CSE 517: Winter 2015 Textual Entailment

Yejin Choi
University of Washington

The Holy grail of NLP....

- Understanding Natural Language Text
 British left waffles on nukes
 - Traditional approach: map it to a canonical form
 - Can then (in theory) integrate multiple statements from diverse sources to derive "new" facts
 - Question #1: How to represent its meaning?
- $\exists_x \exists_y \exists_z British(x) \land Waffles(y) \land Nukes(z) \land leave_on(x, y, z)$
 - Question #0.5: What is its meaning?
 - Question #0.1: What does understand mean?

Natural Language and Meaning

Shot an elephant in my pajamas

Logical Inference VS Textual Entailment

Shot an elephant in my pajamas

symbolic – logical forms
 statistical – embeddings

Meaning Representation

Natural Language

Entailment VS Paraphrasing

The Dow Jones Industrial Average closed up 255

Dow ends up 255

Dow climbs 255

Dow gains 255 points

Stock market hits a record high

Equivalence: $text1 \Leftrightarrow text2$ (paraphrasing)

Entailment: $text1 \Rightarrow text2$

Textual Entailment: Definition

A directional relation between two text fragments:
 Text (t) and Hypothesis (h):

t entails $h(t \Rightarrow h)$ if humans reading t will infer that h is most likely true

Assuming "common background knowledge" –
 which is indeed expected from applications

- T: Legally, John could drive.
- H: John drove.

Some Examples [Braz et. al. IJCAI workshop' 05;PARC

Corpus]

- S: Bush said that Khan sold centrifuges to North Korea.
- H: Centrifuges were sold to North Korea.
- S: No US congressman visited Iraq until the war.
- H: Some US congressmen visited Iraq before the war.
- S: The room was full of men.
- H: The room was full of intelligent men.
- S: The New York Times reported that Hanssen sold FBI secrets to the Russians and could face the death penalty.
- H: Hanssen sold FBI secrets to the Russians.
- S: All soldiers were killed in the ambush.
- H: Many soldiers were killed in the ambush.

Textual Entailment with Knowledge

t entails h ($t \Rightarrow h$) if humans reading t will infer that h is most likely true

- For textual entailment to hold we require:
 - text AND knowledge \Rightarrow h but
 - knowledge should not entail h alone
 - Justification: consider time-dependent information, e.g.
 PresidentOf(US, X)
- Systems are not supposed to validate h's truth regardless of t
 (e.g. by searching h on the web)

[id: 5T-39 entail]

TEXT: ...While no one accuses Madonna of doing anything illegal in adopting the 4-year-old girl, reportedly named Mercy, there are questions nonetheless about how Madonna is able to navigate Malawi's 18-to-24 month vetting period in just a matter of days or weeks...

HYPOTHESIS:

Madonna is 50 years old.

Contradiction: Definition

• Definition:

The Hypothesis H of an entailment pair contradicts the Text T if the relations/events described by H are highly unlikely to be true given the relations/events described by T.

 Justification: filtering facts from diverse/noisy sources, detecting state changes

Entailment / Contradiction / Unknown?

• Text:

The purchase of Houston-based LexCorp by BMI for \$2Bn prompted widespread sell-offs by traders as they sought to minimize exposure. LexCorp had been an employee-owned concern since 2008.

Hyp 1: BMI acquired an American company.

Entailment / Contradiction / Unknown?

• Text:

The purchase of Houston-based LexCorp by BMI for \$2Bn prompted widespread sell-offs by traders as they sought to minimize exposure.

LexCorp had been an employee-owned concern since 2008.

 Hyp 2: BMI bought employee-owned LexCorp for \$3.4Bn.

Entailment / Contradiction / Unknown?

Text:

The purchase of Houston-based LexCorp by BMI for \$2Bn prompted widespread sell-offs by traders as they sought to minimize exposure. LexCorp had been an employee-owned concern since 2008.

• Hyp 3: BMI is an employee-owned concern.

RTE Evaluation

- Examples drawn from NLP tasks/domains
- ~90% pairwise inter-annotator agreement
- RTE 1-3: ~800 dev, 800 test RTE pairs each ('05- '07)
 - Boolean label: "entailed" vs. "not entailed"
 - BALANCED data set
- RTE 4-5: Ave. text length = 40,100 words ('08, '09) respectively, 2-way and 3-way tasks
 - "entailed", "contradicted", and "unknown"
- Some pilot RTE task data sets as well
- RTE 6 (2010): shift to application focus: IR-like setting

How well are we doing?

Why Textual Entailment?

Question Expected answer form Who bought Overture? >> X bought Overture

Overture's acquisition by Yahoo

Yahoo bought Overture

text

hypothesized answer

- IE
- IR
- Summarization
- MT

Scalable RTE for exhaustive search

(Roth et al., 2009)

- Target applications like document downgrading (detect classified information): must retrieve ALL instances of specified query
- Two-stage architecture:
 - Push some RTE capabilities into Retrieval step; index shallow semantic markup (NE, NQ, MWE), use similarity metrics in retrieval
 - Post-retrieval RTE step filters results using deeper structure

Textual Entailment for MT

(Mirkin et al., 2009)

Translation

System

- 1 Enrich training data with automatically generated entailed sentences
- 2 Improve MT evaluation

Tree Rewrite Rules for RTE

(Zanzotto, Moschitti, 2006)

Can we use syntactic tree similarity?

Can we use syntactic tree similarity? YES!

Implied structures can lead to rewrite rules

Intra-pair operations

(Zanzotto, Moschitti, 2006)

→ Finding *anchors*

Intra-pair operations

→ Finding *anchors*

 T_1

→ Naming anchors with *placeholders*

Intra-pair operations

→ Finding *anchors*

 H_1

→ Naming anchors with *placeholders*

$\rightarrow Propagating$ placeholders

Intra-pair operations

Cross-pair operations

(Zanzotto, Moschitti, 2006)

- → Finding *anchors*
- → Naming anchors with *placeholders*
- *→Propagating* placeholders

Intra-pair operations

Cross-pair operations

- → Finding *anchors*
- → Naming anchors with *placeholders*
- → *Propagating* placeholders

→ Matching placeholders across pairs

Intra-pair operations

- → Finding *anchors*
- → Naming anchors with *placeholders*
- → *Propagating* placeholders

Cross-pair operations

- → Matching placeholders across pairs
- → Renaming placeholders

Intra-pair operations

→ Finding *anchors*

 T_1

- → Naming anchors with *placeholders*
- → *Propagating* placeholders

Cross-pair operations

- → Matching placeholders across pairs
- → Renaming placeholders
- → Calculating the similarity between syntactic trees with

1

Intra-pair operations

→ Finding *anchors*

 T_1

- → Naming anchors with *placeholders*
- → *Propagating* placeholders

Cross-pair operations

- → Matching placeholders across pairs
- → Renaming placeholders
- →Calculating the similarity between syntactic trees with co-indexed leaves

Alignment for Entailment

Alignment for RTE

- Idea: break entailment into smaller decisions
- Alignment as a way to recognize relevant Text portions
- Portions of text compared using closed set of operations
 - Operations include lexical similarity, structural similarity
 - Possible to define concepts such as semantic containment and semantic exclusion
 - May be extended using Knowledge bases

Alignment for RTE

- Impose constraints on the aggregate set of comparisons we entertain
- E.g. each Hypothesis element can match at most one Text element

Alignment: a mapping from elements in the Hypothesis to elements in the Text under specified constraints

Shallow Alignment as Focus Of Attention

- Pick a "good" shallow alignment
- Use this to query deeper structure/extract features

Shallow Alignment as Focus Of Attention

- Pick a "good" shallow alignment
- Use this to query deeper structure/extract features

Alignment for RTE

Chambers et al. 2007, deMarneffe et al. 2007

- learn "alignment" from lexicallevel labelings
 - Intuition: abstract away some logical structure, irrelevant content
 - Identify the parts of T that "support" H
- Identify "relevant" parts of T via word, edge weight vectors

Alignment for RTE

Chambers et al. 2007, deMarneffe et al. 2007

Use alignment to extract
features for discerning
"entailed" from "not entailed",
using deeper semantic
structure

$$score(a) = \sum_{i \in h} score_w(h_i, a(h_i)) + \sum_{(i,j) \in e(h)} score_e((h_i, h_j), (a(h_i), a(h_j)))$$

Why does alignment work? (when it does...)

- Comparable to similarity metric approach
 - Trying to capture deeper structure
- Supports discriminative ML by generating sufficiently coarse features
- Works best on cases where content in H is explicit in T
 - But with better deep structure/appropriate representation, expect to do better
- Better inputs => better alignments
 - Problem: pipeline effect for erroneous annotations AND for erroneous alignment

Problems with alignment

- Mapping "relevant" parts may be correct intuition, but "relevant" seems to depend on deep structure
 - Fixed heuristic/learned mapping based on shallow cues is problematic
 - Distance is not a reliable proxy for deep structure
- May be multiple match candidates for many H constituent (i.e., shallow alignment may pick the wrong one)
 - Alignment constraints introduce a problem in fixed twostage system

Alternative: Using Structure as Focus Of Attention

- Find best structural match
- Base entailment results on results of shallow comparison resources

Deep-first approach

- Getting correct structure is HARD
 - P(all correct) = 0.9³ per predicate-argument structure*
 - *based on SRL training domain, i.e. optimistic
- Errors in deep structure → problem selecting correct local decision
- Other preprocessing errors e.g. Coreference will propagate in same way as shallow-first approach

Insights

Semantic Phenomena

Conjunctions

Jake and Jill ran up the hill
 Jake ran up the hill

Jake and Jill met on the hill
 *Jake met on the hill

Clausal modifiers

T: But celebrations were muted as many Iranians observed a Shi'ite mourning month.

H: Many Iranians observed a Shi'ite mourning month.

Relative clauses

- The assailants fired six bullets at the car, which carried Vladimir Skobtsov.
- The car carried Vladimir Skobtsov.

Semantic Phenomena

Appositives

- Frank Robinson, a one-time manager of the Indians, has the distinction for the NL...
- Frank Robinson is a one-time manager of the Indians.

Passive/active

- We have been approached by the investment banker.
- The investment banker approached us.

Genitive modifier

- Malaysia's crude palm oil output has risen.
- The crude palm oil output of Malaysia has risen.

Logical Structure

- Factivity: Uncovering the context in which a verb phrase is embedded
 - We believe the terrorists entered the building.
- Polarity: negative markers or a negation-denoting verb (e.g. deny, refuse, fail)
 - The terrorists failed to enter the building.
 - Terrorists never entered the building.
- Modality/Negation Dealing with modal auxiliary verbs (can, must, should), that modify verbs' meanings
 - The terrorists might not have entered the building.
- Can be hard to identify the scope of the modifier.

Logical structure cont'd

- Superlatives/Comparatives/Monotonicity: inflecting adjectives or adverbs.
 - Examples:

TEXT: All companies are required to file reports at the end of the fiscal year.

HYP 1: All tax companies are required to file reports.

Hyp 2: All companies are required to file tax reports.

Quantifiers, determiners and articles

Hyp 3: Some companies are required to file reports.

Hyp 4: 300 companies are required to file reports.

Knowledge Acquisition for Entailment

The Knowledge Bottleneck

- Linguistic and world knowledge integral part of RTE
- Missing knowledge resources a barrier for further advances in RTE (Bar-Haim et al., 2006, Giampiccolo et al., 2007)

We need:

- Broad-coverage entailment knowledge resources
- Models for applying knowledge selectively in context
 - Even using WordNet effectively is still an open issue (WSD)

Entailment Rules

- Most of the knowledge utilized by TE systems may be represented by entailment rules
- Entailment rule: entailment relation between two text fragments, possibly with variables
 - lhs \rightarrow rhs (entailing \rightarrow entailed)
 - Paraphrases: bidirectional entailment rules

```
New York \rightarrow city (lexical rule)

X buy Y from Z \leftrightarrow Z sell Y to X (template-based rule)

Y is V[ed] by X \rightarrow X V Y
```

Local inferences – combined to form complex entailments

Template-based Rules

- Rules between templates with shared arguments
 - Templates are text fragments with variables
 - Highly generic representation useful also for syntactic-based rules

```
X \ buy \ Y \rightarrow X \ pay \ for \ Y \qquad X \ snore \rightarrow X \ sleep
X's \ definition \ of \ Y \ \leftrightarrow X \ define \ Y \qquad X's \ definition \ by \ Y \ \leftrightarrow Y \ define \ X
```

Typically represented as transformations between parse sub-trees

 Additional syntactic annotation for semantic disambiguation (Macleod et al., 1998; Szpektor and Dagan, 2009)

 $X \ broke_{intransitive} \rightarrow X \ was \ damaged \ vs. \ X \ broke_{transitive} \rightarrow X \ damaged$

Entailment Rule Acquisition

The WordNet Lexicon (Miller, 1995)

WordNet – lexical database organized by meanings (synsets)

```
S1: buy, purchase (obtain by purchase)S2: bribe, corrupt, buy,... (make illegal payments to in exchange for favors...)
```

- WordNet contains lexical relations some useful for inference
 - hypernymy (*capital* \rightarrow *city*), instance-of (*Paris* \rightarrow *city*), derivationally-related (*acquire* \leftrightarrow *acquisition*), meronymy (*car* \rightarrow *wheel*)
- Relations define a directed "entailment" graph for terms
 - Traverse the graph to generate entailment rules
 - Measure distance between terms on the graph (WordNet similarity)

WordNet Extensions

• <u>eXtended WordNet</u> (Moldovan and Rus, 2001) automatically generate rules from WordNet glosses

```
S: excellent, first-class (of the highest quality)

↓

X is excellent → X is of the highest quality
```

- <u>Augmented WordNet</u> (Snow et al., 2006)
 automatically add new terms to the WordNet graph
 - 1. Extract hyponym candidates using a *hypernymy* classifier
 - 2. Greedily add the candidate that best meets the transitivity constraints in the graph

VerbOcean

(Chklovski and Pantel, 2004)

Example: VerbOcean's temporal precedence chains (the "happens-before" relation) between *invent* and *manufacture* shown with edge weights

VerbOcean (Chklovski and Pantel, 2004)

Pattern-based approach for broad-coverage semantic network of verbs

```
similarity (produce :: create)
strength (permit :: authorize)
antonymy (open :: close)
happens-before (buy :: own)
enablement (fight :: win)
```

- 1. Start with highly associated candidate verb-pair (*fight* :: *win*)
- 2. Query the Web with manually constructed patterns for each relation

```
enablement: Xed * by Ying the (won by fighting the)
happens-before: Xed and then Yed (fought and then won)
```

- 3. Score each verb-pair/pattern co-occurrence (PMI)
 - A relation is considered correct if its pattern score exceeds a threshold
- 4. Prune based on consistency of selected relations with each other
 - "If happens-before is not detected, ignore detection of enablement"

Distributional Similarity between Frames

- Similar to the lexical case
 - Templates often paths in dependency parse-trees
 - Features argument instantiations
- DIRT: (Lin and Pantel, 2001)
 - 1. Create a word co-occurrence vector for each variable in a binary template
 - 2. Templates with similar vectors are considered semantically related
 - Lin similarity measure

The sheriff solved the case

X find a solution to Y		X solve Y		
Slot X Slot Y		Slot X	Slot Y	
commission	strike	committee	problem	
committee	crisis	clout	crisis	
government	problem	government	mystery	
legislator	budget deficit	petition	woe	
sheriff	murder	sheriff	case	

Directional Similarity Measures

- How to find the direction of asymmetric relations?
 - Feature distribution (Lee, 1999)
 - Feature inclusion (Weeds and Weir, 2003; Geffet and Dagan, 2005)

Top-10 entailing words for *food*

symmetric (Lin 1998)	meat, beverage, goods, medicine, drink, clothing, food stuff, textile, fruit, feed
directional (Kotlerman et al. 2009)	food stuff, food product, food company, noodle, canned food, feed, salad dressing, bread, food aid, drink

Directional Distributional Similarity

IE experiment

- Directional measure outperformed symmetric measures
- Unary rules outperformed binary rules

Entailment Rule Application

Ambiguity in Rule Application

 A rule is considered correct if it yields correct inferences when applied in valid contexts

```
X 	ext{ charge } Y \rightarrow X 	ext{ bill } Y
```

valid context: "Telemarketers charged the account"

→ Telemarketers billed the account

invalid context: "Prosecutors charged Nichols with bombing"

→ Prosecutors billed Nichols

- Problem: term disambiguation in context
 - Known problem in many NLP apps, e.g. QA, IE, RTE search task
 - Less dominant in classic RTE datasets
 - The T-H pairs were usually chosen within the same context

Unsupervised Context Models

- Task: decide whether a context is valid for rule application
 - t: Children acquire new languages
 - $r: acquire \rightarrow own$
- Typical Word Sense Disambiguation (WSD) is not enough
 - No sense-annotated training data for large-scale resources
 - Inference applicability goes beyond senses
 produce milk vs. produce eggs for produce → lay
- Use unsupervised context models
 - Strategy: detect contexts that are common to *lhs* and *rhs*
 - Unlike WordNet, "senses" are modelled by surface words
 - Not explicit sense-ids

Graph-based Textual Entailment

Predicative Entailment Rules

- Extracting Knowledge from medical text
- NLP for Health Intelligence

Y is a symptom of $X \Rightarrow X$ cause Y

X cause an increase in $Y \Rightarrow X$ affect Y

X's treatment of $Y \Rightarrow X$ treat Y

treat(Norvasc,BP)
affect(Norvasc,BP)
treat(insulin,metab.)
affect(diet,diabetes)
raise(wine,faRgue)
lower(wine,BP)

Entailment Graphs

$X ext{ affect } Y \Rightarrow X ext{ treat } Y$	X	
$X \text{ treat } Y \Rightarrow X \text{ affect } Y$	✓	
X affect Y ⇒ X lower Y	X	X affect Y
X lower Y ⇒ X affect Y	1	
•••		X treat Y X lower Y
•••		
$X \text{ lower } Y \Rightarrow X \text{ reduce } Y$	1	V raduce V
$X \text{ reduce } Y \Rightarrow X \text{ lower } Y$	/	X reduce Y

Learning rules automatically from data

Berant et al system learns ~10,000,000 (noisy) rules

Structural constraints help reducing the noise in the learned rules

Entailment Graphs

Nodes: propositional templates

• Edges: entailment rules

Properties

- Entailment is <u>transitive</u>
- Strong connectivity components correspond to "equivalence"
 - Caveat: ambiguity

Learning Entailment Graph Edges

Input: Corpus C

Output: Entailment graph G = (P, E)

- 1 Extract propositional templates P from C
- 2 Train a **local** entailment classifier: given (p_1, p_2) , estimate whether $p_1 \rightarrow p_2$
- 3 <u>Decoding</u>: Find the edges of the graph using the local probabilities and a transitivity constraint

Constrained Optimization with Integer Linear Programming

Graph Objective Function

 Use local classifier probabilities p_{ij} to express the graph probability:

$$\hat{G} = \arg\max_{X} \sum_{i \neq j} w_{ij} \underbrace{x_{ij}}_{\text{0 else}} \underbrace{1 \quad i \rightarrow j}_{\text{0 else}}$$

$$w_{ij} = \log \frac{p_{ij} \cdot \theta}{(1 - p_{ij}) \cdot (1 - \theta)} \underbrace{\text{"density" prior}}_{\text{1}}$$

Global Learning of Edges

Input: Set of nodes V, weighting function $w:V\times V\to \to R$ Output: Set of directed edges E that maximizes the objective function under a **global transitivity constraint**

- Problem is NP---hard:
 - Reduction from "Transitive Subgraph" (Yannakakis, 1978)

Input: Directed graph G = (V, E)

Output: Maximal set of edges $A \subseteq E$ such that

G' = (V,A) is transitive

Integer Linear Programming Formulation

Integer Linear Program

$$G^{\hat{}} = \arg \max_{i \neq j} w_{ij} \cdot x_{ij}$$

$$\forall i, j, k \in V, x_{ij} + x_{jk} - x_{ik} \leq 1$$

$$x_{ij} \in \{0,1\}$$

- Variables: x_{ij}
- Objective function: maximizes P(G)
- Global transitivity constraint: --- O(|V|³) constraints

Concept-Focused Entailment Graphs

- Argument is instantiated by a target concept (nausea)
- Instantiating an argument reduces ambiguity

Evaluation

- 50 million word tokens healthcare corpus
- Ten medical students prepared gold standard graphs for 23 medical concepts:
 - -Smoking, seizure, headache, lungs, diarrhea, chemotherapy, HPV, Salmonella, Asthma, etc.
- Evaluation:
 - -F₁ on set of learned edges vs. gold standard

Gold Standard Graph --- Asthma

Experimental Results

	recall	Precision	F ₁
ILPglobal	46.0	50.1	43.8*
Greedy	45.7	37.1	36.6
ILPlocal	44.5	45.3	38.1
Local ₁	53.5	34.9	37.5
Local ₂	52.5	31.6	37.7
Local* ₁	53.5	38.0	39.8
Local* ₂	52.5	32.1	38.1
WordNet	10.8	44.1	13.2

- Local algorithms
 - Distributional similarity
 - WordNet
 - Local classifier
- Global algorithms
 - ILP/Snow et al. (greedy optimization)

	Global=true/Local=false	Global=false/Local=true
Gold standard = true	48	42
Gold standard = false	78	494

Natural Logic Inference (Natural-LI)

Natural logic (NatLog)

- MacCartney, Manning, Angeli (at Stanford)
- Use natural logic representation for TE
- Initial implementation of alignment based entailment inference
- Inference patterns built over shallow surface forms, instead of full semantic interpretation

7 basic entailment relations

Slides based out of Bill MacCartney and Chris Manning's talk in COLING 2008.

Venn	symbol	name	example	
	P = Q	equivalence	couch = sofa	
	PCQ	forward entailment (strict)	crow □ bird	
	P⊐Q	reverse entailment (strict)	<i>European</i> □ <i>French</i>	
	P^Q	negation (exhaustive exclusion)	human ^ nonhuman	
	P Q	alternation (non-exhaustive exclusion)	cat dog	
	P _ Q	COVEr (exhaustive non-exclusion)	animal _ nonhuman	
	P # Q	independence	hungry # hippo	

Relations are defined for all semantic types: $tiny \sqsubseteq small$, $hover \sqsubseteq fly$, $kick \sqsubseteq strike$, this $morning \sqsubseteq today$, $in Beijing \sqsubseteq in China$, $everyone \sqsubseteq someone$, $all \sqsubseteq most \sqsubseteq some$

Entailment & semantic composition

Ordinarily, semantic composition preserves entailment relations:

```
pork \sqsubseteq meat => eat \ pork \sqsubseteq eat \ meat
bird \mid fish => big \ bird \mid big \ fish
```

But many semantic functions behave differently:

```
tango \ \Box \ dance \ \Rightarrow \ refuse \ to \ tango \ \Box \ refuse \ to \ dance
French \ | \ German \ \Rightarrow \ not \ French \ \_ not \ German
```

Projecting entailment relations upward

- Assume idealized semantic composition trees
- Propagate entailment relation between atoms upward, according to projectivity class of each node on path to root

A (weak) inference procedure

- 1. Find sequence of edits connecting P and H
 - Insertions, deletions, substitutions, ...
- 2. Determine lexical entailment relation for each edit
 - Substitutions: depends on meaning of substituends: $cat \mid dog$
 - Deletions: \Box by default: $red\ socks\ \Box\ socks$
 - But some deletions are special: not ill ^ ill, refuse to go | go
 - Insertions are symmetric to deletions:

 □ by default
- 3. Project up to find entailment relation across each edit
- 4. Compose entailment relations across sequence of edits
 - à la Tarski's relation algebra

Entailment composition

P	Jimmy Dean	refused to			move	without	blue	jeans
Н	James Dean		did	n't	dance	without		pants
edit index	I	2	3	4	5	6	7	8
edit type	SUB	DEL	INS	INS	SUB	MAT	DEL	SUB
lex feats	strsim= 0.67	implic: -/o	cat:aux	cat:neg	hypo			hyper
lex entrel	=	I	=	٨	⊐	=	⊏	⊏
projec- tivity	1	1	1	↑	↓	↓	1	1
atomic entrel	=	1	=	^	⊏	=	⊏	
compo- sition	=	→		C -				