize

\/a%Jre

yi < vx; + B = BN, g(x;) // scale and shift

87

Reqgularization

« Regularization by objective term

L(0) =Y max{0,1— (Jc — yo)} + A0
=1

— Modify loss with L1 or L2 norms

* Less depth, smaller hidden states, early stopping

* Dropout
— Randomly delete parts of network during training

— Each node (and its corresponding incoming and outgoing
edges) dropped with a probability p

— P s higher for internal nodes, lower for input nodes
— The full network is used for testing

— Faster training, better results

— Vs. Bagging

Convergence of backprop

* Without non-linearity or hidden layers, learning is
convex optimization

— Gradient descent reaches global minima

* Multilayer neural nets (with nonlinearity) are not
convex

— Gradient descent gets stuck in local minima

— Selecting number of hidden units and layers = fuzzy
process

— NNs have made a HUGE comeback in the last few years

 Neural nets are back with a new name
— Deep belief networks

— Huge error reduction when trained with lots of data on GPUs

ATTENTION!

Encoder — Decoder Architecture

Sequence-to-Sequence

the red dog

y1 y2 y3
s s3 S5 s! S5 s
X1 X2 X3 X1 X2 X3
the red dog <s>

Diagram borrowed from Alex Rush 71

Encoder —

Decoder Architecture

the red dog

y1 y2 y3
s3 s s5 st S5 s}
s3 s S5 st \ S5 \ st
X1 X2 X3)?1 \)?2 \)?3
the red dog <s>

Diagram borrowed from Alex Rush

92

Trial: Hard Attention

: t
At each step generating the target word S, .
. J
And incorporate the source word to generate the target

word t t S
Wiy = argmax,,O(w, s 1, s5)

Compute the best alignment to the source word S

Contextual hard alignment. How?

zj = tanh([s;, s3]W + b)

J = argmax,z;

Problem?

Attention: Soft Alignments

At each step generating the target word Sg

Compute the attention ¢ to the source sequence ¢S

And incorporate the attention to generate the target

word t t
w;, = argmax,,O(w, s;,1,¢)

Contextual attention as soft alignment. How?
t
z; = tanh([s;, s;]W + b)
a = softmax(z)

_ LS
c= g ;S
J

— Step-1: compute the attention weights
— Step-2: compute the attention vector as interpolation

Attention

Y1 A

St S,

dh_l T E nill E o F‘—T
Xl)(2 » 3 X.I.

Diagram borrowed from Alex Rush 95

| earned Attention!

c
)
4+

v}

3

| —
=

0

]
(]

equipment
means

of

the

that
Syria
can

no
longer
produce
new
chemical
weapons
<end=>

La
destruction
de

T
équipement
signifie
que

la

Syrie

ne

peut

plus
produire
de
nouvelles
armes
chimiques

<end>

Diagram borrowed from Alex Rush

POINTER NETWORKS

Pointer Networks! vinyals et al. 2015)

* NNs with attention: content-based attention to input

* Pointer networks: location-based attention to input

* Applications: Convex haul, Delaunay Triangulation, Traveling
Salesman

I

I

(a) Input P = {Py,..., Py}, and the output se- (b) Input P = {P,..., Ps}, and the output C” =
quence C¥ = {=,2,4,3,5,6,7,2, <} represent- {=, (1,2,4),(1,4,5),(1,3,5),(1,2,3), <} repre-
ing its convex hull. senting its Delaunay Triangulation. o

Pointer Networks

o ¥ ¥ ¥

\ *1 Y v Y

1 4 2 1| |<= : ' : : Y4

t ¢t 1 V!
e o B = I = B S B S R =l | = e e P =
t + ¢t 1ttt 11 t ot
X, 1% 1 %] = 1 4 2 1 X, X, x3 X, X, ARRIER?
Yol [Y2 | Y3l | Ya Yil 1Yo | Y3 | Vs - Yol | Ya| | Y2| | V4
(b) Ptr-Net

(a) Sequence-to-Sequence

99

Pointer Networks

Attention Mechanism vs Pointer Networks

eij =v, tanh (Wysi—1 + Ush;) ei; =v, tanh (Wys;_1 + Ugh;)
= T?.Xp (eij) p(Ci|Chy...,Cic1, P) = TCXI) (GU)
>kt exp (€ik) > exp (ei)

Ty
c; = E (l?;jh,j
i=1

a"ij

Attention mechanism Ptr-Net

Softmax normalizes the vector ejto be an output distribution over the dictionary of inputs

Diagram borrowed from Keon Kim

100

CO pyN el Guetal 2019

« Conversation

— I: Hello Jack, my name 1s Chandralekha

— R: Nice to meet you, Chandralekha

— I: This new guy doesn’t perform exactly as expected.

— R: what do you mean by “doesn’t perform exactly as
expected?”

e Translation

101

CO pyN el Guetal 2019

(b) Generate-Mode & Copy-Mode
Prob(“Jebara”)=Prob(“Jebara”, g) + Prob(“Jebara”, c)

h T rj‘ -b- === : Softmax
, on ebara i = o e o e e e
ST S {mim g myufe i {u]s uim|uys]-[s))
—!-‘—_-_—_—_-_—_J: \Iocabl.llal'yI Source
! ' M
Pt ———
N
'n______—_ ____________ I
. Sy
Attentive Read > . :I Y Embeding
for “Tony”
< —
Selective Read
: \ J for“Tony”
a5 0, 5| 0S5 n D b] g | Tony
|

1
1 le—

i hif—| h;
I

hello s my name 1is Tony Jebara

(a) Attention-based Encoder-Decoder (RNNSearch)

L1
-
[]
[]
]
[]
[]
]
|:I

(c)StateUpdate —I DDDDD.DD !

102

CO pyN el Guetal 2019

« Key idea: interpolation between generation model &

p(Ye|st, Yi—1, ¢, M) = p(ye, 9lst, Y¢—1, €¢, M)

copy model
1 Vg (yt)
Ee 9 , Yt - V
P(Yi,9])= 0, y € XNV (5)
iewg(UNK) yu EVUX
1
i Ye(xj)
p(yt,0|')= 7 Z]:xj:yt e i,y e X 6)
0 otherwise

+ p(ys, c|st, Yt—1,¢¢, M) (4)

Generate-Mode: The same scoring function as
in the generic RNN encoder-decoder (Bahdanau et
al., 2014) 1s used, 1.e.

Vo(ys = v;) = v, Wosy, v, € VUUNK (7)

where W, € RWV+1)xds a5 v, is the one-hot in-
dicator vector for v;.

Copy-Mode: The score for “copying” the word
x; 1s calculated as

belys = ;) = 0 (thWc> s, 2 €X,(8)

CONVOLUTION NEURAL
NETWORK

Next several slides borrowed from Alex Rush

Models with Sliding Windows

 Classitication/prediction with sliding windows
— E.g., neural language model

« Feature representations with sliding window
— E.g., sequence tagging with CRFs or structured perceptron

Wy wo w3 Wy ws| We Wy wg
wy [wo w3 wy ws We| wy wg

wy Wo (w3 wy ws W wy| we

105

Sliding Windows w/ Convolution

Let our input be the embeddings of the full sentence, X € Rnxd"

X=[v(w), v(wm),v(ws),..., v(wp)]
Define a window model as NN,indow : R1*(dwind®) R1*hid

NNWindow (xwin) — xwinwl + bl

o . 0 | |
The convolution is defined as NNcopy : R"*9" = R(7—dwint1)xdhia,

NNWindow (Xlzdwin)

NNwin w X :dwin
NNeomy (X) = tanh @0 (_ 2:duin1)

_NNwindow (Xn_dwin:n)

Pooling Operations

» Pooling “over-time” operations f : R"*™ — R1*xm
1. fmax(x)l,j — maxX; X,"j
2. fmin(x)l,j = min,-X,-,J-
3. fmean(x)l,j — Zi Xi,j/n

LU ...
¢

oy

Convolution + Pooling

¥ = softmax(fmax (NNeony (X))W? + b?)

> W2 e IRdhidXdout, b2 - IR]-Xdout

» Final linear layer W? uses learned window features

Multiple Convolutions

y = softmax([f(NNgop, (X)), £ (NNZn, (X)), - ., F(NNZop, (X))]W? +b?)

» Concat several convolutions together.
» Each NN, NN2, etc uses a different dyip

> Allows for different window-sizes (similar to multiple n-grams)

Convolution Diagram (kim 2014)

wait
for
the
video
and
do
nt
rent
it

n x k representation of Convolutional layer with Max-over-time Fully connected layer
sentence with static and multiple filter widths and pooling with dropout and
non-static channels feature maps softmax output

> n=29, dhiqg =4, dout = 2

> red- dywin = 2, blue- dwin = 3, (ignore back channel)
110

Text Classification «im 2014)

Model MR | SST-1 | SST-2 | Subj | TREC| CR MPQA
CNN-rand 76.1 45.0 82.7 89.6 | 91.2 79.8 | 834
CNN-static 81.0 | 45.5 86.8 93.0 | 92.8 | 84.7 | 89.6
CNN-non-static 81.5 | 48.0 87.2 93.4 | 93.6 | 84.3 | 89.5
CNN-multichannel 81.1 474 | 88.1 | 93.2 | 922 | 85.0 | 89.4
RAE (Socher et al., 2011) 77.7 43.2 82.4 - - — 86.4
MV-RNN (Socher et al., 2012) 79.0 44.4 82.9 — — — —
RNTN (Socher et al., 2013) — 45.7 85.4 — — — —
DCNN (Kalchbrenner et al., 2014) — 48.5 86.8 — 93.0 — —
Paragraph-Vec (Le and Mikolov, 2014) — 48.7 | 87.8 — — — —

111

48

A‘ eXN et (krizhevsky et al., 2012)

N TF ENR g
w | 192 192 128 2048 2048 \dense
»7 128 I .]]
\" 130 13 \ 13
s 30y 3 :
N 3/} \ A |1 X R
) by 3 13 AN] 13 dense’| |dense
3] 1000
192 192 128 Max L]
Max 38 Max pooling 2048 2048
pooling pooling

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624—64,896—64,896—43,264—
4096—4096-1000.

112

Discussion Points

 Strength and challenges of deep learning?

... what do NINs think about this?

113

afez: Neural Sonnet Writer
(Ghazvininejad et al. 2016)

Hafez v0.9 Auto Advanced

Language ¢ English Espaiol

#Line 2lines @ 4lines 14 lines

Genre Lyrical

Meter lambic

Format Shakespearean sonnet

Vocabulary Encourage words discourage words

Style curse words repetition alliteration word length
- 0 + - 0 - 0 - 0 +
topical words monosyllable words sentiment concrete words
0 + - 0 - - 0 - - 0 +

machine comprehension Generate Re-generate with same rhyme words
Poem

114

Neural Sonnets

Deep Convolution Network
Qutrageous channels on the wrong connections,
An empty space without an open layer,
A closet full of black and blue extensions,
Connections by the closure operator.

Theory
Another way to reach the wrong conclusion!
A vision from a total transformation,
Created by the great magnetic fusion,
Lots of people need an explanation.

Discussion Points

« Strength and challenges of deep learning?

* Representation learning

Less efforts on feature engineering (at the cost of more
hyperparameter tuning!)

In computer vision: NN learned representation is significantly
better than human engineered features

In NLP: often NN induced representationis concatenated with
additional human engineered features.

e Data

Most success from massive amount of clean (expensive) data

Recent surge of data creation type papers (especially Al
challenge type tasks)

Which significantly limits the domains & applications

Need stronger models for unsupervised & distantly supervised
approaches

Discussion Points

 Strength and challenges of deep learning?

e Architecture
— allows for flexible, expressive, and creative modeling

 Easier entry to the field

— Recent breakthrough from engineering
advancements than theoretic advancements

— Several NN platforms, code sharing culture

NEURAL CHECK LIST

Neural Checklist Models
(Kiddon et al., 2016)

* What can we do with gating & attention?

-ncoder--Decoder Architecture

Chop the tomatoes : Add
[[[[[
—> —> —> — —>
! ! ! ! 1
<s> Chop the tomatoes

Want to update

Doesn’t ingredient

address information as
changing ingredients are
ingredien?@ >, Uused

garlic tomato salsa S,)

N

Encode title - decode recipe

sausage sandwiches —p Cut each sandwich in halves.
Sandwiches with sandwiches.
Sandwiches, sandwiches, Sandwiches,
sandwiches, sandwiches
sandwiches, sandwiches, sandwiches,
sandwiches, sandwiches, sandwiches, or
sandwiches or triangles, a griddle, each
sandwich.
Top each with a slice of cheese, tomato,
and cheese.
Top with remaining cheese mixture.
Top with remaining cheese.
Broil until tops are bubbly and cheese is
melted, about 5 minutes.

Recipe generation vs machine
translation

decode recipe token by token
! ! ! ! !
I I I 1 I
<S> decode recipe token by
recipe title ——— Only ~6-10% words align
between input and output.
ingredient 1 * Therestmustbe generated
ingredient 2 . .
el from context (and implicit
ingredient 3 .
ingredient 4 kﬂOWledge about COOklng)

e Contextual switch between

TWo input SOUrCes two different input sources

Encoder--

Chop

I

ingredients™
garlic tomato salsa 6

Decoder with Attention

the

I

Add

1

tomatoes

t 1

T "~

T\ T\ T\ S A

\ S \) Y

<s>'~_ Chopn, —~ the 'y tomatoes 7, .

———a % Want to update

Doesn’t ingredient
address information as
changing ingredients are

used

e
- L)

»

x
i

N

Neural checklist model

update checklist

language model

key

e —gate

(*) sum

@ sigmoid

@ linear projection
(X) muttiplication

@ softmax
@Iinear interpolation
=select dimension i

used

Et+1

A

Update available and used agenda items

Update checklist

probability of

r
oroeciedinto ! t - Usihg new tem
agenda space ' new available E agepda ¢ r - N -ccefee--oTTk
—»'Ph E't items ’
Ly > : > !
GRU language model @ . ' o '\'/ >
: A m ' / A ot !
, - o (O
. N dt:sed ' Generate
Che L . 2 output
' t , used '
' ' Etused items agenda ft
: S S . hidden state
. classifier
; »| ref-type(h) (4
. h

new available
E - tems

L et’'s make salsal

Garlic tomato salsa

tomatoes
onions
garlic
salt

Neural checklist model

hidden state classifier:
non-ingredient

new ingredient

used ingredient

Chop

new hidden state

N

garlic tomato salsa

» LM

=\

——

/ which ingredients
are still available
<S>

@Iz

Neural checklist model

Chop the tomatoes
t t t
0.85

L5
0.10 | P
»

0.04
0.01

non- ew
ingredient gredient

ANt
<S> Chop the tomatoes
@2 > @I H

M LE

Neural checklist model

Dice the onions
S y 1

0.00

@
0.94 [\@
»

0.03
0.01

.

. Dice the
@I >

V|

Neural checklist model

Add to tomatoes

t

0.94 | @

0.01

0.04|\@
»

0.01

sed
gredient

. Add to
@I >

%’\

\/‘!

V|

V|

tomatoes

/T

w 7
~~

I

Checklist is probabilistic

Add tO tomatoes Oﬂ?mﬁ new ingredient prob. distribution
| | T new _P h . new
090 |époss | (@Ih) - o
0.08 | & 1.00 _ new
| at41 = A T A
0.01| » 0.04

=

0.01| _ 0.02

~~

sed
‘ gredient

| Add to tomatoes
L N\ 4 S Iﬁﬁ XJ » Z

N~ N~

0.85]1.00 |0.04 |0.02 0.85}1.00}|0.04}{0.02

Hidden state classifier is soft

tomatoes

Add to

I

IQ | > /
. Add to tomatoes
@I r* @I

0.85]1.00 |0.04 |0.02 0.85}1.00}|0.04{|O.

(

o
N

Interpolation

W <

7
S

probability distribution over vocabulary

_m

Attention model
over available
ingredients

Attention model
over used
ingredients

»

e

Wo c R|V|Xk
w; = softmax(W,b;)

o; = P(@|h)c/
+ P(@ |hy)cpe
+ P(@|h:)c}*e

LM

Wh c kak

Choose ingredient via attention

available ingredient embeddings

new new LM new
oY = softmax(yFE};““c, ™) E,
/ / new
temperature term content vector from v LY
| |
available ingredient anguage mode 0.75
embeddings
hidden state ? 0.01
Attention models for other NLP tasks
MT (Balasubramanian et al. 13,
Bahdanau et al. 14)
Slente)nce summarization (Rush et &
al. 15 N
Machine reading (Cheng et al. \ =
16) o 3 || o2
Image captioning (Xu et al. 15) y

Attention-generated embeddings

ingredient embeddings

Can generate an
embedding from
the attention
probabilities

C?ew __ ETanew

Neural
Recipe
Example #1

title: oven eggplant

eggplant
cheese cottage

lowfat
chopped onion
bay ground leaf

basil

oregano
tomato sauce
provolone

In a small bowl , combine the cheese , eggplant,
basil , oregano , tomato sauce and onion . Mix well .
Shape mixture into 6 patties , each about 3/4-inch
thick.

Place on baking sheet .

Bake at 350 degrees for 30 minutes or until lightly
browned .

Southern living magazine , sometime in 1980 .
Typed for you by nancy coleman .

Cook eggplantin boiling water, covered, for 10 min .
Drain and cut in half lengthwise . scoop out insides
leaving 1/2 " shell . Mash insides with cottage cheese
, onion , bay leaf , basil , oregano and tomato sauce .
Preheat oven to 350 A stuff eggplant halves, place in
casserole dish and bake covered for 15 min .

Add a little water to bottom of pan to keep eggplant
moist . top with provolone cheese .

Bake 5 more min uncovered 1 serving =

