CSE 517
Natural Language Processing
Winter 2013

Text Classification

Luke Zettlemoyer - University of Washington

[Many slides from Dan Klein and Michael Collins]

Overview: Classification

= Classification Problems
= Spam vs. Non-spam, Text Genre, Word Sense, etc.
= Supervised Learning
= Naive Bayes
= Log-linear models (Maximum Entropy Models)
s Weighted linear models and the Perceptron

= Unsupervised Learning
= The EM Algorithm for Naive Bayes
= Simple Semi-supervised approach

Where are we

s So far: language models give P(s)
= Help model fluency for various noisy-channel processes (MT,

ASR, etc.)

= N-gram models don’t represent any deep variables involved in

language structure or meaning

= Usually we want to know something about the input other than

how likely it is (syntax, semantics, topic, etc)

= Next: Nalve Bayes models

We introduce a single new global variable
Still a very simplistic model family
Lets us model properties of text, but only very non-local ones...

In particular, we can only model properties which are largely
invariant to word order (like topic)

Text Categorization

= Want to classify documents into broad semantic topics

Obama is hoping to rally support California will open the 2009

for his $825 billion stimulus season at home against
package on the eve of a crucial Maryland Sept. 5 and will play a
House vote. Republicans have total of six games in Memorial
expressed reservations about the Stadium in the final football
proposal, calling for more tax schedule announced by the
cuts and less spending. GOP Pacific-10 Conference Friday.
representatives seemed doubtful The original schedule called for
that any deals would be made. 12 games over 12 weekends.

= Which one is the politics document? (And how much deep
processing did that decision take?)

= First approach: bag-of-words and Naive-Bayes models
= More approaches later...

= Usually begin with a labeled corpus containing examples of each
class

Example: Spam Filter

Input: email
Output: spam/ham
Setup:

= Get alarge collection of
example emails, each
labeled “spam” or “ham

= Note: someone has to hand
label all this data!

= Want to learn to predict
labels of new, future emails

Features: The attributes used to
make the ham / spam decision

= Words: FREE!
= Text Patterns: $dd, CAPS

X

X

= Non-text: SenderlnContacts V

Dear Sir.

First, | must solicit your confidence in this
transaction, this is by virture of its nature
as being utterly confidencial and top
secret. ...

TO BE REMOVED FROM FUTURE
MAILINGS, SIMPLY REPLY TO THIS
MESSAGE AND PUT "REMOVE" IN THE
SUBJECT.

99 MILLION EMAIL ADDRESSES
FOR ONLY $99

Ok, lknow this is blatantly OT but I'm
beginning to go insane. Had an old Dell
Dimension XPS sitting in the corner and
decided to put it to use, | know it was
working pre being stuck in the corner, but
when | plugged it in, hit the power nothing
happened.

Word Sense Disambiguation

= Example: living plant vs. manufacturing plant

= How do we tell these senses apart?
= ‘context”

The manufacturing plant which had previously sustained the
town’ s economy shut down after an extended labor strike.

= It's just text categorization! (at the word level)
= Each word sense represents a topic

Naive-Bayes Models

= Generative model: pick a topic, then generate a document using a
language model for that topic

= Nalve-Bayes assumption: all words are independent given the topic.

Py %%, %) =g [alx; 1)

s Compare to a unigram language model:

p(xl,xz,...xn)=1_[q(xi)

Using NB for Classification

We have a joint model of topics and documents

P(y,xl,xz...xn)=q(y)nq(xi |y) We have to

smooth these!

To assign a label y* to a new document <x, X, ... x.>:
1, ™M n

y* =argmax p(y,x,.x,...x,) =argmax g()| [a(x;1y)

How do we do learning?
Smoothing? What about totally unknown words?
Can work shockingly well for textcat (especially in the wild)

How can unigram models be so terrible for language modeling, but class-conditional
unigram models work for textcat?

Numerical / speed issues?

Language ldentification

= How can we tell what language a document is in?

The 38th Parliament will meet on La 38e Iégislature se reunira a 11 heures le
Monday, October 4, 2004, at 11:00 a.m. lundi 4 octobre 2004, et la premiere affaire
The first item of business will be the a l'ordre du jour sera | élection du président
election of the Speaker of the House of de la Chambre des communes. Son
Commons. Her Excellency the Governor Excellence la Gouverneure générale
General will open the First Session of the ouvrira la premiére session de la 38e

38th Parliament on October 5, 2004, with |égislature avec un discours du Trone le

a Speech from the Throne. mardi 5 octobre 2004.

= How to tell the French from the English?

= [reat it as word-level textcat?
» Overkill, and requires a lot of training data
= You don't actually need to know about words!

= Option: build a character-level language model

2UPOWVO oTaBepOTNTAG KAl AVATITUENG
Patto di stabilita e di crescita

Class-Conditional LMs

= Can add a topic variable to richer language models

Py X, %%, =g [a(x 1y.x.)

= Could be characters instead of words, used for language 1D
= Could sum out the topic variable and use as a language model

= How might a class-conditional n-gram language model behave
differently from a standard n-gram model?

= Many other options are also possible!

Word Senses

Words have multiple distinct meanings, or senses:
= Plant: living plant, manufacturing plant, ...

= Title: name of a work, ownership document, form of address,
material at the start of a film, ...

Many levels of sense distinctions
= Homonymy: totally unrelated meanings (river bank, money bank)
= Polysemy: related meanings (star in sky, star on tv)

= Systematic polysemy: productive meaning extensions
(metonymy such as organizations to their buildings) or metaphor

= Sense distinctions can be extremely subtle (or not)

Granularity of senses needed depends a lot on the task

Why is it important to model word senses?
= Translation, parsing, information retrieval?

Word Sense Disambiguation

s Example: living plant vs. manufacturing plant

= How do we tell these senses apart?
= ‘context”

The manufacturing plant which had previously sustained the
town’ s economy shut down after an extended labor strike.

= Maybe it's just text categorization
= Each word sense represents a topic
= Run a naive-bayes classifier?

» Bag-of-words classification works ok for noun senses
= 90% on classic, shockingly easy examples (line, interest, star)
= 80% on senseval-1 nouns
s 70% on senseval-1 verbs

Various Approaches to WSD

= Unsupervised learning
= Bootstrapping (Yarowsky 95)
= Clustering

= Indirect supervision
= From thesauri
= From WordNet
= From parallel corpora

= Supervised learning
= Most systems do some kind of supervised learning

= Many competing classification technologies perform about the
same (it's all about the knowledge sources you tap)

= Problem: training data available for only a few words

Verb WSD

= Why are verbs harder?
= Verbal senses less topical
= More sensitive to structure, argument choice

= Verb Example: “Serve”
= [function] The tree stump serves as a table
= [enable] The scandal served to increase his popularity
» [dish] We serve meals for the homeless
= [enlist] She served her country
= [jail] He served six years for embezzlement
= [tennis] It was Agassi's turn to serve
= [legal] He was served by the sheriff

Better Features

s [here are smarter features:
= Argument selectional preference:
» serve NP[meals] vs. serve NP[papers] vs. serve NP[country]
= Subcategorization:
= [function] serve PPJ[as]
= [enable] serve VPJ[to]

» [tennis] serve <intransitive>
» [food] serve NP {PPJto]}

= Can be captured poorly (but robustly) with modified Naive Bayes
approach
s Other constraints (Yarowsky 95)
= One-sense-per-discourse (only true for broad topical distinctions)

= One-sense-per-collocation (pretty reliable when it kicks in:
manufacturing plant, flowering plant)

Complex Features with NB?

= Example: Washington County jail served 11,166 meals last
month - a figure that translates to feeding some
120 people three times daily for 31 days.

= S0 we have a decision to make based on a set of cues:
= context:jail, context:county, context:feeding, ...
= |ocal-context:jail, local-context:meals
= subcat:NP, direct-object-head:meals

= Not clear how build a generative derivation for these:

= Choose topic, then decide on having a transitive usage, then
pick “meals” to be the object’s head, then generate other words?

= How about the words that appear in multiple features?
= Hard to make this work (though maybe possible)
= No real reason to try

A Discriminative Approach

= View WSD as a discrimination task, directly estimate:

P(sense | context:jail, context:county,
context:feeding, ...
local-context:jail, local-context:meals
subcat:NP, direct-object-head:meals,)

= Have to estimate multinomial (over senses) where there
are a huge number of things to condition on

= History is too complex to think about this as a smoothing / back-
off problem

= Many feature-based classification techniques out there

= Log-linear models extremely popular in the NLP
community!

Learning Probabilistic Classifiers

= [wo broad approaches to predicting classes y*

= Joint: work with a joint probabilistic model of the data,
weights are (often) local conditional probabilities
= E.g., represent p(y,x) as Naive Bayes model, compute
y*=argmax, p(y,X)

= Advantages: learning weights is easy, smoothing is well-
understood, backed by understanding of modeling

= Conditional: work with conditional probability p(y|x)

= We can then direct compute y* = argmax, p(y|x)
= Advantages: Don’t have to model p(x)! Can develop feature
rich models for p(y|x).

Feature Representations

Washington County jail served

11,166 meals last month - a

figure that translates to feeding -
some 120 people three times

daily for 31 days.

s Features are indicator functions
which count the occurrences of
certain patterns in the input

= We will have different feature values
for every pair of input x and class y

{

[context;jail = 1
context:county = 1
context:feeding = 1
context.game = 0

local-context:jail = 1
local-context:meals = 1

subcat:NP = 1
subcat:PP =0

object-head:meals = 1
_object-head:ball = 0

J

Example: Text Classification

s We want to classify documents into categories

DOCUMENT CATEGORY
... win the election ... POLITICS
... win the game ... SPORTS
... See a movie ... OTHER

s Classically, do this on the basis of words in the document, but
other information sources are potentially relevant:

= Document length

= Average word length
= Document’s source
= Document layout

Linear Models: Scoring

= In alinear model, each feature gets a weight in w

o(x, SPORTS) =
é(z, POLITICS) =

10100000

00001010

w=[11-1-21-11-2

= We compare ys on the basis of their linear scores:

score(x,y,w) =w - ¢(x,y)

score(x, POLITICS,w)=1x1+1x1=2

Block Feature Vectors

» Sometimes, we think of the input as having features,
which are multiplied by outputs to form the candidates

... win the election ...

<=

(1010]
“win” — T election”

<=

&(z, SPORTS)=[101000000000

&(x, POLITICS)=[000010100000
bz, OTHER)=[000000001010

Non-Block Feature Vectors

Sometimes the features of candidates cannot be
decomposed in this regular way

Example: a parse tree’ s features may be the rules

used for sentence x NP VP
/ 5
NP VP) — N N
¢(x NN V) O O 1“/\ A
;

AR VN) = | 1{&]/%

___—
V N

Different candidates will thus often share features
We' Il return to the non-block case later

Log-linear Models (Maximum Entropy)

= Maximum entropy (logistic regression)
= Model: use the scores as probabilities:

exp(w-o(x,y)) < Make positive
>, exp (w- oz,y7)) * Normalize

= Learning: maximize the (log) conditional likelihood of training
data{ (i, i) i1

p(ylz;w) =

L(w) = Z log p(y;|xi; w) w™ = arg max L(w)
i=1

= Prediction: output argmax, p(y|x;w)

Adam L. Bergert;
Vincent J. Della Pietra;
Stephen A. Della Pietra.

Computational Linguistics,

22(1), 1996

A Maximum Entropy Approach
to Natural Language Processing

Adam L. Berger! Stephen A. Della Pietra*

Columbia University Renaissance Technologies

Vincent J. Della Pietrat
Renaissance Technologies

The concept of maximum entropy can be traced back along multiple threads to Biblical times. Only
recently, however, have computers become powerful enough to permit the widescale application
of this concept to real world problems in statistical estimation and pattern recognition. In this
paper, we describe a method for statistical modeling based on maximum entropy. We present
a maximum-likelihood approach for automatically constructing maximum entropy models and
describe how to implement this approach efficiently, using as examples several problems in natural
language processing.

1. Introduction

Statistical modeling addresses the problem of constructing a stochastic model to predict
the behavior of a random process. In constructing this model, we typically have at our
disposal a sample of output from the process. Given this sample, which represents an
incomplete state of knowledge about the process, the modeling problem is to parlay
this knowledge into a representation of the process. We can then use this representation
to make predictions about the future behavior about the process.

Baseball managers (who rank among the better paid statistical modelers) employ
batting averages, compiled from a history of at-bats, to gauge the likelihood that a
player will succeed in his next appearance at the plate. Thus informed, they manipu-
late their lineups accordingly. Wall Street speculators (who rank among the best paid
statistical modelers) build models based on past stock price movements to predict to-
morrow’s fluctuations and alter their portfolios to capitalize on the predicted future.
At the other end of the pay scale reside natural language researchers, who design
language and acoustic models for use in speech recognition systems and related ap-
plications.

The past few decades have witnessed significant progress toward increasing the

predictive capacity of statistical models of natural language. In language modeling, for
inckanca Rahl At Al 1020\ hasra s1end Aaninian bran manadale and NMalla Diatwea Ak a1 71004\

Derivative of Log-linear Models

« Unfortunately, argmax,, L(w) doesn’t have a close formed solution
« We will have to differentiate and use gradient ascent

L(w) = Z log p(y;|zi; w)

n

L(w) = Z (w - @(@4,y:) — log Z exp(w - ¢(z;, y)))

1=1

%L(w) = Z (ij(ilfz',yz‘) - ZP(?J\%? W)@ (wi, ?/))

J i=1

Total count of feature |
In correct candidates

Unconstrained Optimization

= The maxent objective is an unconstrained optimization problem

L(w)

/ VL(w) =0

s Basic idea: move uphill from current guess

s Gradient ascent / descent follows the gradient incrementally

= At local optimum, derivative vector is zero

= Will converge if step sizes are small enough, but not efficient

= All we need is to be able to evaluate the function and its derivative

Unconstrained Optimization

Once we have a function f, we can find a local optimum by
iteratively following the gradient

X=———=»

For convex functions, a local optimum will be global

Basic gradient ascent isn’ t very efficient, but there are
simple enhancements which take into account previous
gradients: conjugate gradient, L-BFGs

There are special-purpose optimization techniques for
maxent, like iterative scaling, but they aren’ t better

What About Overfitting?

s For Language Models and Naive Bayes, we were
worried about zero counts in MLE estimates
= Can that happen here?

s Regularization (smoothing) for Log-linear models
= Instead, we worry about large feature weights

= Add a regularization term to the likelihood to push weights
towards zero

& A
L(w) =) log p(yi|zi; w) — §Hw||2
i—1

Derivative for Regularized Maximum Entropy

« Unfortunately, argmax,, L(w) still doesn’t have a close formed solution
« We will have to differentiate and use gradient ascent

L(w) = Z <w - (24, yi) — log Zexp(w ' (ﬁ(l‘i,y))) - %HUJHQ

1=1

iL(’w) — Z <¢j(xiayz’) - ZP(?J’%J w)d; (i, y)) — Awj

aw] i—1 \

Big weights

Total count of feature | Expected count of
are bad

In correct candidates feature j in predicted
candidates

Example: NER Smoothing

Feature Weights

Because of smoothing,

Feature Type Feature | PERS LOC
the more common — _
prefixes have larger W at 0.73] 094
weights even though — Current word Grace 0.03| 0.00
entlre-worc_:l _features are Beginning B1g L Gr 045| -004
more specific.
Current POS tag NNP 0.47 0.45
Prev and cur tags IN NNP -0.10 0.14
Local Context Current signature XX 0.80 0.46
Prev | Cur Next Prev-cur-next sig X-XX-XX -0.69 0.37
Word | at Grace | Road P. state - p-cur sig O-x-Xx -0.20 0.82
Tag IN NNP | NNP
Sig X Xx Xx Total: -0.58 2.68

Word Sense Disambiguation Results

[Suarez and Palomar, 2002]

= With clever features, small variations on simple log-linear (Maximum
Entropy — ME) models did very well in an word sense competition:

Figure 1: List of types of features

0: ambiguous-word shape

8: words at positions £1, £2, £3

p: POS-tags of words at positions +1, +2, +3
b: lemmas of collocations at positions (—2, —1),
(—1,+1), (+1,+2)

¢: collocations at positions (=2, —1), (=1, +1),
(+1,+2)

km: lemmas of nouns at any position in con-
text, occurring at least m% times with a sense

e 7: grammatical relation of the ambiguous word
e d: the word that the ambiguous word depends

on

L: lemmas of content-words at positions =+1,
+2, +3 (“relaxed” definition)

W content-words at positions +1, £2, +3
(“relaxed” definition)

S, B, C, P, and D: “relaxed” versions

Table 5: Comparing with SENSEVAL-2 systems

ALL Nouns Verbs Adjectives
0.713 jhu(R) 0.702 jhu(R) 0.643 jhu(R) 0.802 jhu(R)
0.684 vME+SM |0.702 vME+SM | 0.609 jhu 0.774 vME
0.682 jhu 0.683 MEDbfs.pos | 0.595 css244 0.772 MEDbfs.pos
0.677 MEDbfs.pos | 0.681 jhu 0.584 umd-sst 0.772 css244
0.676 vME 0.678 vME 0.583 vME 0.771 MEDbfs
0.670 css244 0.661 MEDbfs 0.583 MEDbfs.pos | 0.764 jhu
0.667 MEDbfs 0.652 css244 0.583 MEfix 0.756 MEfix
0.658 MEfix 0.646 MEfix 0.580 MEDbfs 0.725 duluth 8
0.627 umd-sst 0.621 duluth &8 0.515 duluth 10 0.712 duluth 10
0.617 duluth 8 0.612 duluth Z 0.513 duluth 8 0.706 duluth 7
0.610 duluth 10 0.611 duluth 10 0.511 ua 0.703 umd-sst
0.595 duluth Z 0.603 umd-sst 0.498 duluth 7 0.689 duluth 6
0.595 duluth 7 0.592 duluth 6 0.490 duluth Z 0.689 duluth Z
0.582 duluth 6 0.590 duluth 7 0.478 duluth X 0.687 ua
0.578 duluth X 0.586 duluth X 0.477 duluth 9 0.678 duluth X
0.560 duluth 9 0.557 duluth 9 0.474 duluth 6 0.655 duluth 9
0.548 nua 0.514 duluth Y 0.431 duluth Y 0.637 duluth Y
0.524 duluth Y 0.464 ua

= [he winning system is a famous semi-supervised learning approach

by Yarowsky

= The other systems include many different approaches: Naive Bayes,

SVMS, etc

How to pick weights?

Goal: choose “best” vector w given training data
s For now, we mean “best for classification”

The ideal: the weights which have greatest test set
accuracy / F1 / whatever

= But, don’t have the test set
= Must compute weights from training set

Maybe we want weights which give best training set
accuracy?

= Hard discontinuous optimization problem
= May not (does not) generalize to test set
= Easy to overfit

Learning Classifiers

= [wo probabilistic approaches to predicting classes y*

= Joint: work with a joint probabilistic model of the data, weights
are (often) local conditional probabilities

= E.g., represent p(y,x) as Naive Bayes model, compute y*=argmax, p(y,x)
= Conditional: work with conditional probability p(y|x)

= We can then direct compute y* = argmax, p(y|x) Can develop feature
rich models for p(y|x).

= But, why estimate a distribution at all?
» Linear predictor: y* = argmax, we¢(x,y)
= Perceptron algorithm
= Online

= Error driven
= Simple, additive updates

Multiclass Perceptron Decision Rule

s Compare all possible

w - ¢($7 yl)
outputs o
= Highest score wins
= Boundaries are more \\/
complex
= Harder to visualize
w - ¢(xvy2) \ 1U'¢($,y3)
biggest biggest

y* = argmaxw - ¢(x,y)
y

Linear Models: Perceptron

= [he perceptron algorithm
= lteratively processes the training set, reacting to training errors
= Can be thought of as trying to drive down training error

= The (online) perceptron algorithm:
= Start with zero weights
= Visit training instances (x,,y;) one by one
« Make a prediction

y* = argmaxw - ¢(z;, y)
Y

» If correct (y*==y,): no change, goto next example!
» |f wrong: adjust weights

w=w+ ¢(x;,y;) — d(xi,y™)

Example: Perceptron

= [he separable case

speed ' 1 |

factor | 1.0 -

1.000 -0.062
1.6 0.901
1.6 -0.094

-3.

Example: Perceptron

= [he inseparable case

speed '1 |

factor A1.0 |

1.000 -0.017
0.765
-0.146

Properties of Perceptrons

s Separability: some parameters get the Separable
training set perfectly correct
= Convergence: if the training is _ *
separable, perceptron will eventually -
converge - -
= Mistake Bound: the maximum number Non-Separable
of mistakes (binary case) related to the
margin or degree of separability + 4
- F oy
, k - =
mistakes < — - .
52

Problems with the Perceptron

= Noise: if the data isn’ t
separable, weights might thrash

= Averaging weight vectors over time
can help (averaged perceptron)

* »
i
= Mediocre generalization: finds a - - *
“barely” separating solution - -
training
= Overtraining: test / held-out 9
accuracy usually rises, then falls =
= Overtraining is a kind of overfitting O test
© held-out

iterations

Summary: Three™ Naive Bayes:
Views of s Parameters from data statistics

Classification s Parameters: probabilistic interpretation
= Training: one pass through the data

s Log-linear models:
= Parameters from gradient ascent

s Parameters: linear, probabilistic model,
and discriminative

= Training: gradient ascent (usually batch),
regularize to stop overfitting

s The Perceptron:

Held-Out s Parameters from reactions to mistakes
Data = Parameters: discriminative
interpretation
ng; = Training: go through the data until held-
out accuracy maxes out

Clustering vs. Classification

= Classification: we specify which pattern we want,
features uncorrelated with that pattern are idle

P(w|sports) P(w|politics) P(w|headline) P(w|story)
the 0.1 the 0.1 the 0.05 the 0.1
game 0.02 game 0.005 game 0.01 game 0.01
win 0.02 win 0.01 win 0.01 win 0.01

= Clustering: the clustering procedure locks on to
whichever pattern is most salient, statistically

» P(content words | class) will learn topics
» P(length, function words | class) will learn style
= P(characters | class) will learn “language”

Model-Based Clustering

s Clustering with probabilistic models:

Unobserved (Y) Observed (X)
?7? LONDON -- Soccer team wins match
?? NEW YORK - Stocks close up 3%
?7?

Investing in the stock market has ...

?2?
. The first game of the world series ...

Build a model of the domain: P(z,y,0)

Often: find 6 to maximize: P(z|0) => P(=z,y|0)
Y

= Problem 2: The relationship between the structure of your model
and the kinds of patterns it will detect is complex.

Learning Models with EM

s Hard EM: E-step: Find best “completions” Y for fixed 6
alternate between M-step: Find best parameters 6 for fixed Y

s Example: K-Means

K-Means Example

Hard EM for Naive-Bayes

Procedure: (1) we calculate best completions:
* __
y" = arg maxP(y) [P(zily)
)

(2) compute relevant counts from the completed data:

c(w,y) = > > [z =w,y" =y)

xeD 1

(3) compute new parameters from these counts (divide)
(4) repeat until convergence

(Soft) EM for Naive-Bayes

Procedure: (1) calculate posteriors (soft completions):

P(y) IL; P(ily)
>, P TT; P(zily')

(2) compute expected counts under those posteriors:

c(w,y) =) P(ylaﬁ)Z[l(wz = w, y)]

xeD

P(ylz) =

(3) compute new parameters from these counts (divide)
(4) repeat until convergence
Can also do this when some docs are labeled

EM in General

= We'll use EM over and over again to fill in missing data, e.g. we
want P(x,y) but our training data has only xs (no ys labeled)

= Convenience Scenario: we want P(x), including y just makes the model
simpler (e.g. mixing weights for language models)

= Induction Scenario: we actually want to know y (e.g. clustering)

= NLP differs from much of statistics / machine learning in that we often
want to interpret or use the induced variables (which is tricky at best)

s General approach: alternately update y and 6
= E-step: compute posteriors P(y|x,0)
» This means scoring all completions with the current parameters
» Usually, we do this implicitly with dynamic programming
= M-step: fit 6 to these completions

. '(Ij'his is usually the easy part — treat the completions as (fractional) complete
ata

= |nitialization: start with some noisy labelings and the noise adjusts into
patterns based on the data and the model

= WEe'll see lots of examples in this course

s EM is only locally optimal (why?)

EM for Semi-supervised Learning

[Nigam, McCallum, Mitchel, 2006]

Define data log
likelihood to be
L(y.x) + L(x),
computed on
labeled and
unlabeled data.
Find parameters
that maximize the
total likelihood.

Accuracy

Paper also presents
a number of other
fancier models
where the unlabeled
data helps more.

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

10000 unlabeled documents ——

No unlabeled documents -+ -

20

50 100

200

500 1000 2000 5000

Number of Labeled Documents

Figure 3.1 Classification accuracy on the 20 Newsgroups data set, both with and without 10,000
unlabeled documents. With small amounts of training data, using EM yields more accurate classifiers.
With large amounts of labeled training data, accurate parameter estimates can be obtained without
the use of unlabeled data, and classification accuracies of the two methods begin to converge.

