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Human Neurons

• Switching time
• ~ 0.001 second

• Number of neurons
– 1010

• Connections per neuron
– 104-5

• Scene recognition time
– 0.1 seconds

• Number of cycles per scene recognition?
– 100 à much parallel computation!



g

Perceptron as a Neural Network

This is one neuron:
– Input edges x1 ... xn, along with basis
– The sum is represented graphically
– Sum passed through an activation function g



Sigmoid Neuron

g

Just change g!
• Why would we want to do this?
• Notice new output range [0,1]. What was it before?
• Look familiar?



Optimizing a neuron
We train to minimize sum-squared error
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Solution just depends on g’: derivative of activation function!
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Sigmoid units: have to differentiate 
g
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Perceptron, linear classification, 
Boolean functions: xi∈{0,1} 

• Can learn x1 ∨ x2?
• -0.5 + x1 + x2

• Can learn x1 ∧ x2?
• -1.5 + x1 + x2

• Can learn any conjunction or disjunction?
• 0.5 + x1 + … + xn

• (-n+0.5) + x1 + … + xn

• Can learn majority?
• (-0.5*n) + x1 + … + xn

• What are we missing? The dreaded XOR!, 
etc.



Going beyond linear classification
Solving the XOR problem

y = x1 XOR x2

v1 = (x1∧¬x2) 
= -1.5+2x1-x2

v2 = (x2∧¬x1) 
= -1.5+2x2-x1

y = v1∨ v2
= -0.5+v1+v2
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= (x1∧¬x2) ∨ (x2 ∧¬x1)



Hidden layer

• Single unit:

• 1-hidden layer:  

• No longer convex function!



Example 
data for NN 
with hidden 
layer



Learned 
weights for 
hidden layer



Why “representation learning”?

• MaxEnt (multinomial logistic regression):

• NNs:

y = softmax(w · f(x, y))

y = softmax(w · �(Ux))

y = softmax(w · �(U (n)
(...�(U

(2)
�(U

(1)
x))))

You design the feature vector

Feature representations 
are “learned” through 
hidden layers



Very deep models in computer 
vision



RECURRENT NEURAL 
NETWORKS



𝑥" 𝑥# 𝑥$ 𝑥%

ℎ" ℎ# ℎ$ ℎ%

Recurrent Neural Networks (RNNs)

• Each RNN unit computes a new hidden state using the previous 
state and a new input 

• Each RNN unit (optionally) makes an output using the current hidden 
state

• Hidden states                  are continuous vectors
– Can represent very rich information
– Possibly the entire history from the beginning

• Parameters are shared (tied) across all RNN units (unlike feedforward
NNs) 

ht = f(xt, ht�1)

ht 2 RD

yt = softmax(V ht)



Recurrent Neural Networks (RNNs)

• Generic RNNs:

• Vanilla RNN:

ht = f(xt, ht�1)

yt = softmax(V ht)

yt = softmax(V ht)

ht = tanh(Uxt +Wht�1 + b)

𝑥" 𝑥# 𝑥$ 𝑥%

ℎ" ℎ# ℎ$ ℎ%



Recurrent Neural Networks (RNNs)

• Generic RNNs:
• Vanilla RNNs:
• LSTMs (Long Short-term Memory Networks):

ht = f(xt, ht�1)
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o

t

= �(U (o)
x

t

+W

(o)
h

t�1 + b

(o))

ft = �(U (f)
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(i)
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ct = ft � ct�1 + it � c̃t
ht = ot � tanh(ct)

There are many 
known variations 
to this set of 
equations!

ht = tanh(Uxt +Wht�1 + b)

𝑐" 𝑐# 𝑐$ 𝑐% 𝑐( : cell state

ℎ( : hidden state



Many uses of RNNs

• Input: a sequence
• Output: one label (classification)
• Example: sentiment classification

ht = f(xt, ht�1)

𝑥" 𝑥# 𝑥$ 𝑥%

ℎ" ℎ# ℎ$

ℎ%
y = softmax(V hn)

1. Classification (seq to one)



2. one to seq

• Input: one item
• Output: a sequence
• Example: Image captioning

ht = f(xt, ht�1)

yt = softmax(V ht)

𝑥"

ℎ" ℎ# ℎ$

ℎ%ℎ$ℎ#ℎ"

Cat                sitting                on                    top                 of ….

Many uses of RNNs



3. sequence tagging

• Input: a sequence
• Output: a sequence (of the same length)
• Example: POS tagging, Named Entity Recognition
• How about Language Models?

– Yes! RNNs can be used as LMs!
– RNNs make markov assumption: T/F? ht = f(xt, ht�1)

yt = softmax(V ht)

𝑥" 𝑥# 𝑥$ 𝑥%

ℎ" ℎ# ℎ$

ℎ%ℎ$ℎ#ℎ"

Many uses of RNNs



4. Language models

• Input: a sequence of words
• Output: one next word 
• Output: or a sequence of next words
• During training, x_t is the actual word in the training sentence. 
• During testing, x_t is the word predicted from the previous time 

step.
• Does RNN LMs make Markov assumption?

– i.e., the next word depends only on the previous N words

𝑥" 𝑥# 𝑥$ 𝑥%

ℎ" ℎ# ℎ$

ℎ%ℎ$ℎ#ℎ"

Many uses of RNNs

ht = f(xt, ht�1)

yt = softmax(V ht)



5. seq2seq (aka “encoder-decoder”)

• Input: a sequence
• Output: a sequence (of different length)
• Examples?

ht = f(xt, ht�1)

yt = softmax(V ht)

𝑥" 𝑥# 𝑥$

ℎ" ℎ# ℎ$

ℎ%

ℎ% ℎ) ℎ*

ℎ+ℎ*ℎ)

Many uses of RNNs



Many uses of RNNs
4. seq2seq (aka “encoder-decoder”)

Figure from http://www.wildml.com/category/conversational-agents/

• Conversation and Dialogue
• Machine Translation



Many uses of RNNs
4. seq2seq (aka “encoder-decoder”)

John   has   a dog 

𝑥" 𝑥# 𝑥$

ℎ" ℎ# ℎ$

ℎ%

ℎ% ℎ) ℎ*

ℎ+ℎ*ℎ)

Parsing!
- “Grammar as Foreign Language” (Vinyals et al., 2015)



Recurrent Neural Networks (RNNs)

• Generic RNNs:

• Vanilla RNN:

ht = f(xt, ht�1)

yt = softmax(V ht)

yt = softmax(V ht)

ht = tanh(Uxt +Wht�1 + b)

𝑥" 𝑥# 𝑥$ 𝑥%

ℎ" ℎ# ℎ$ ℎ%



Recurrent Neural Networks (RNNs)

• Generic RNNs:
• Vanilla RNNs:
• LSTMs (Long Short-term Memory Networks):

ht = f(xt, ht�1)
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LSTMS (LONG SHORT-TERM MEMORY 
NETWORKS

𝑐(,"

ℎ(,"

𝑐(

ℎ(

Figure by Christopher Olah (colah.github.io)



LSTMS (LONG SHORT-TERM MEMORY 
NETWORKS

sigmoid:
[0,1] 

ft = �(U (f)
xt +W

(f)
ht�1 + b

(f))

Forget gate: forget the past or not

Figure by Christopher Olah (colah.github.io)



LSTMS (LONG SHORT-TERM MEMORY 
NETWORKS

sigmoid:
[0,1] 

tanh:
[-1,1] 

it = �(U (i)
xt +W

(i)
ht�1 + b

(i))

c̃t = tanh(U (c)
xt +W

(c)
ht�1 + b

(c))

Input gate: use the input or not

New cell content (temp):

ft = �(U (f)
xt +W

(f)
ht�1 + b

(f))

Forget gate: forget the past or not

Figure by Christopher Olah (colah.github.io)



LSTMS (LONG SHORT-TERM MEMORY 
NETWORKS

sigmoid:
[0,1] 

tanh:
[-1,1] 

ct = ft � ct�1 + it � c̃t

New cell content: 
- mix old cell with the new temp cell
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LSTMS (LONG SHORT-TERM MEMORY 
NETWORKS

ct = ft � ct�1 + it � c̃t

New cell content: 
- mix old cell with the new temp cell
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LSTMS (LONG SHORT-TERM MEMORY 
NETWORKS
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vanishing gradient problem for 
RNNs.

• The shading of the nodes in the unfolded network indicates their 
sensitivity to the inputs at time one (the darker the shade, the greater 
the sensitivity). 

• The sensitivity decays over time as new inputs overwrite the activations 
of the hidden layer, and the network ‘forgets’ the first inputs. 

Example from Graves 2012



Preservation of gradient information by 
LSTM

• For simplicity, all gates are either entirely open (‘O’) or closed (‘—’). 
• The memory cell ‘remembers’ the first input as long as the forget gate is 

open and the input gate is closed. 
• The sensitivity of the output layer can be switched on and off by the output 

gate without affecting the cell. 

Forget gate

Input gate

Output 
gate

Example from Graves 2012



Recurrent Neural Networks (RNNs)

• Generic RNNs:
• Vanilla RNNs:
• GRUs (Gated Recurrent Units):

ht = f(xt, ht�1)

𝑥" 𝑥# 𝑥$ 𝑥%

ℎ" ℎ# ℎ$ ℎ%

zt = �(U (z)
xt +W

(z)
ht�1 + b

(z))

rt = �(U (r)
xt +W

(r)
ht�1 + b

(r))

h̃t = tanh(U (h)
xt +W

(h)(rt � ht�1) + b

(h))

ht = (1� zt) � ht�1 + zt � h̃t
Z: Update gate
R: Reset gate

Less parameters 
than LSTMs. 
Easier to train for 
comparable 
performance!

ht = tanh(Uxt +Wht�1 + b)



Gates

• Gates contextually control information 
flow

• Open/close with sigmoid
• In LSTMs and GRUs, they are used to 

(contextually) maintain longer term history

38



Bi-directional RNNs

39

• Can incorporate context from both directions
• Generally improves over uni-directional RNNs



Google NMT (Oct 2016)



Recursive Neural Networks
• Sometimes, inference over a tree structure makes more sense 

than sequential structure
• An example of compositionality in ideological bias detection 

(red → conservative, blue → liberal, gray → neutral) in which 
modifier phrases and punctuation cause polarity switches at 
higher levels of the parse tree

Example from Iyyer et al., 2014



Recursive Neural Networks
• NNs connected as a tree
• Tree structure is fixed a priori
• Parameters are shared, similarly as RNNs

Example from Iyyer et al., 2014



Tree LSTMs

43

• Are tree LSTMs more 
expressive than sequence 
LSTMs?

• I.e., recursive vs recurrent

• When Are Tree Structures 
Necessary for Deep 
Learning of 
Representations? 
Jiwei Li, Minh-Thang
Luong, Dan Jurafsky and 
Eduard Hovy. EMNLP, 
2015.



Neural Probabilistic Language Model (Bengio 2003)

44



Neural Probabilistic Language Model (Bengio 2003)

45

Review: A Neural Probabilistic Language Model

Optional, direct connection layers,

NNDMLP1(x) = [tanh(xW1 + b1), x]W 2 + b2

I W1 2 Rd
in

⇥d
hid ,b1 2 R1⇥d

hid ; first a�ne transformation

I W2 2 R(d
hid

+d
in

)⇥d
out ,b2 2 R1⇥d

out ; second a�ne transformation

• Each word prediction is 
a separate feed forward 
neural network

• Feedforward NNLM is a 
Markovian language 
model

• Dashed lines show 
optional direct 
connections



LEARNING: 
BACKPROPAGATION



Error Backpropagation

• Model parameters:

for brevity:

x0

x1

x2

xP

f(x,

~

✓)

~✓ = {wij , wjk, wkl}

Next 10 slides on back propagation are adapted from Andrew Rosenberg

~✓ = {w(1)
ij , w(2)

jk , w(3)
kl }

w(1)
ij w(2)

jk

w(3)
kl



Error Backpropagation

• Model parameters:
• Let a and z be the input and output of each 

node

48

x0

x1

x2

xP

f(x,

~

✓)

wij wjk

wkl

zj zkzi
aj zlalak

~✓ = {wij , wjk, wkl}



Error Backpropagation

wij wjk

zj

aj

∑  

aj =
X

i

wijzi

zj = g(aj)

∑  

zi



x0

x1

x2

xP

f(x,
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wij wjk

wkl

zj zkzi
aj ak zl

aj =
X

i

wijzi

al

ak =
X

j

wjkzj al =
X

k

wklzk

zj = g(aj) zk = g(ak) zl = g(al)

• Let a and z be the input and output of each 
node
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• Let a and z be the input and output of each 
node



Training: minimize loss
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Training: minimize loss
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Taking Partial Derivatives…



Error Backpropagation
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Error Backpropagation

x0

x1

x2

xP

f(x,

~

✓)

wij wjk

wkl

zj zkzi
aj ak zlal

Optimize last layer weights wkl
Ln =

1
2

(yn � f(xn))2

@R

@wkl
=

1
N

X

n


@Ln

@al,n

� 
@al,n

@wkl

�
Calculus chain rule

@R

@wkl
=

1
N

X

n


@ 1

2 (yn � g(al,n))2

@al,n

� 
@al,n

@wkl

�



Error Backpropagation
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Error Backpropagation
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Error Backpropagation
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Error Backpropagation
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Backpropagation
• Starts with a forward sweep to compute all the intermediate function 

values
• Through backprop, computes the partial derivatives recursively
• A form of dynamic programming

– Instead of considering exponentially many paths between a weight w_ij and the final loss 
(risk), store and reuse intermediate results.

• A type of automatic differentiation. (there are other variants e.g., recursive 
differentiation only through forward propagation.

zi

�j @R

@wij

Forward 

Gradient



Backpropagation
• TensorFlow (https://www.tensorflow.org/) 
• Torch (http://torch.ch/)  
• Theano (http://deeplearning.net/software/theano/) 
• CNTK (https://github.com/Microsoft/CNTK)
• cnn (https://github.com/clab/cnn)
• Caffe (http://caffe.berkeleyvision.org/) 

Primary Interface Language:
• Python
• Lua
• Python
• C++
• C++
• C++

Forward 

Gradient



Cross Entropy Loss (aka log loss, logistic 
loss)

• Cross Entropy

• Related quantities
– Entropy

– KL divergence (the distance between two distributions p and q)

• Use Cross Entropy for models that should have more probabilistic 
flavor (e.g., language models)

• Use Mean Squared Error loss for models that focus on 
correct/incorrect predictions

H(p, q) = Ep[�log q] = H(p) +DKL(p||q)

H(p, q) = �
X

y

p(y) log q(y)

H(p) =
X

y

p(y)log p(y)

DKL(p||q) =
X

y

p(y) log
p(y)

q(y)

MSE =
1

2
(y � f(x))2

Predicted prob

True prob



RNN Learning: Backprop Through Time 
(BPTT)

• Similar to backprop with non-recurrent NNs
• But unlike feedforward (non-recurrent) NNs, each unit in 

the computation graph repeats the exact same 
parameters…

• Backprop gradients of the parameters of each unit as if 
they are different parameters

• When updating the parameters using the gradients, use 
the average gradients throughout the entire chain of 
units.

𝑥" 𝑥# 𝑥$ 𝑥%

ℎ" ℎ# ℎ$ ℎ%



LEARNING: TRAINING DEEP 
NETWORKS



Vanishing / exploding Gradients

• Deep networks are hard to train
• Gradients go through multiple layers
• The multiplicative effect tends to lead to 

exploding or vanishing gradients
• Practical solutions w.r.t. 

– network architecture
– numerical operations
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Vanishing / exploding Gradients

• Practical solutions w.r.t. network 
architecture
– Add skip connections to reduce distance

• Residual networks, highway networks, …

– Add gates (and memory cells) to allow longer 
term memory 
• LSTMs, GRUs, memory networks, …
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Gradients of deep networksDeep Networks
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Effects of Skip Connections on Gradients

• Thought Experiment: Additive Skip-Connections
Thought Experiment: Additive Skip-Connections
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Exercise

We now have the average of two terms. One with no saturation

condition or multiplicative term.
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Effects of Skip Connections on Gradients

• Thought Experiment: Dynamic Skip-Connections
Thought Experiment 2: Dynamic Skip-Connections
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Highway Network (Srivastava et al., 2015) 

• A plain feedforward neural network:

– H is a typical affine transformation followed by a non-
linear activation

• Highway network:

– T is a “transform gate”
– C is a “carry gate”
– Often C = 1 – T for simplicity 
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Highway Networks

up to 100 layers we compare their training behavior to that
of traditional networks with normalized initialization (Glo-
rot & Bengio, 2010; He et al., 2015). We show that opti-
mization of highway networks is virtually independent of
depth, while for traditional networks it suffers significantly
as the number of layers increases. We also show that archi-
tectures comparable to those recently presented by Romero
et al. (2014) can be directly trained to obtain similar test
set accuracy on the CIFAR-10 dataset without the need for
a pre-trained teacher network.

1.1. Notation

We use boldface letters for vectors and matrices, and ital-
icized capital letters to denote transformation functions. 0
and 1 denote vectors of zeros and ones respectively, and I

denotes an identity matrix. The function �(x) is defined as
�(x) = 1

1+e�x

, x 2 R.

2. Highway Networks
A plain feedforward neural network typically consists of L
layers where the lth layer (l 2 {1, 2, ..., L}) applies a non-
linear transform H (parameterized by WH,l) on its input
xl to produce its output yl. Thus, x1 is the input to the
network and yL is the network’s output. Omitting the layer
index and biases for clarity,

y = H(x,WH). (1)

H is usually an affine transform followed by a non-linear
activation function, but in general it may take other forms.

For a highway network, we additionally define two non-
linear transforms T (x,WT) and C(x,WC) such that

y = H(x,WH)·T (x,WT) + x · C(x,WC). (2)

We refer to T as the transform gate and C as the carry gate,
since they express how much of the output is produced by
transforming the input and carrying it, respectively. For
simplicity, in this paper we set C = 1� T , giving

y = H(x,WH)·T (x,WT) + x · (1� T (x,WT)). (3)

The dimensionality of x,y, H(x,WH) and T (x,WT)
must be the same for Equation (3) to be valid. Note that
this re-parametrization of the layer transformation is much
more flexible than Equation (1). In particular, observe that

y =

(
x, if T (x,WT) = 0,

H(x,WH), if T (x,WT) = 1.
(4)

Similarly, for the Jacobian of the layer transform,

dy

dx
=

(
I, if T (x,WT) = 0,

H 0(x,WH), if T (x,WT) = 1.
(5)

Thus, depending on the output of the transform gates, a
highway layer can smoothly vary its behavior between that
of a plain layer and that of a layer which simply passes
its inputs through. Just as a plain layer consists of multi-
ple computing units such that the ith unit computes yi =
Hi(x), a highway network consists of multiple blocks such
that the ith block computes a block state Hi(x) and trans-

form gate output Ti(x). Finally, it produces the block out-

put yi = Hi(x) ⇤ Ti(x) + xi ⇤ (1 � Ti(x)), which is con-
nected to the next layer.

2.1. Constructing Highway Networks

As mentioned earlier, Equation (3) requires that the dimen-
sionality of x,y, H(x,WH) and T (x,WT) be the same.
In cases when it is desirable to change the size of the rep-
resentation, one can replace x with x̂ obtained by suitably
sub-sampling or zero-padding x. Another alternative is to
use a plain layer (without highways) to change dimension-
ality and then continue with stacking highway layers. This
is the alternative we use in this study.

Convolutional highway layers are constructed similar to
fully connected layers. Weight-sharing and local receptive
fields are utilized for both H and T transforms. We use
zero-padding to ensure that the block state and transform
gate feature maps are the same size as the input.

2.2. Training Deep Highway Networks

For plain deep networks, training with SGD stalls at the
beginning unless a specific weight initialization scheme is
used such that the variance of the signals during forward
and backward propagation is preserved initially (Glorot &
Bengio, 2010; He et al., 2015). This initialization depends
on the exact functional form of H .

For highway layers, we use the transform gate defined as
T (x) = �(WT

T
x+bT), where WT is the weight matrix

and bT the bias vector for the transform gates. This sug-
gests a simple initialization scheme which is independent
of the nature of H: bT can be initialized with a negative
value (e.g. -1, -3 etc.) such that the network is initially
biased towards carry behavior. This scheme is strongly in-
spired by the proposal of Gers et al. (1999) to initially bias
the gates in a Long Short-Term Memory recurrent network
to help bridge long-term temporal dependencies early in
learning. Note that �(x) 2 (0, 1), 8x 2 R, so the condi-
tions in Equation (4) can never be exactly true.

In our experiments, we found that a negative bias initial-
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Residual Networks

• ResNet (He et al. 2015): first very deep (152 layers) 
network successfully trained for object recognition
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Deep	Residual	Learning

• Plaint	net

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.

any	two
stacked	layers

0

a(0)

weight	layer

weight	layer

relu

relu

a 0 is	any	desired	mapping,

hope	the	2	weight	layers	fit	a(0)

Deep	Residual	Learning

• Residual net

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.

a 0 is	any	desired	mapping,

hope	the	2	weight	layers	fit	a(0)
hope the	2	weight	layers	fit	b(0)

let	a 0 = b 0 + 0
weight	layer

weight	layer

relu

relu

0

a 0 = b 0 + 0

identity
0

b(0)



Residual Networks
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Deep	Residual	Learning

• Plaint	net

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.
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Deep	Residual	Learning

• Residual net

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.

a 0 is	any	desired	mapping,

hope	the	2	weight	layers	fit	a(0)
hope the	2	weight	layers	fit	b(0)

let	a 0 = b 0 + 0
weight	layer

weight	layer

relu

relu

0

a 0 = b 0 + 0

identity
0

b(0)

• F(x) is a residual mapping with respect to identity
• Direct input connection +x leads to a nice property w.r.t. back 

propagation --- more direct influence from the final loss to any 
deep layer

• In contrast, LSTMs & Highway networks allow for long distance 
input connection only through “gates”.



Residual Networks

Revolution	of	Depth
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fc,	4096

fc,	4096

fc,	1000

AlexNet,	8	layers
(ILSVRC	2012)
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VGG,	19	layers
(ILSVRC	2014)
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GoogleNet,	22	layers
(ILSVRC	2014)

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.
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Residual Networks
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Residual Networks
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Highway Network (Srivastava et al., 2015) 

• A plain feedforward neural network:

– H is a typical affine transformation followed by a non-
linear activation

• Highway network:

– T is a “transform gate”
– C is a “carry gate”
– Often C = 1 – T for simplicity 
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Highway Networks

up to 100 layers we compare their training behavior to that
of traditional networks with normalized initialization (Glo-
rot & Bengio, 2010; He et al., 2015). We show that opti-
mization of highway networks is virtually independent of
depth, while for traditional networks it suffers significantly
as the number of layers increases. We also show that archi-
tectures comparable to those recently presented by Romero
et al. (2014) can be directly trained to obtain similar test
set accuracy on the CIFAR-10 dataset without the need for
a pre-trained teacher network.

1.1. Notation

We use boldface letters for vectors and matrices, and ital-
icized capital letters to denote transformation functions. 0
and 1 denote vectors of zeros and ones respectively, and I

denotes an identity matrix. The function �(x) is defined as
�(x) = 1

1+e�x

, x 2 R.

2. Highway Networks
A plain feedforward neural network typically consists of L
layers where the lth layer (l 2 {1, 2, ..., L}) applies a non-
linear transform H (parameterized by WH,l) on its input
xl to produce its output yl. Thus, x1 is the input to the
network and yL is the network’s output. Omitting the layer
index and biases for clarity,

y = H(x,WH). (1)

H is usually an affine transform followed by a non-linear
activation function, but in general it may take other forms.

For a highway network, we additionally define two non-
linear transforms T (x,WT) and C(x,WC) such that

y = H(x,WH)·T (x,WT) + x · C(x,WC). (2)

We refer to T as the transform gate and C as the carry gate,
since they express how much of the output is produced by
transforming the input and carrying it, respectively. For
simplicity, in this paper we set C = 1� T , giving

y = H(x,WH)·T (x,WT) + x · (1� T (x,WT)). (3)

The dimensionality of x,y, H(x,WH) and T (x,WT)
must be the same for Equation (3) to be valid. Note that
this re-parametrization of the layer transformation is much
more flexible than Equation (1). In particular, observe that

y =

(
x, if T (x,WT) = 0,

H(x,WH), if T (x,WT) = 1.
(4)

Similarly, for the Jacobian of the layer transform,

dy

dx
=

(
I, if T (x,WT) = 0,

H 0(x,WH), if T (x,WT) = 1.
(5)

Thus, depending on the output of the transform gates, a
highway layer can smoothly vary its behavior between that
of a plain layer and that of a layer which simply passes
its inputs through. Just as a plain layer consists of multi-
ple computing units such that the ith unit computes yi =
Hi(x), a highway network consists of multiple blocks such
that the ith block computes a block state Hi(x) and trans-

form gate output Ti(x). Finally, it produces the block out-

put yi = Hi(x) ⇤ Ti(x) + xi ⇤ (1 � Ti(x)), which is con-
nected to the next layer.

2.1. Constructing Highway Networks

As mentioned earlier, Equation (3) requires that the dimen-
sionality of x,y, H(x,WH) and T (x,WT) be the same.
In cases when it is desirable to change the size of the rep-
resentation, one can replace x with x̂ obtained by suitably
sub-sampling or zero-padding x. Another alternative is to
use a plain layer (without highways) to change dimension-
ality and then continue with stacking highway layers. This
is the alternative we use in this study.

Convolutional highway layers are constructed similar to
fully connected layers. Weight-sharing and local receptive
fields are utilized for both H and T transforms. We use
zero-padding to ensure that the block state and transform
gate feature maps are the same size as the input.

2.2. Training Deep Highway Networks

For plain deep networks, training with SGD stalls at the
beginning unless a specific weight initialization scheme is
used such that the variance of the signals during forward
and backward propagation is preserved initially (Glorot &
Bengio, 2010; He et al., 2015). This initialization depends
on the exact functional form of H .

For highway layers, we use the transform gate defined as
T (x) = �(WT

T
x+bT), where WT is the weight matrix

and bT the bias vector for the transform gates. This sug-
gests a simple initialization scheme which is independent
of the nature of H: bT can be initialized with a negative
value (e.g. -1, -3 etc.) such that the network is initially
biased towards carry behavior. This scheme is strongly in-
spired by the proposal of Gers et al. (1999) to initially bias
the gates in a Long Short-Term Memory recurrent network
to help bridge long-term temporal dependencies early in
learning. Note that �(x) 2 (0, 1), 8x 2 R, so the condi-
tions in Equation (4) can never be exactly true.

In our experiments, we found that a negative bias initial-
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Vanishing / exploding Gradients

• Practical solutions w.r.t. numerical operations
– Gradient Clipping: bound gradients by a max 

value
– Gradient Normalization: renormalize gradients 

when they are above a fixed norm
– Careful initialization, smaller learning rates
– Avoid saturating nonlinearities (like tanh, sigmoid)

• ReLU or hard-tanh instead
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Sigmoid

• Often used for gates
• Pro: neuron-like, 

differentiable
• Con: gradients saturate to 

zero almost everywhere 
except x near zero => 
vanishing gradients

• Batch normalization helps
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�(x) =
1

1 + e

�x

�

0(x) = �(x)(1� �(x))

Non-Linear Functions: Sigmoid

Logistic sigmoid function:

s(t) =
1

1+ exp(�t)

I s((xW1
+ b1)i )

I Intuition: Each hidden dimension (“neuron”) is result of logistic

regression.



Tanh

• Often used for 
hidden states & cells 
in RNNs, LSTMs

• Pro: differentiable, 
often converges 
faster than sigmoid

• Con: gradients easily 
saturate to zero => 
vanishing gradients
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tanh(x) = 2�(2x)� 1

tanh(x) =
e

x � e

�x

e

x + e

�x

tanh’(x) = 1� tanh

2
(x)

Other Non-Linearities: Tanh

Hyperbolic Tangeant:

tanh(t) =
exp(t)� exp(�t)

exp(t) + exp(�t)

I Intuition: Similar to sigmoid, but range between 0 and -1.



Hard TanhOther Non-Linearities: Hard Tanh

Hyperbolic Tangeant:

hardtanh(t) =

8
>>><

>>>:

�1 t < �1

t �1  t  1

1 t > 1

I Intuition: Similar to sigmoid, but range between 0 and -1.
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Other Non-Linearities: Hard Tanh

Hyperbolic Tangeant:

hardtanh(t) =

8
>>><

>>>:

�1 t < �1

t �1  t  1

1 t > 1

I Intuition: Similar to sigmoid, but range between 0 and -1.

• Pro: computationally 
cheaper

• Con: saturates to 
zero easily, doesn’t 
differentiate at 1, -1



ReLU

• Pro: doesn’t saturate for 
x > 0, computationally 
cheaper, induces sparse 
NNs

• Con: non-differentiable 
at 0

• Used widely in deep 
NN, but not as much in 
RNNs

• We informally use 
subgradients:
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ReLU(x) = max(0, x)

(Sub)Gradient Rule

I Technically ReLU is non-di↵erentiable.

I Only an issue at 0, generally for “ties”.

I We informally use subgradients,

d ReLU(x)

dx
=

8
>>><

>>>:

1 x > 0

0 x < 0

1 or 0 o.w

Generally,

d maxv 0(f (x , v
0
))

dx
= f 0(x , v̂) for any v̂ 2 argmax

v 0
f (x , v 0)



Vanishing / exploding Gradients

• Practical solutions w.r.t. numerical operations
– Gradient Clipping: bound gradients by a max 

value
– Gradient Normalization: renormalize gradients 

when they are above a fixed norm
– Careful initialization, smaller learning rates
– Avoid saturating nonlinearities (like tanh, sigmoid)

• ReLU or hard-tanh instead

– Batch Normalization: add intermediate input 
normalization layers

86



Batch Normalization
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Regularization
• Regularization by objective term

– Modify loss with L1 or L2 norms

• Less depth, smaller hidden states, early stopping

• Dropout
– Randomly delete parts of network during training
– Each node (and its corresponding incoming and outgoing 

edges) dropped with a probability p
– P is higher for internal nodes, lower for input nodes
– The full network is used for testing
– Faster training, better results
– Vs. Bagging
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Objective with Regularization

L(q) =
n

Â
i=1

max{0, 1� (ŷc � ŷc 0)}+ l||q||2

10 ⇤max{0, 1� (y � x)}+ 5 ⇤max{0, 1� (x � y)}+ 5 ⇤ ||q||2



Convergence of backprop
• Without non-linearity or hidden layers, learning is 

convex optimization
– Gradient descent reaches global minima

• Multilayer neural nets (with nonlinearity) are not 
convex
– Gradient descent gets stuck in local minima
– Selecting number of hidden units and layers =  fuzzy 

process
– NNs have made a HUGE comeback in the last few years

• Neural nets are back with a new name
– Deep belief networks
– Huge error reduction when trained with lots of data on GPUs
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Encoder – Decoder Architecture
Sequence-to-Sequence

the red dog
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s
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t
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x1 x2 x3 x̂1 x̂2 x̂3

the red dog <s>

91Diagram borrowed from Alex Rush
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Trial: Hard Attention

93

• At each step generating the target word 
• Compute the best alignment to the source word
• And incorporate the source word to generate the target 

word

• Contextual hard alignment. How?

• Problem?

sti
ssj

wt
i+1 = argmaxwO(w, sti+1, s

s
j)

zj = tanh([sti, s
s
j ]W + b)

j = argmaxjzj



Attention: Soft Alignments 
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• At each step generating the target word 
• Compute the attention to the source sequence
• And incorporate the attention to generate the target 

word

• Contextual attention as soft alignment. How?

– Step-1: compute the attention weights 
– Step-2: compute the attention vector as interpolation

sti

wt
i+1 = argmaxwO(w, sti+1, c)

c ss

zj = tanh([sti, s
s
j ]W + b)

↵ = softmax(z)

c =
X

j

↵js
s
j



Attention

95Diagram borrowed from Alex Rush



Learned Attention!

96Diagram borrowed from Alex Rush



POINTER NETWORKS



Pointer Networks! (Vinyals et al. 2015)

98

• NNs with attention: content-based attention to input

• Pointer networks: location-based attention to input

• Applications: Convex haul, Delaunay Triangulation, Traveling 
Salesman



Pointer Networks
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(a) Sequence-to-Sequence (b) Ptr-Net

Figure 1: (a) Sequence-to-Sequence - An RNN (blue) processes the input sequence to create a code
vector that is used to generate the output sequence (purple) using the probability chain rule and
another RNN. The output dimensionality is fixed by the dimensionality of the problem and it is the
same during training and inference [1]. (b) Ptr-Net - An encoding RNN converts the input sequence
to a code (blue) that is fed to the generating network (purple). At each step, the generating network
produces a vector that modulates a content-based attention mechanism over inputs ([5, 2]). The
output of the attention mechanism is a softmax distribution with dictionary size equal to the length
of the input.

ion (i.e., when we only have examples of inputs and desired outputs). The proposed approach is
depicted in Figure 1.

The main contributions of our work are as follows:

• We propose a new architecture, that we call Pointer Net, which is simple and effective. It
deals with the fundamental problem of representing variable length dictionaries by using a
softmax probability distribution as a “pointer”.

• We apply the Pointer Net model to three distinct non-trivial algorithmic problems involving
geometry. We show that the learned model generalizes to test problems with more points
than the training problems.

• Our Pointer Net model learns a competitive small scale (n  50) TSP approximate solver.
Our results demonstrate that a purely data driven approach can learn approximate solutions
to problems that are computationally intractable.

2 Models

We review the sequence-to-sequence [1] and input-attention models [5] that are the baselines for this
work in Sections 2.1 and 2.2. We then describe our model - Ptr-Net in Section 2.3.

2.1 Sequence-to-Sequence Model

Given a training pair, (P, CP
), the sequence-to-sequence model computes the conditional probabil-

ity p(CP |P; ✓) using a parametric model (an RNN with parameters ✓) to estimate the terms of the
probability chain rule (also see Figure 1), i.e.

p(CP |P; ✓) =

m(P)Y

i=1

p✓(Ci|C1, . . . , Ci�1,P; ✓). (1)

2



Pointer Networks

Attention Mechanism vs Pointer Networks

Softmax normalizes the vector eij to be an output distribution over the dictionary of inputs

Attention mechanism Ptr-Net

Diagram borrowed from Keon Kim
100



CopyNet (Gu et al. 2016)

• Conversation
– I: Hello Jack, my name is Chandralekha

– R: Nice to meet you, Chandralekha

– I: This new guy doesn’t perform exactly as expected.

– R: what do you mean by “doesn’t perform exactly as 
expected?”

• Translation

101



CopyNet (Gu et al. 2016)

hello    ,     my     name   is    Tony  Jebara   . 

Attentive	Read

hi     ,     Tony  Jebara

<eos>   hi     ,     Tony

h1 h2 h3 h4 h5

s1 s2 s3 s4

h6 h7 h8
“Tony”

DNN

Embedding 
for “Tony”
Selective Read 
for “Tony”

(a) Attention-based Encoder-Decoder (RNNSearch)
(c) State Update

s4

SourceVocabulary

Softmax
Prob(“Jebara”) = Prob(“Jebara”, g) + Prob(“Jebara”, c)

… ...

(b) Generate-Mode & Copy-Mode

!

M

M

Figure 1: The overall diagram of COPYNET. For simplicity, we omit some links for prediction (see
Sections 3.2 for more details).

Decoder: An RNN that reads M and predicts
the target sequence. It is similar with the canoni-
cal RNN-decoder in (Bahdanau et al., 2014), with
however the following important differences

• Prediction: COPYNET predicts words based
on a mixed probabilistic model of two modes,
namely the generate-mode and the copy-
mode, where the latter picks words from the
source sequence (see Section 3.2);

• State Update: the predicted word at time t�1
is used in updating the state at t, but COPY-
NET uses not only its word-embedding but
also its corresponding location-specific hid-
den state in M (if any) (see Section 3.3 for
more details);

• Reading M: in addition to the attentive read
to M, COPYNET also has“selective read”
to M, which leads to a powerful hybrid of
content-based addressing and location-based
addressing (see both Sections 3.3 and 3.4 for
more discussion).

3.2 Prediction with Copying and Generation
We assume a vocabulary V = {v1, ..., vN}, and
use UNK for any out-of-vocabulary (OOV) word.
In addition, we have another set of words X , for
all the unique words in source sequence X =

{x1, ..., xTS}. Since X may contain words not
in V , copying sub-sequence in X enables COPY-
NET to output some OOV words. In a nutshell,
the instance-specific vocabulary for source X is
V [ UNK [ X .

Given the decoder RNN state s

t

at time t to-
gether with M, the probability of generating any
target word y

t

, is given by the “mixture” of proba-
bilities as follows

p(y

t

|s
t

, y

t�1, ct,M) = p(y

t

, g|s
t

, y

t�1, ct,M)

+ p(y

t

, c|s
t

, y

t�1, ct,M) (4)

where g stands for the generate-mode, and c the
copy mode. The probability of the two modes are
given respectively by

p(y

t

, g|·)=

8
>><

>>:

1

Z

e

 g(yt)
, y

t

2 V
0, y

t

2 X \ ¯

V

1

Z

e

 g(UNK)
y

t

62 V [ X
(5)

p(y

t

, c|·)=
(

1

Z

P
j:xj=yt

e

 c(xj)
, y

t

2 X
0 otherwise

(6)

where  

g

(·) and  

c

(·) are score functions for
generate-mode and copy-mode, respectively, and
Z is the normalization term shared by the two
modes, Z =

P
v2V[{UNK} e

 g(v)
+

P
x2X e

 c(x)
.

Due to the shared normalization term, the two
modes are basically competing through a softmax
function (see Figure 1 for an illustration with ex-
ample), rendering Eq.(4) different from the canon-
ical definition of the mixture model (McLachlan
and Basford, 1988). This is also pictorially illus-
trated in Figure 2. The score of each mode is cal-
culated:
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CopyNet (Gu et al. 2016)
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• Key idea: interpolation between generation model & 
copy model
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Sections 3.2 for more details).

Decoder: An RNN that reads M and predicts
the target sequence. It is similar with the canoni-
cal RNN-decoder in (Bahdanau et al., 2014), with
however the following important differences

• Prediction: COPYNET predicts words based
on a mixed probabilistic model of two modes,
namely the generate-mode and the copy-
mode, where the latter picks words from the
source sequence (see Section 3.2);

• State Update: the predicted word at time t�1
is used in updating the state at t, but COPY-
NET uses not only its word-embedding but
also its corresponding location-specific hid-
den state in M (if any) (see Section 3.3 for
more details);

• Reading M: in addition to the attentive read
to M, COPYNET also has“selective read”
to M, which leads to a powerful hybrid of
content-based addressing and location-based
addressing (see both Sections 3.3 and 3.4 for
more discussion).

3.2 Prediction with Copying and Generation
We assume a vocabulary V = {v1, ..., vN}, and
use UNK for any out-of-vocabulary (OOV) word.
In addition, we have another set of words X , for
all the unique words in source sequence X =

{x1, ..., xTS}. Since X may contain words not
in V , copying sub-sequence in X enables COPY-
NET to output some OOV words. In a nutshell,
the instance-specific vocabulary for source X is
V [ UNK [ X .

Given the decoder RNN state s

t

at time t to-
gether with M, the probability of generating any
target word y

t

, is given by the “mixture” of proba-
bilities as follows
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where g stands for the generate-mode, and c the
copy mode. The probability of the two modes are
given respectively by
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where  

g

(·) and  

c

(·) are score functions for
generate-mode and copy-mode, respectively, and
Z is the normalization term shared by the two
modes, Z =

P
v2V[{UNK} e

 g(v)
+

P
x2X e

 c(x)
.

Due to the shared normalization term, the two
modes are basically competing through a softmax
function (see Figure 1 for an illustration with ex-
ample), rendering Eq.(4) different from the canon-
ical definition of the mixture model (McLachlan
and Basford, 1988). This is also pictorially illus-
trated in Figure 2. The score of each mode is cal-
culated:
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Figure 2: The illustration of the decoding proba-
bility p(y

t

|·) as a 4-class classifier.

Generate-Mode: The same scoring function as
in the generic RNN encoder-decoder (Bahdanau et
al., 2014) is used, i.e.
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Copy-Mode: The score for “copying” the word
x
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is calculated as
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where W

c

2 Rdh⇥ds , and � is a non-linear ac-
tivation function, considering that the non-linear
transformation in Eq.( 8) can help project s

t

and h

j

in the same semantic space. Empirically, we also
found that using the tanh non-linearity worked
better than linear transformation, and we used that
for the following experiments. When calculating
the copy-mode score, we use the hidden states
{h1, ...,hTS} to “represent” each of the word in
the source sequence {x1, ..., xTS} since the bi-
directional RNN encodes not only the content, but
also the location information into the hidden states
in M. The location informaton is important for
copying (see Section 3.4 for related discussion).
Note that we sum the probabilities of all x

j

equal
to y

t

in Eq. (6) considering that there may be mul-
tiple source symbols for decoding y

t

. Naturally
we let p(y

t

, c|·) = 0 if y
t

does not appear in the
source sequence, and set p(y

t

, g|·) = 0 when y

t

only appears in the source.

3.3 State Update
COPYNET updates each decoding state s

t

with
the previous state s

t�1, the previous symbol y
t�1

and the context vector c
t

following Eq. (2) for the
generic attention-based Seq2Seq model. However,
there is some minor changes in the y

t�1�!s

t

path
for the copying mechanism. More specifically,
y

t�1 will be represented as [e(y
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t�1) is the word embedding associated
with y
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where K is the normalization term which equalsP
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0:x⌧ 0=yt�1
p(x

⌧

0
, c|s

t�1,M), considering there
may exist multiple positions with y

t�1 in the
source sequence. In practice, ⇢

t⌧

is often con-
centrated on one location among multiple appear-
ances, indicating the prediction is closely bounded
to the location of words.

In a sense ⇣(y
t�1) performs a type of read to

M similar to the attentive read (resulting c

t

) with
however higher precision. In the remainder of
this paper, ⇣(y

t�1) will be referred to as selective
read. ⇣(y

t�1) is specifically designed for the copy
mode: with its pinpointing precision to the cor-
responding y

t�1, it naturally bears the location of
y

t�1 in the source sequence encoded in the hidden
state. As will be discussed more in Section 3.4,
this particular design potentially helps copy-mode
in covering a consecutive sub-sequence of words.
If y

t�1 is not in the source, we let ⇣(y
t�1) = 0.

3.4 Hybrid Addressing of M
We hypothesize that COPYNET uses a hybrid
strategy for fetching the content in M, which com-
bines both content-based and location-based ad-
dressing. Both addressing strategies are coordi-
nated by the decoder RNN in managing the atten-
tive read and selective read, as well as determining
when to enter/quit the copy-mode.

Both the semantics of a word and its location
in X will be encoded into the hidden states in M

by a properly trained encoder RNN. Judging from
our experiments, the attentive read of COPYNET is
driven more by the semantics and language model,
therefore capable of traveling more freely on M,
even across a long distance. On the other hand,
once COPYNET enters the copy-mode, the selec-
tive read of M is often guided by the location in-
formation. As the result, the selective read often
takes rigid move and tends to cover consecutive
words, including UNKs. Unlike the explicit de-
sign for hybrid addressing in Neural Turing Ma-
chine (Graves et al., 2014; Kurach et al., 2015),
COPYNET is more subtle: it provides the archi-
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Figure 1: The overall diagram of COPYNET. For simplicity, we omit some links for prediction (see
Sections 3.2 for more details).

Decoder: An RNN that reads M and predicts
the target sequence. It is similar with the canoni-
cal RNN-decoder in (Bahdanau et al., 2014), with
however the following important differences

• Prediction: COPYNET predicts words based
on a mixed probabilistic model of two modes,
namely the generate-mode and the copy-
mode, where the latter picks words from the
source sequence (see Section 3.2);

• State Update: the predicted word at time t�1
is used in updating the state at t, but COPY-
NET uses not only its word-embedding but
also its corresponding location-specific hid-
den state in M (if any) (see Section 3.3 for
more details);

• Reading M: in addition to the attentive read
to M, COPYNET also has“selective read”
to M, which leads to a powerful hybrid of
content-based addressing and location-based
addressing (see both Sections 3.3 and 3.4 for
more discussion).

3.2 Prediction with Copying and Generation
We assume a vocabulary V = {v1, ..., vN}, and
use UNK for any out-of-vocabulary (OOV) word.
In addition, we have another set of words X , for
all the unique words in source sequence X =

{x1, ..., xTS}. Since X may contain words not
in V , copying sub-sequence in X enables COPY-
NET to output some OOV words. In a nutshell,
the instance-specific vocabulary for source X is
V [ UNK [ X .

Given the decoder RNN state s
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at time t to-
gether with M, the probability of generating any
target word y
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, is given by the “mixture” of proba-
bilities as follows
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(·) are score functions for
generate-mode and copy-mode, respectively, and
Z is the normalization term shared by the two
modes, Z =
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Due to the shared normalization term, the two
modes are basically competing through a softmax
function (see Figure 1 for an illustration with ex-
ample), rendering Eq.(4) different from the canon-
ical definition of the mixture model (McLachlan
and Basford, 1988). This is also pictorially illus-
trated in Figure 2. The score of each mode is cal-
culated:



CONVOLUTION NEURAL 
NETWORK

Next several slides borrowed from Alex Rush



Models with Sliding Windows

• Classification/prediction with sliding windows
– E.g., neural language model

• Feature representations with sliding window
– E.g., sequence tagging with CRFs or structured perceptron
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All Window for Classification

Idea: Use window at each location.

[w1 w2 w3 w4 w5] w6 w7 w8

w1 [w2 w3 w4 w5 w6] w7 w8

w1 w2 [w3 w4 w5 w6 w7] w8

...

Each maps from window of embeddings to d
hid



Sliding Windows w/ ConvolutionConvolution Formally

Let our input be the embeddings of the full sentence, X 2 Rn⇥d0

X = [v(w1), v(w2), v(w3), . . . , v(wn)]

Define a window model as NNwindow : R1⇥(d
win

d0) 7! R1⇥d
hid ,

NNwindow (xwin) = xwinW
1 + b1

The convolution is defined as NNconv : Rn⇥d0 7! R(n�d
win

+1)⇥d
hid ,

NNconv (X) = tanh

2

666664

NNwindow (X1:d
win

)

NNwindow (X2:d
win

+1)
...

NNwindow (Xn�d
win

:n)

3

777775

106

Convolution Formally

Let our input be the embeddings of the full sentence, X 2 Rn⇥d0

X = [v(w1), v(w2), v(w3), . . . , v(wn)]

Define a window model as NNwindow : R1⇥(d
win

d0) 7! R1⇥d
hid ,

NNwindow (xwin) = xwinW
1 + b1

The convolution is defined as NNconv : Rn⇥d0 7! R(n�d
win

+1)⇥d
hid ,

NNconv (X) = tanh

2

666664

NNwindow (X1:d
win

)

NNwindow (X2:d
win

+1)
...

NNwindow (Xn�d
win

:n)

3

777775



Pooling Operations

107

Pooling

I Unfortunately NNconv : Rn⇥d0 7! R(n�d
win

+1)⇥d
hid .

I Need to map down to d
out

for di↵erent n

I Recall pooling operations.

I Pooling “over-time” operations f : Rn⇥m 7! R1⇥m

1. fmax (X)1,j = maxi Xi ,j

2. fmin(X)1,j = mini Xi ,j

3. fmean(X)1,j = Âi Xi ,j/n

f (X) =

2

666664

+ + . . .
+ + . . .

...

+ + . . .

3

777775
= [ . . . ]



Convolution + Pooling
Putting it together

ŷ = softmax(fmax (NNconv (X))W
2 + b2)

I W2 2 Rd
hid

⇥d
out , b2 2 R1⇥d

out

I Final linear layer W2 uses learned window features
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Multiple ConvolutionsMultiple Convolutions

ŷ = softmax([f (NN1
conv (X)), f (NN

2
conv (X)), . . . , f (NN f

conv (X))]W
2+b2)

I Concat several convolutions together.

I Each NN1, NN2, etc uses a di↵erent d
win

I Allows for di↵erent window-sizes (similar to multiple n-grams)
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Convolution Diagram (kim 2014)Convolution Diagram (Kim, 2014)

I n = 9, d
hid

= 4 , d
out

= 2

I red- d
win

= 2, blue- d
win

= 3, (ignore back channel)
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Text Classification (Kim 2014)Classification Results
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AlexNet (krizhevsky et al., 2012)
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Discussion Points

• Strength and challenges of deep learning?

… what do NNs think about this?
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Hafez: Neural Sonnet Writer 
(Ghazvininejad et al. 2016)
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Neural Sonnets

Deep Convolution Network
Outrageous channels on the wrong connections,
An empty space without an open layer,
A closet full of black and blue extensions,
Connections by the closure operator.

Theory
Another way to reach the wrong conclusion!
A vision from a total transformation,
Created by the great magnetic fusion,
Lots of people need an explanation.
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Discussion Points

• Strength and challenges of deep learning?

• Representation learning
– Less efforts on feature engineering (at the cost of more 

hyperparameter tuning!)
– In computer vision: NN learned representation is significantly 

better than human engineered features
– In NLP: often NN induced representation is concatenated with 

additional human engineered features.
• Data

– Most success from massive amount of clean (expensive) data
– Recent surge of data creation type papers (especially AI 

challenge type tasks)
– Which significantly limits the domains & applications
– Need stronger models for unsupervised & distantly supervised 

approaches
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Discussion Points

• Strength and challenges of deep learning?

• Architecture 
– allows for flexible, expressive, and creative modeling

• Easier entry to the field
– Recent breakthrough from engineering 

advancements than theoretic advancements
– Several NN platforms, code sharing culture
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NEURAL CHECK LIST



Neural Checklist Models
(Kiddon et al., 2016)

• What can we do with gating & attention?
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Encoder--Decoder Architecture

Chop tomatoesthe . Add

Chop tomatoesthe .<s>

Doesn’t 
address 

changing 
ingredients

Want to update 
ingredient 

information as 
ingredients are 

used

garlic tomato salsa



Encode title - decode recipe

Cut each sandwich in halves.
Sandwiches with sandwiches.
Sandwiches, sandwiches, Sandwiches, 
sandwiches, sandwiches
sandwiches, sandwiches, sandwiches, 
sandwiches, sandwiches, sandwiches, or 
sandwiches or triangles, a griddle, each 
sandwich.
Top each with a slice of cheese, tomato, 
and cheese.
Top with remaining cheese mixture.
Top with remaining cheese.
Broil until tops are bubbly and cheese is 
melted, about 5 minutes. 

sausage sandwiches



Recipe generation vs machine 
translation

by

byrecipe

recipe

token

<S> token

tokendecode

decode

recipe title

ingredient 1

ingredient 2

ingredient 3

ingredient 4

Two input sources

• Only ~6-10% words align 
between input and output.

• The rest must be generated 
from context (and implicit 
knowledge about cooking)

• Contextual switch between 
two different input sources



Chop tomatoesthe . Add

Chop tomatoesthe .<s>

Doesn’t 
address 

changing 
ingredients

Want to update 
ingredient 

information as 
ingredients are 

used

garlic tomato salsa

Encoder--Decoder with Attention



Neural checklist model



Let’s make salsa!

Garlic tomato salsa

tomatoes
onions
garlic
salt



Neural checklist model

LM

Chop

<S>

hidden state classifier:
non-ingredient 
new ingredient
used ingredient

which ingredients 
are still available

new hidden state

tomato salsagarlic



Neural checklist model

tomatoes

tomatoesChop

Chop

the

the<S>

0.85
0.10
0.04
0.01

.

non-
ingredient

new
ingredient

✓



Neural checklist model

onions

onionsDice

Dice

the

the

.

.

0.00
0.94
0.03
0.01

✓✓ ✓



Neural checklist model

tomatoes

tomatoesAdd

Add

to

to

.

.

0.94
0.04
0.01
0.01

used
ingredient

✓✓ ✓✓



Checklist is probabilistic

tomatoes

tomatoesAdd

Add

to

to

.

.

0.90
0.08
0.01
0.01

used
ingredient

0.85 1.001.000.85

0.85
1.00

0.020.02

0.02

0.040.04

0.04

= new ingredient prob. distribution



Hidden state classifier is soft

tomatoes

tomatoes
Add

Add

to

to

.

.

0.90
0.08
0.01
0.01

0.85 1.001.000.85

0.85
1.00

0.020.02

0.02

0.040.04

0.04

0.00
0.00
0.50
0.50

0.85
1.00

0.02
0.04

0.940.050.01



Interpolation

0.94

0.050.01

0.90

0.08

0.01

0.01

0.85

1.00

0.02

0.04

0.00

0.00

0.50

0.50

0.85

1.00

0.02

0.04

probability distribution over vocabulary

Attention model 
over used 
ingredients

Attention model 
over available 
ingredients



Choose ingredient via attention

Generates a probability 
distribution over a set of 
embeddings that 
corresponds to how close a 
target embedding is to each

Attention models for other NLP tasks
MT (Balasubramanian et al. 13,

Bahdanau et al. 14)
Sentence summarization (Rush et 
al. 15)
Machine reading (Cheng et al. 
16)
Image captioning (Xu et al. 15)

available ingredient
embeddings

content vector from
language model

temperature term

available ingredient embeddings



Attention-generated embeddings

Can generate an 
embedding from 

the attention 
probabilities

ingredient embeddings



Neural 
Recipe 

Example #1

Cook eggplant in boiling water , covered , for 10 min .
Drain and cut in half lengthwise . scoop out insides 
leaving 1/2 '' shell . Mash insides with cottage cheese 
, onion , bay leaf , basil , oregano and tomato sauce .
Preheat oven to 350 ^ stuff eggplant halves , place in 
casserole dish and bake covered for 15 min .
Add a little water to bottom of pan to keep eggplant 
moist . top with provolone cheese .
Bake 5 more min uncovered 1 serving =

In a small bowl , combine the cheese , eggplant , 
basil , oregano , tomato sauce and onion . Mix well . 
Shape mixture into 6 patties , each about 3/4-inch 
thick.
Place on baking sheet .
Bake at 350 degrees for 30 minutes or until lightly 
browned .
Southern living magazine , sometime in 1980 .
Typed for you by nancy coleman .

eggplant
cheese cottage 
lowfat
chopped onion
bay ground leaf
basil
oregano
tomato sauce
provolone

title: oven eggplant


