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Parsing (Trees)



Topics

 Parse Trees

 (Probabilistic) Context Free Grammars

 Supervised learning

 Parsing: most likely tree, marginal 
distributions

 Treebank Parsing (English, edited text)



Parse Trees

The move followed a round of similar increases 
by other lenders, reflecting a continuing decline 

in that market



Penn Treebank Non-terminals



The Penn Treebank: Size



Phrase Structure Parsing

 Phrase structure 

parsing organizes 

syntax into 

constituents or 

brackets

 In general, this 

involves nested trees

 Linguists can, and do, 

argue about details

 Lots of ambiguity

 Not the only kind of 

syntax…

new art critics write reviews with computers
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Constituency Tests
 How do we know what nodes go in the tree?

 Classic constituency tests:

 Substitution by proform

 he, she, it, they, ...

 Question / answer

 Deletion

 Movement / dislocation

 Conjunction / coordination

 Cross-linguistic arguments, too



Conflicting Tests

 Constituency isn’t always clear

 Units of transfer:

 think about ~ penser à

 talk about ~ hablar de

 Phonological reduction:

 I will go → I’ll go

 I want to go → I wanna go

 a le centre → au centre

 Coordination

 He went to and came from the store.

La   vélocité  des ondes sismiques



Non-Local Phenomena

 Dislocation / gapping
 Which book should Peter buy?

 A debate arose which continued until the election.

 Binding

 Reference

 The IRS audits itself

 Control

 I want to go

 I want you to go



Classical NLP: Parsing
 Write symbolic or logical rules:

 Use deduction systems to prove parses from words
 Minimal grammar on “Fed raises” sentence: 36 parses

 Simple 10-rule grammar: 592 parses

 Real-size grammar: many millions of parses

 This scaled very badly, didn’t yield broad-coverage tools

Grammar (CFG) Lexicon

ROOT → S

S → NP VP

NP → DT NN

NP → NN NNS

NN → interest

NNS → raises

VBP → interest

VBZ → raises

…

NP → NP PP

VP → VBP NP

VP → VBP NP PP

PP → IN NP



Examples from J&M       

Ambiguity



Attachments

 I cleaned the dishes from dinner

 I cleaned the dishes with detergent

 I cleaned the dishes in my pajamas

 I cleaned the dishes in the sink



Syntactic Ambiguities I

 Prepositional phrases:
They cooked the beans in the pot on the stove with 
handles.

 Particle vs. preposition:
The puppy tore up the staircase.

 Complement structures
The tourists objected to the guide that they couldn’t hear.
She knows you like the back of her hand.

 Gerund vs. participial adjective
Visiting relatives can be boring.
Changing schedules frequently confused passengers.



Syntactic Ambiguities II

 Modifier scope within NPs
impractical design requirements
plastic cup holder

 Multiple gap constructions
The chicken is ready to eat.
The contractors are rich enough to sue.

 Coordination scope:
Small rats and mice can squeeze into holes or cracks in 
the wall.



Dark Ambiguities

 Dark ambiguities: most analyses are shockingly bad 
(meaning, they don’t have an interpretation you can 
get your mind around)

This analysis corresponds 

to the correct parse of 

“This will panic buyers ! ”

 Unknown words and new usages

 Solution: We need mechanisms to focus attention on 
the best ones, probabilistic techniques do this



Context-Free Grammars

 A context-free grammar is a tuple <N, Σ , S, R>
 N : the set of non-terminals

 Phrasal categories: S, NP, VP, ADJP, etc.

 Parts-of-speech (pre-terminals): NN, JJ, DT, VB

 Σ : the set of terminals (the words)

 S : the start symbol

 Often written as ROOT or TOP

 Not usually the sentence non-terminal S

 R : the set of rules

 Of the form X → Y1 Y2 … Yn, with X ∈ N, n≥0, Yi ∈ (N ∪ Σ)

 Examples: S → NP VP,   VP → VP CC VP

 Also called rewrites, productions, or local trees



Example Grammar
A Context-Free Grammar for English

N = { S, NP, VP, PP, DT, Vi, Vt, NN, IN}

S = S

Σ = { sleeps, saw, man, woman, telescope, the, with, in}

R = S ⇒ NP VP

VP ⇒ Vi

VP ⇒ Vt NP

VP ⇒ VP PP

NP ⇒ DT NN

NP ⇒ NP PP

PP ⇒ IN NP

Vi ⇒ sleeps

Vt ⇒ saw

NN ⇒ man

NN ⇒ woman

NN ⇒ telescope

DT ⇒ the

IN ⇒ with

IN ⇒ in

Note: S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional

phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun,

IN=preposition

13

S=sentence, VP-verb phrase, NP=noun phrase, PP=prepositional phrase,

DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun, IN=preposition



Example Parses
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Probabilistic Context-Free Grammars
 A context-free grammar is a tuple <N, Σ ,S, R>

 N : the set of non-terminals

 Phrasal categories: S, NP, VP, ADJP, etc.

 Parts-of-speech (pre-terminals): NN, JJ, DT, VB, etc.

 Σ : the set of terminals (the words)

 S : the start symbol

 Often written as ROOT or TOP

 Not usually the sentence non-terminal S

 R : the set of rules

 Of the form X → Y1 Y2 … Yn, with X ∈ N, n≥0, Yi ∈ (N ∪ Σ)

 Examples: S → NP VP,   VP → VP CC VP

 A PCFG adds a distribution q:
 Probability q(r) for each r ∈ R, such that for all X ∈ N:



PCFG Example
A Probabilistic Context-Free Grammar (PCFG)

S ⇒ NP VP 1.0

VP ⇒ Vi 0.4

VP ⇒ Vt NP 0.4

VP ⇒ VP PP 0.2

NP ⇒ DT NN 0.3

NP ⇒ NP PP 0.7

PP ⇒ P NP 1.0

Vi ⇒ sleeps 1.0

Vt ⇒ saw 1.0

NN ⇒ man 0.7

NN ⇒ woman 0.2

NN ⇒ telescope 0.1

DT ⇒ the 1.0

IN ⇒ with 0.5

IN ⇒ in 0.5

• Probability of a tree t with rules

α1 → β1, α2 → β2, . . . , αn → βn

is

p(t) =
n

i = 1

q(α i → βi )

where q(α → β) is the probability for rule α → β.

44
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PCFGs: Learning and Inference

 Model
 The probability of a tree t with n rules αi  βi, i = 1..n

 Learning
 Read the rules off of labeled sentences, use ML estimates for 

probabilities

 and use all of our standard smoothing tricks!

 Inference
 For input sentence s, define T(s) to be the set of trees whole yield is s 

(whole leaves, read left to right, match the words in s)



Chomsky Normal Form

 Chomsky normal form:
 All rules of the form X → Y Z or X → w

 In principle, this is no limitation on the space of (P)CFGs

 N-ary rules introduce new non-terminals

 Unaries / empties are “promoted”

 In practice it’s kind of a pain:

 Reconstructing n-aries is easy

 Reconstructing unaries is trickier

 The straightforward transformations don’t preserve tree scores

 Makes parsing algorithms simpler!

VP

[VP → VBD NP •]

VBD            NP PP PP

[VP → VBD NP PP •]

VBD   NP   PP   PP

VP



S → NP VP
S → Aux NP VP

S → VP

NP → Pronoun

NP → Proper-Noun

NP → Det Nominal
Nominal → Noun 

Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb

VP → Verb NP
VP → VP PP
PP → Prep NP

Original Grammar

0.8
0.1

0.1

0.2

0.2

0.6
0.3

0.2
0.5
0.2

0.5
0.3
1.0

Lexicon:

Noun → book | flight | meal | money

0.1     0.5      0.2     0.2

Verb → book | include | prefer

0.5      0.2        0.3

Det → the | a   | that | this

0.6  0.2  0.1    0.1

Pronoun → I    | he | she | me

0.5  0.1  0.1    0.3

Proper-Noun → Houston | NWA

0.8         0.2

Aux → does

1.0

Prep → from | to   | on | near | through

0.25  0.25  0.1    0.2     0.2

CNF Conversion 

Example



S → NP VP
S → Aux NP VP

S → VP

NP → Pronoun

NP → Proper-Noun

NP → Det Nominal
Nominal → Noun 

Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb

VP → Verb NP
VP → VP PP
PP → Prep NP

Original Grammar Chomsky Normal Form

S → NP VP
S → X1 VP
X1 → Aux NP

0.8
0.1

0.1

0.2

0.2

0.6
0.3

0.2
0.5
0.2

0.5
0.3
1.0

0.8
0.1
1.0

Lexicon (See previous slide for full list) :

Noun → book | flight | meal | money

0.1     0.5      0.2     0.2

Verb → book | include | prefer

0.5      0.2        0.3



S → NP VP
S → Aux NP VP

S → VP

NP → Pronoun

NP → Proper-Noun

NP → Det Nominal
Nominal → Noun 

Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb

VP → Verb NP
VP → VP PP
PP → Prep NP

Original Grammar Chomsky Normal Form

S → NP VP
S → X1 VP
X1 → Aux NP
S → book | include | prefer

0.01     0.004    0.006
S → Verb NP
S → VP PP

0.8
0.1

0.1

0.2

0.2

0.6
0.3

0.2
0.5
0.2

0.5
0.3
1.0

0.8
0.1
1.0

0.05
0.03

Lexicon (See previous slide for full list) :

Noun → book | flight | meal | money

0.1     0.5      0.2     0.2

Verb → book | include | prefer

0.5      0.2        0.3



S → NP VP
S → Aux NP VP

S → VP

NP → Pronoun

NP → Proper-Noun

NP → Det Nominal
Nominal → Noun 

Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb

VP → Verb NP
VP → VP PP
PP → Prep NP

Original Grammar Chomsky Normal Form

S → NP VP
S → X1 VP
X1 → Aux NP
S → book | include | prefer

0.01     0.004    0.006
S → Verb NP
S → VP PP
NP →  I   |  he  |  she |  me

0.1   0.02  0.02    0.06
NP → Houston | NWA

0.16           .04
NP → Det Nominal
Nominal → book | flight | meal | money

0.03    0.15   0.06     0.06
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer

0.1      0.04        0.06
VP → Verb NP
VP → VP PP
PP → Prep NP

0.8
0.1

0.1

0.2

0.2

0.6
0.3

0.2
0.5
0.2

0.5
0.3
1.0

0.8
0.1
1.0

0.05
0.03

0.6

0.2
0.5

0.5
0.3
1.0

Lexicon (See previous slide for full list) :

Noun → book | flight | meal | money

0.1     0.5      0.2     0.2

Verb → book | include | prefer

0.5      0.2        0.3



The Parsing Problem

0 1 2 3 4 5
critics write reviews with computers

6 7
new art
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A Recursive Parser

 Will this parser work?

 Why or why not?

 Memory/time requirements?

bestScore(X,i,j,s)

if (j == i)

return q(X->s[i])

else

return max q(X->YZ) *

bestScore(Y,i,k,s) *

bestScore(Z,k+1,j,s)

 Q: Remind you of anything?  Can we adapt this to other 
models / inference tasks?

k,X->YZ



Dynamic Programming

 We will store: score of the max parse of xi to xj with root 
non-terminal X

 So we can compute the most likely parse:

 Via the recursion:

 With base case:



The CKY Algorithm

Input: a sentence s = x1 . . . xn , a PCFG G = (N, Σ, S, R, q).

Initialization:

For all i ∈ { 1. . . n} , for all X ∈ N ,

π(i , i , X ) =
q(X → x i ) if X → x i ∈ R

0 otherwise

Algorithm:

• For l = 1. . . (n − 1)

– For i = 1. . . (n − l)

∗ Set j = i + l

∗ For all X ∈ N , calculate

π(i , j , X ) = max
X → Y Z ∈ R ,

s∈{ i ...(j − 1)}

(q(X → YZ ) × π(i , s, Y ) × π(s + 1, j , Z ))

and

bp(i , j , X ) = arg max
X → Y Z ∈ R ,

s∈{ i ...(j − 1)}

(q(X → YZ ) × π(i , s, Y ) × π(s + 1, j , Z ))

Output: Return π(1, n, S) = maxt∈T (s) p(t), and backpointers bp which allow recovery

of argmaxt∈T (s) p(t).

Figure 6: The CKY parsing algorithm.

14

 Input: a sentence s = x1 .. xn and a PCFG = <N, Σ ,S, R, q>

 Initialization: For i = 1 … n and all X in N

 For l = 1 … (n-1) [iterate all phrase lengths]

 For i = 1 … (n-l) and j = i+l [iterate all phrases of length l]

 For all X in N [iterate all non-terminals]

 also, store back pointers



Book       the        flight    through  Houston

Probabilistic CKY Parser
S → NP VP
S → X1 VP
X1 → Aux NP
S → book | include | prefer

0.01     0.004    0.006
S → Verb NP
S → VP PP
NP →  I   |  he  |  she |  me

0.1   0.02  0.02    0.06
NP → Houston | NWA

0.16           .04
Det→ the |  a  |   an 

0.6    0.1   0.05    
NP → Det Nominal
Nominal → book | flight | meal | money

0.03    0.15   0.06     0.06
Nominal → Nominal Nominal
Nominal → Nominal PP
Verb→ book | include | prefer

0.5      0.04        0.06
VP → Verb NP
VP → VP PP
Prep → through | to | from

0.2          0.3   0.3
PP → Prep NP

0.8
0.1
1.0

0.05
0.03

0.6

0.2
0.5

0.5
0.3

1.0

S :.01, 

Verb:.5 

Nominal:.03

Det:.6

Nominal:.15

None

NP:.6*.6*.15

=.054

VP:.5*.5*.054

=.0135

S:.05*.5*.054

=.00135

None

None

None

Prep:.2

NP:.16

PP:1.0*.2*.16

=.032

Nominal:

.5*.15*.032

=.0024

NP:.6*.6*

.0024

=.000864

S:.03*.0135*.032

=.00001296

S:.05*.5*

.000864

=.0000216



Probabilistic CKY Parser

Book       the        flight    through  Houston

None
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Pick most 

probable
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of multiple 
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#1



Probabilistic CKY Parser

Book       the        flight    through  Houston
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of multiple 

derivations

of each 

constituent in

each cell.



Memory
 How much memory does this require?

 Have to store the score cache

 Cache size: |symbols|*n2 doubles

 For the plain treebank grammar:

 X ~ 20K, n = 40, double ~ 8 bytes = ~ 256MB

 Big, but workable.

 Pruning: Coarse-to-Fine

 Use a smaller grammar to rule out most X[i,j]

 Much more on this later…

 Pruning: Beams

 score[X][i][j] can get too large (when?)

 Can keep beams (truncated maps score[i][j]) which only 

store the best few scores for the span [i,j]



Time: Theory

 How much time will it take to parse?

Y Z

X

i                       k                      j

 Total time: |rules|*n3

 Something like 5 sec for an unoptimized parse 
of a 20-word sentences

 For each diff (<= n)

 For each i (<= n)
 For each rule X → Y Z 

 For each split point k

Do constant work



Time: Practice

 Parsing with the vanilla treebank grammar:

~ 20K Rules

(not an 

optimized 

parser!)

Observed 

exponent: 

3.6

 Why’s it worse in practice?
 Longer sentences “unlock” more of the grammar

 All kinds of systems issues don’t scale



Other Dynamic Programs

Can also compute other quantities: 

 Best Inside: score of the max parse 

of wi to wj with root non-terminal X

 Best Outside: score of the max 

parse of w0 to wn with a gap from wi

to wj rooted with non-terminal X

 see notes for derivation, it is a bit more 

complicated

 Sum Inside/Outside: Do sums 

instead of maxes 

X

n1 i j

X

n1 i j



Book       the        flight    through  Houston

Why Chomsky Normal Form?

S :.01, 

Verb:.5 

Nominal:.03

Det:.6

Nominal:.15

None

NP:.6*.6*.15

=.054

VP:.5*.5*.054

=.0135

S:.05*.5*.054

=.00135

None

None

None

Prep:.2

NP:.16

PP:1.0*.2*.16

=.032

Nominal:

.5*.15*.032

=.0024

NP:.6*.6*

.0024

=.000864

S:.03*.0135*.032

=.00001296

S:.05*.5*

.000864

=.0000216

Inference:

 Can we keep N-ary (N > 2) rules 

and still do dynamic programming?

 Can we keep unary rules and still 

do dynamic programming?

Learning:

 Can we reconstruct the original 

trees?



CNF + Unary Closure
We need unaries to be non-cyclic

 Calculate closure Close(R) for unary rules in R 

 Add X→Y if there exists a rule chain X→Z1, Z1→Z2,..., Zk →Y with 

q(X→Y) = q(X→Z1)*q(Z1→Z2)*…*q(Zk →Y)

 Add X→X with q(X→X)=1 for all X in N

 Rather than zero or more unaries, always exactly one

 Alternate unary and binary layers

 What about X→Y with different unary paths (and scores)?

NP

DT NN

VP

VBD

NP

DT NN

VP

VBD NP

VP

S

SBAR

VP

SBAR

WARNING: Watch out 

for unary cycles!



The CKY Algorithm

Input: a sentence s = x1 . . . xn , a PCFG G = (N, Σ, S, R, q).

Initialization:

For all i ∈ { 1. . . n} , for all X ∈ N ,

π(i , i , X ) =
q(X → x i ) if X → x i ∈ R

0 otherwise

Algorithm:

• For l = 1. . . (n − 1)

– For i = 1. . . (n − l)

∗ Set j = i + l

∗ For all X ∈ N , calculate

π(i , j , X ) = max
X → Y Z ∈ R ,

s∈{ i ...(j − 1)}

(q(X → YZ ) × π(i , s, Y ) × π(s + 1, j , Z ))

and

bp(i , j , X ) = arg max
X → Y Z ∈ R ,

s∈{ i ...(j − 1)}

(q(X → YZ ) × π(i , s, Y ) × π(s + 1, j , Z ))

Output: Return π(1, n, S) = maxt∈T (s) p(t), and backpointers bp which allow recovery

of argmaxt∈T (s) p(t).

Figure 6: The CKY parsing algorithm.
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 Input: a sentence s = x1 .. xn and a PCFG = <N, Σ ,S, R, q>

 Initialization: For i = 1 … n and all X in N

 For l = 1 … (n-1) [iterate all phrase lengths]

 For i = 1 … (n-l) and j = i+l [iterate all phrases of length l]

 For all X in N [iterate all non-terminals]

 also, store back pointers



CKY with Unary Closure
 Input: a sentence s = x1 .. xn and a PCFG = <N, Σ ,S, R, q>

 Initialization: For i = 1 … n:
 Step 1: for all X in N:

 Step 2: for all X in N:

 For l = 1 … (n-1) [iterate all phrase lengths]

 For i = 1 … (n-l) and j = i+l [iterate all phrases of length l]

 Step 1: (Binary) 

 For all X in N [iterate all non-terminals]

 Step 2: (Unary)

 For all X in N [iterate all non-terminals]



Treebank Sentences



Treebank Grammars

 Need a PCFG for broad coverage parsing.

 Can take a grammar right off the trees (doesn’t work well):

 Better results by enriching the grammar (e.g., lexicalization).

 Can also get reasonable parsers without lexicalization.

ROOT → S 1

S → NP VP . 1

NP → PRP 1

VP → VBD ADJP 1

…..



Grammar encodings: Non-black states are active, non-white states are 

accepting, and bold transitions are phrasal. FSAs for a subset of the 

rules for the category NP. 

LIST TRIE Min FSA



PLURAL NOUN

NOUNDET

DET

ADJ

NOUN

NP NP

CONJ

NP PP

Treebank Grammar Scale

 Treebank grammars can be enormous
 As FSAs, the raw grammar has ~10K states, excluding the 

lexicon

 Better parsers usually make the grammars larger, not smaller

NP:



Typical Experimental Setup

 Corpus: Penn Treebank, WSJ

 Accuracy – F1: harmonic mean of per-node labeled 

precision and recall.

 Here: also size – number of symbols in grammar.

 Passive / complete symbols: NP, NP^S

 Active / incomplete symbols: NP → NP CC •

Training: sections 02-21

Development: section 22 (here, first 20 files)

Test: section 23



Correct Tree T

S

VP

Verb          NP

Det    Nominal

Nominal     PP

book

Prep        NP

through Houston

the

flight

Noun

Computed Tree P

VP

Verb          NP

Det    Nominalbook

Prep        NP

through

Houston

Proper-Noun

the

flight

Noun

S

VP

PP

How to Evaluate?



Correct Tree T

S

VP

Verb          NP

Det    Nominal

Nominal     PP

book

Prep        NP

through Houston

the

flight

Noun

Computed Tree P

VP

Verb          NP

Det    Nominalbook

Prep        NP

through

Houston

Proper-Noun

the

flight

Noun

S

VP

PP

# Constituents: 11 # Constituents: 12

# Correct Constituents: 10

Recall = 10/11= 90.9% Precision = 10/12=83.3% F1 = 87.4%

PARSEVAL Example



Evaluation Metric

 PARSEVAL metrics measure the fraction of the 

constituents that match between the computed and 

human parse trees.  If P is the system’s parse tree and 

T is the human parse tree (the “gold standard”):

 Recall = (# correct constituents in P) / (# constituents in T)

 Precision = (# correct constituents in P) / (# constituents in P)

 Labeled Precision and labeled recall require getting the 

non-terminal label on the constituent node correct to 

count as correct.

 F1 is the harmonic mean of precision and recall.

 F1= (2 * Precision * Recall) / (Precision + Recall)



Treebank PCFGs

 Use PCFGs for broad coverage parsing

 Can take a grammar right off the trees (doesn’t 

work well):

ROOT → S 1

S → NP VP . 1

NP → PRP 1

VP → VBD ADJP 1

…..

Model F1

Baseline 72.0

[Charniak 96]



Conditional Independence?

 Not every NP expansion can fill every NP slot

 A grammar with symbols like “NP” won’t be context-free

 Statistically, conditional independence too strong



Non-Independence

 Independence assumptions are often too strong.

 Example: the expansion of an NP is highly dependent 
on the parent of the NP (i.e., subjects vs. objects).

 Also: the subject and object expansions are correlated!

All NPs NPs under S NPs under VP



Grammar Refinement

 Structure Annotation [Johnson ’98, Klein&Manning ’03]

 Lexicalization [Collins ’99, Charniak ’00]

 Latent Variables [Matsuzaki et al. 05, Petrov et al. ’06]



The Game of Designing a Grammar

 Annotation refines base treebank symbols to 

improve statistical fit of the grammar

 Structural annotation



Vertical Markovization

 Vertical Markov 
order: rewrites 

depend on past k
ancestor nodes.

(cf. parent 
annotation)

Order 1

Order 2



Horizontal Markovization

Order 1 Order ∞



Vertical and Horizontal

 Raw treebank: v=1, h=∞

 Johnson 98: v=2, h=∞

 Collins 99: v=2, h=2

 Best F1: v=3, h=2v

Model F1 Size

Base: v=h=2v 77.8 7.5K



Unlexicalized PCFG Grammar Size

59



Tag Splits

 Problem: Treebank 

tags are too coarse.

 Example: Sentential, 

PP, and other 

prepositions are all 

marked IN.

 Partial Solution:

 Subdivide the IN tag.

Annotation F1 Size

Previous 78.3 8.0K

SPLIT-IN 80.3 8.1K



Other Tag Splits

 UNARY-DT: mark demonstratives as DT^U
(“the X” vs. “those”)

 UNARY-RB: mark phrasal adverbs as RB^U
(“quickly” vs. “very”)

 TAG-PA: mark tags with non-canonical 
parents (“not” is an RB^VP)

 SPLIT-AUX: mark auxiliary verbs with –AUX 
[cf. Charniak 97]

 SPLIT-CC: separate “but” and “&” from other 
conjunctions

 SPLIT-%: “%” gets its own tag.

F1 Size

80.4 8.1K

80.5 8.1K

81.2 8.5K

81.6 9.0K

81.7 9.1K

81.8 9.3K



A Fully Annotated (Unlex) Tree



Some Test Set Results

 Beats “first generation” lexicalized parsers.

 Lots of room to improve – more complex models next.

Parser LP LR F1

Magerman 95 84.9 84.6 84.7

Collins 96 86.3 85.8 86.0

Unlexicalized 86.9 85.7 86.3

Charniak 97 87.4 87.5 87.4

Collins 99 88.7 88.6 88.6



 Annotation refines base treebank symbols to 

improve statistical fit of the grammar

 Structural annotation [Johnson ’98, Klein and Manning 

03]

 Head lexicalization [Collins ’99, Charniak ’00]

The Game of Designing a Grammar



Problems with PCFGs

 If we do no annotation, these trees differ only in one rule:

 VP → VP PP

 NP → NP PP

 Parse will go one way or the other, regardless of words

 We addressed this in one way with unlexicalized grammars (how?)

 Lexicalization allows us to be sensitive to specific words



Problems with PCFGs

 What’s different between basic PCFG scores here?

 What (lexical) correlations need to be scored?



 Add “headwords” to 
each phrasal node
 Headship not in 

(most) treebanks

 Usually use head 
rules, e.g.:

 NP:
 Take leftmost NP

 Take rightmost N*

 Take rightmost JJ

 Take right child

 VP:
 Take leftmost VB*

 Take leftmost VP

 Take left child

Lexicalize Trees!



Lexicalized PCFGs?

 Problem: we now have to estimate probabilities like

 Solution: break up derivation into smaller steps

 Never going to get these atomically off of a treebank



Complement / Adjunct Distinction

 *warning* - can be 
tricky, and most parsers 
don’t model the 
distinction

 Complement: defines a property/argument (often obligatory), ex: 
[capitol [of Rome]]

 Adjunct: modifies / describes something (always optional), ex: 
[quickly ran]

 A Test for Adjuncts: [X Y] --> can claim X and Y

 [they ran and it happened quickly] vs. [capitol and it was of Rome]



Lexical Derivation Steps
 Main idea: define a linguistically-motivated Markov 

process for generating children given the parent

Step 1: Choose a head tag 

and word

Step 2: Choose a complement bag

Step 3: Generate children 

(incl. adjuncts)

Step 4: Recursively derive children

[Collins 99]



Lexicalized CKY

Y[h] Z[h’]

X[h]

i           h          k         h’ j

(VP->VBD •)[saw] NP[her]

(VP->VBD...NP •)[saw]

bestScore(X,i,j,h)

if (j = i+1)

return tagScore(X,s[i])

else

return 

max  max score(X[h]->Y[h] Z[h’]) *

bestScore(Y,i,k,h) *

bestScore(Z,k,j,h’)

max   score(X[h]->Y[h’] Z[h]) *

bestScore(Y,i,k,h’) *

bestScore(Z,k,j,h)

k,h’,

X->YZ

k,h’,

X->YZ

still cubic time?



Pruning with Beams

 The Collins parser prunes with 
per-cell beams [Collins 99]

 Essentially, run the O(n5) CKY

 Remember only a few hypotheses 
for each span <i,j>.

 If we keep K hypotheses at each 
span, then we do at most O(nK2) 
work per span (why?)

 Keeps things more or less cubic

 Also: certain spans are 
forbidden entirely on the basis 
of punctuation (crucial for 
speed)

Y[h] Z[h’]

X[h]

i           h          k         h’ j

Model F1

Naïve Treebank 

Grammar

72.6

Klein & 

Manning ’03

86.3

Collins 99 88.6



 Annotation refines base treebank symbols to 

improve statistical fit of the grammar

 Parent annotation [Johnson ’98]

 Head lexicalization [Collins ’99, Charniak ’00]

 Automatic clustering?

The Game of Designing a Grammar



Manual Annotation

 Manually split categories

 NP: subject vs object

 DT: determiners vs demonstratives

 IN: sentential vs prepositional 

 Advantages:

 Fairly compact grammar

 Linguistic motivations

 Disadvantages:

 Performance leveled out

 Manually annotated



Forward/Outside

Learning Latent Annotations

Latent Annotations:

 Brackets are known

 Base categories are known

 Hidden variables for 
subcategories

X1

X2 X7X4

X5 X6X3

He was right

.

Can learn with EM: like Forward-
Backward for HMMs.

Backward/Inside



Automatic Annotation Induction

Advantages:

 Automatically learned:

Label all nodes with latent variables.

Same number k of subcategories

for all categories.

Disadvantages:

 Grammar gets too large

 Most categories are 

oversplit while others 

are undersplit.

Model F1

Klein & Manning ’03 86.3

Matsuzaki et al. ’05 86.7



Refinement of the DT tag

DT

DT-1 DT-2 DT-3 DT-4



Hierarchical refinement

 Repeatedly learn more fine-grained subcategories

 start with two (per non-terminal), then keep splitting

 initialize each EM run with the output of the last

DT



Adaptive Splitting

 Want to split complex categories more

 Idea: split everything, roll back splits which were 

least useful

[Petrov et al. 06]



Adaptive Splitting

 Evaluate loss in likelihood from removing each 

split =

Data likelihood with split reversed

Data likelihood with split

 No loss in accuracy when 50% of the splits are 

reversed.



Adaptive Splitting Results

Model F1

Previous 88.4

With 50% Merging 89.5



Number of Phrasal Subcategories



Final Results

F1

≤ 40 words

F1

all words
Parser

Klein & Manning ’03 86.3 85.7

Matsuzaki et al. ’05 86.7 86.1

Collins ’99 88.6 88.2

Charniak & Johnson ’05 90.1 89.6

Petrov et. al. 06 90.2 89.7



Learned Splits

 Proper Nouns (NNP):

 Personal pronouns (PRP):

NNP-14 Oct. Nov. Sept.

NNP-12 John Robert James

NNP-2 J. E. L.

NNP-1 Bush Noriega Peters

NNP-15 New San Wall

NNP-3 York Francisco Street

PRP-0 It He I

PRP-1 it he they

PRP-2 it them him



 Relative adverbs (RBR):

 Cardinal Numbers (CD):

RBR-0 further lower higher

RBR-1 more less More

RBR-2 earlier Earlier later

CD-7 one two Three

CD-4 1989 1990 1988

CD-11 million billion trillion

CD-0 1 50 100

CD-3 1 30 31

CD-9 78 58 34

Learned Splits



Hierarchical Pruning

… QP NP VP …coarse:

split in two: … QP1 QP2 NP1 NP2 VP1 VP2 …

… QP1 QP1 QP3 QP4 NP1 NP2 NP3 NP4 VP1 VP2 VP3 VP4 …split in four:

split in eight: … … … … … … … … … … … … … … … … …

Parse multiple times, with grammars at different levels of granularity!



Bracket Posteriors



1621 min

111 min

35 min

15 min
(no search error)



Final Results (Accuracy)

≤ 40 words

F1

all 

F1

E
N

G

Charniak&Johnson ‘05 

(generative)

90.1 89.6

Split / Merge 90.6 90.1

G
E

R

Dubey ‘05 76.3 -

Split / Merge 80.8 80.1

C
H

N

Chiang et al. ‘02 80.0 76.6

Split / Merge 86.3 83.4

Still higher numbers from reranking / self-training methods



Dependency Parsing*
 Lexicalized parsers can be seen as producing dependency trees

 Each local binary tree corresponds to an attachment in the 
dependency graph

questioned

lawyer witness

the the



Dependency Parsing*

 Pure dependency parsing is only cubic [Eisner 99]

 Some work on non-projective dependencies

 Common in, e.g. Czech parsing

 Can do with MST algorithms [McDonald and Pereira 05]

Y[h] Z[h’]

X[h]

i           h          k         h’ j

h h’

h

h          k         h’



Tree-adjoining grammars*

 Start with local trees

 Can insert structure 
with adjunction 
operators

 Mildly context-
sensitive

 Models long-
distance 
dependencies 
naturally

 … as well as other 
weird stuff that 
CFGs don’t capture 
well (e.g. cross-
serial dependencies)



TAG: Long Distance*



CCG Parsing*
 Combinatory 

Categorial 
Grammar

 Fully (mono-) 
lexicalized 
grammar

 Categories encode 
argument 
sequences

 Very closely related 
to the lambda 
calculus (more 
later)

 Can have spurious 
ambiguities (why?)


