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Text Classification 



Overview: Classification 
n  Classification Problems 

n  Spam vs. Non-spam, Text Genre, Word Sense, etc. 
n  Supervised Learning 

n  Naïve Bayes 
n  Log-linear models (Maximum Entropy Models) 
n  Weighted linear models and the Perceptron 

n  Unsupervised Learning 
n  The EM Algorithm for Naïve Bayes 
n  Simple Semi-supervised approach 



Where are we 
n  So far: language models give P(s) 

n  Help model fluency for various noisy-channel processes (MT, 
ASR, etc.) 

n  N-gram models don’t represent any deep variables involved in 
language structure or meaning 

n  Usually we want to know something about the input other than 
how likely it is (syntax, semantics, topic, etc) 

n  Next: Naïve Bayes models 
n  We introduce a single new global variable 
n  Still a very simplistic model family 
n  Lets us model properties of text, but only very non-local ones… 
n  In particular, we can only model properties which are largely 

invariant to word order (like topic) 



Text Categorization 
n  Want to classify documents into broad semantic topics 

n  Which one is the politics document? (And how much deep 
processing did that decision take?) 

n  First approach: bag-of-words and Naïve-Bayes models 
n  More approaches later… 
n  Usually begin with a labeled corpus containing examples of each 

class 

Obama is hoping to rally support 
for his $825 billion stimulus 
package on the eve of a crucial 
House vote. Republicans have 
expressed reservations about the 
proposal, calling for more tax 
cuts and less spending. GOP 
representatives seemed doubtful 
that any deals would be made. 

California will open the 2009 
season at home against 
Maryland Sept. 5 and will play a 
total of six games in Memorial 
Stadium in the final football 
schedule announced by the 
Pacific-10 Conference Friday. 
The original schedule called for 
12 games over 12 weekends.  



Example: Spam Filter 

n  Input: email 
n  Output: spam/ham 
n  Setup: 

n  Get a large collection of 
example emails, each 
labeled “spam” or “ham” 

n  Note: someone has to hand 
label all this data! 

n  Want to learn to predict 
labels of new, future emails 

n  Features: The attributes used to 
make the ham / spam decision 

n  Words: FREE! 
n  Text Patterns: $dd, CAPS 
n  Non-text: SenderInContacts 
n  … 

Dear Sir. 
 
First, I must solicit your confidence in this 
transaction, this is by virture of its nature 
as being utterly confidencial and top 
secret. … 

TO BE REMOVED FROM FUTURE 
MAILINGS, SIMPLY REPLY TO THIS 
MESSAGE AND PUT "REMOVE" IN THE 
SUBJECT. 
 
99  MILLION EMAIL ADDRESSES 
  FOR ONLY $99 

Ok, Iknow this is blatantly OT but I'm 
beginning to go insane. Had an old Dell 
Dimension XPS sitting in the corner and 
decided to put it to use, I know it was 
working pre being stuck in the corner, but 
when I plugged it in, hit the power nothing 
happened. 



Word Sense Disambiguation 
n  Example: living plant vs. manufacturing plant 

n  How do we tell these senses apart? 
n  “context” 

n  It’s just text categorization! (at the word level) 
n  Each word sense represents a topic 
 

The manufacturing plant which had previously sustained the 
town’s economy shut down after an extended labor strike. 



Naïve-Bayes Models 
n  Generative model: pick a topic, then generate a document using a 

language model for that topic 
n  Naïve-Bayes assumption: all words are independent given the topic. 

 
n  Compare to a unigram language model: 

 

y 

x1 x2 xn . . . 

p(y, x1, x2…xn ) = q(y) q(xi | y)
i
!

p(x1, x2,…xn ) = q(xi )
i
!



Using NB for Classification 
n  We have a joint model of topics and documents 

n  To assign a label y* to a new document <x1, x1 … xn>: 

 

n  How do we do learning?  
n  Smoothing? What about totally unknown words? 
n  Can work shockingly well for textcat (especially in the wild) 
n  How can unigram models be so terrible for language modeling, but class-conditional 

unigram models work for textcat? 
n  Numerical / speed issues? 

y*= argmax
y
p(y, x1, x2…xn ) = argmaxy q(y) q(xi | y)

i
!

p(y, x1, x2…xn ) = q(y) q(xi | y)
i
! We have to 

smooth these! 



Language Identification 
n  How can we tell what language a document is in? 

n  How to tell the French from the English? 
n  Treat it as word-level textcat? 

n  Overkill, and requires a lot of training data 
n  You don’t actually need to know about words! 

n  Option: build a character-level language model 

The 38th Parliament will meet on 
Monday, October 4, 2004, at 11:00 a.m. 
The first item of business will be the 
election of the Speaker of the House of 
Commons. Her Excellency the Governor 
General will open the First Session of the 
38th Parliament on October 5, 2004, with 
a Speech from the Throne.  

La 38e législature se réunira à 11 heures le 
lundi 4 octobre 2004, et la première affaire 
à l'ordre du jour sera l’élection du président 
de la Chambre des communes. Son 
Excellence la Gouverneure générale 
ouvrira la première session de la 38e 
législature avec un discours du Trône le 
mardi 5 octobre 2004.  

Σύµφωνο σταθερότητας και ανάπτυξης  
Patto di stabilità e di crescita  



Class-Conditional LMs 
n  Can add a topic variable to richer language models 

n  Could be characters instead of words, used for language ID 
n  Could sum out the topic variable and use as a language model 
n  How might a class-conditional n-gram language model behave 

differently from a standard n-gram model? 
n  Many other options are also possible! 

y 

x1 x2 xn . . . START 

p(y, x1, x2…xn ) = q(y) q(xi | y, xi!1)
i
"



Word Senses 
n  Words have multiple distinct meanings, or senses: 

n  Plant: living plant, manufacturing plant, … 
n  Title: name of a work, ownership document, form of address, 

material at the start of a film, … 

n  Many levels of sense distinctions 
n  Homonymy: totally unrelated meanings (river bank, money bank) 
n  Polysemy: related meanings (star in sky, star on tv) 
n  Systematic polysemy: productive meaning extensions 

(metonymy such as organizations to their buildings) or metaphor 
n  Sense distinctions can be extremely subtle (or not) 

n  Granularity of senses needed depends a lot on the task 

n  Why is it important to model word senses? 
n  Translation, parsing, information retrieval? 



Word Sense Disambiguation 
n  Example: living plant vs. manufacturing plant 

n  How do we tell these senses apart? 
n  “context” 

n  Maybe it’s just text categorization 
n  Each word sense represents a topic 
n  Run a naive-bayes classifier? 

n  Bag-of-words classification works ok for noun senses 
n  90% on classic, shockingly easy examples (line, interest, star) 
n  80% on senseval-1 nouns 
n  70% on senseval-1 verbs 

The manufacturing plant which had previously sustained the 
town’s economy shut down after an extended labor strike. 



Various Approaches to WSD 
n  Unsupervised learning 

n  Bootstrapping (Yarowsky 95) 
n  Clustering 

n  Indirect supervision 
n  From thesauri 
n  From WordNet 
n  From parallel corpora 

n  Supervised learning 
n  Most systems do some kind of supervised learning 
n  Many competing classification technologies perform about the 

same (it’s all about the knowledge sources you tap) 
n  Problem: training data available for only a few words 



Verb WSD 
n  Why are verbs harder? 

n  Verbal senses less topical 
n  More sensitive to structure, argument choice 

n  Verb Example: “Serve” 
n  [function] The tree stump serves as a table 
n  [enable] The scandal served to increase his popularity 
n  [dish] We serve meals for the homeless 
n  [enlist] She served her country 
n  [jail] He served six years for embezzlement 
n  [tennis] It was Agassi's turn to serve 
n  [legal] He was served by the sheriff 



Better Features 
n  There are smarter features: 

n  Argument selectional preference: 
n  serve NP[meals] vs. serve NP[papers] vs. serve NP[country] 

n  Subcategorization: 
n  [function] serve PP[as] 
n  [enable] serve VP[to] 
n  [tennis] serve <intransitive> 
n  [food] serve NP {PP[to]} 

n  Can be captured poorly (but robustly) with modified Naïve Bayes 
approach  

n  Other constraints (Yarowsky 95) 
n  One-sense-per-discourse (only true for broad topical distinctions) 
n  One-sense-per-collocation (pretty reliable when it kicks in: 

manufacturing plant, flowering plant) 



Complex Features with NB? 
n  Example: 

n  So we have a decision to make based on a set of cues: 
n  context:jail, context:county, context:feeding, … 
n  local-context:jail, local-context:meals 
n  subcat:NP, direct-object-head:meals 

n  Not clear how build a generative derivation for these: 
n  Choose topic, then decide on having a transitive usage, then 

pick “meals” to be the object’s head, then generate other words? 
n  How about the words that appear in multiple features? 
n  Hard to make this work (though maybe possible) 
n  No real reason to try 

Washington County jail served 11,166 meals last 
month - a figure that translates to feeding some 
120 people three times daily for 31 days.  



A Discriminative Approach 
n  View WSD as a discrimination task, directly estimate: 

n  Have to estimate multinomial (over senses) where there 
are a huge number of things to condition on 
n  History is too complex to think about this as a smoothing / back-

off problem 

n  Many feature-based classification techniques out there 
n  Log-linear models extremely popular in the NLP 

community! 

P(sense | context:jail, context:county,  
    context:feeding, … 
    local-context:jail, local-context:meals 
    subcat:NP, direct-object-head:meals, ….) 



Learning Probabilistic Classifiers 

n  Two broad approaches to predicting classes y*  

n  Joint: work with a joint probabilistic model of the data, 
weights are (often) local conditional probabilities 
n  E.g., represent p(y,x) as Naïve Bayes model, compute 

y*=argmaxy p(y,x) 
n  Advantages: learning weights is easy, smoothing is well-

understood, backed by understanding of modeling 

n  Conditional: work with conditional probability p(y|x) 
n  We can then direct compute y* = argmaxy p(y|x) 
n  Advantages: Don’t have to model p(x)! Can develop feature 

rich models for  p(y|x). 



Feature Representations 

 
n  Features are indicator functions  

which count the occurrences of 
certain patterns in the input 

n  We will have different feature values 
for every pair of input x and class y 

Washington County jail served 
11,166 meals last month - a 
figure that translates to feeding 
some 120 people three times 
daily for 31 days.  

context:jail = 1 
context:county = 1 
context:feeding = 1 
context:game = 0 
… 
local-context:jail = 1 
local-context:meals = 1 
… 
subcat:NP = 1 
subcat:PP = 0 
… 
object-head:meals = 1 
object-head:ball = 0 

 



Example: Text Classification 
n  We want to classify documents into categories 

n  Classically, do this on the basis of words in the document, but 
other information sources are potentially relevant: 
n  Document length 
n  Average word length 
n  Document’s source 
n  Document layout 

… win the election … 

… win the game … 

… see a movie … 

SPORTS 

POLITICS 

OTHER 

DOCUMENT CATEGORY 



Linear Models: Scoring 
n  In a linear model, each feature gets a weight in w 

n  We compare ys on the basis of their linear scores: 

score(x, y;w) = w · φ(x, y)

φ(x, SPORTS) = [1 0 1 0 0 0 0 0 0 0 0 0]

φ(x, POLITICS) = [0 0 0 0 1 0 1 0 0 0 0 0]
w = [ 1 1 −1−2 1 −1 1 −2 −2 −1 −1 1]

score(x, POLITICS;w) = 1× 1 + 1× 1 = 2



Block Feature Vectors 
n  Sometimes, we think of the input as having features, 

which are multiplied by outputs to form the candidates 

… win the election … 

“win” “election” 

φ(x, SPORTS) = [1 0 1 0 0 0 0 0 0 0 0 0]
φ(x, POLITICS) = [0 0 0 0 1 0 1 0 0 0 0 0]

φ(x,OTHER) = [0 0 0 0 0 0 0 0 1 0 1 0]



Non-Block Feature Vectors 
n  Sometimes the features of candidates cannot be 

decomposed in this regular way 
n  Example: a parse tree’s features may be the rules 

used for sentence x 

n  Different candidates will thus often share features 
n  We’ll return to the non-block case later 

S
NP VP 

V N    N 

S
NP VP 

N V    N 

S
NP VP 

NP 

N    N 

VP 

V 

NP 

N 

VP 

V    N 

φ(x, ) = [1 0 1 0 1]

φ(x, ) = [1 1 0 1 0]



Log-linear Models (Maximum Entropy) 
n  Maximum entropy (logistic regression) 

n  Model: use the scores as probabilities: 

n  Learning: maximize the (log) conditional likelihood of training 
data 

n  Prediction: output argmaxy p(y|x;w) 
 

Make positive 
Normalize 

p(y|x;w) = exp (w · φ(x, y))�
y� exp (w · φ(x, y�))

{(xi, yi)}ni=1

L(w) =
n�

i=1

log p(yi|xi;w) w∗ = argmax
w

L(w)



Adam L. Bergert;  
Vincent J. Della Pietra; 
Stephen A. Della Pietra. 
Computational Linguistics, 
22(1), 1996 



Derivative of Log-linear Models 

Total count of feature j 
in correct candidates 

Expected count of 
feature j in predicted 

candidates 

•  Unfortunately, argmaxw L(w) doesn’t have a close formed solution 
•  We will have to differentiate and use gradient ascent 

L(w) =
n�

i=1

log p(yi|xi;w)

L(w) =
n�

i=1

�
w · φ(xi, yi)− log

�

y

exp(w · φ(xi, y))

�

∂

∂wj
L(w) =

n�

i=1

�
φj(xi, yi)−

�

y

p(y|xi;w)φj(xi, y)

�



Unconstrained Optimization 
n  The maxent objective is an unconstrained optimization problem 

n  Basic idea: move uphill from current guess 
n  Gradient ascent / descent follows the gradient incrementally 
n  At local optimum, derivative vector is zero 
n  Will converge if step sizes are small enough, but not efficient 
n  All we need is to be able to evaluate the function and its derivative 



Unconstrained Optimization 
n  Once we have a function f, we can find a local optimum by 

iteratively following the gradient 

n  For convex functions, a local optimum will be global 
n  Basic gradient ascent isn’t very efficient, but there are 

simple enhancements which take into account previous 
gradients: conjugate gradient, L-BFGs 

n  There are special-purpose optimization techniques for 
maxent, like iterative scaling, but they aren’t better 



What About Overfitting? 
n  For Language Models and Naïve Bayes, we were 

worried about zero counts in MLE estimates 
n  Can that happen here? 

n  Regularization (smoothing) for Log-linear models 
n  Instead, we worry about large feature weights 
n  Add a regularization term to the likelihood to push weights 

towards zero 

L(w) =
n�

i=1

log p(yi|xi;w)−
λ

2
||w||2



Derivative for Regularized Maximum Entropy 

Big weights 
are bad Total count of feature j 

in correct candidates 
Expected count of 

feature j in predicted 
candidates 

L(w) =
n�

i=1

�
w · φ(xi, yi)− log

�

y

exp(w · φ(xi, y))

�
− λ

2
||w||2

•  Unfortunately, argmaxw L(w) still doesn’t have a close formed solution 
•  We will have to differentiate and use gradient ascent 

∂

∂wj
L(w) =

n�

i=1

�
φj(xi, yi)−

�

y

p(y|xi;w)φj(xi, y)

�
− λwj



Example: NER Smoothing 

Feature Type Feature PERS LOC 
Previous word at -0.73 0.94 
Current word Grace 0.03 0.00 
Beginning bigram Gr 0.45 -0.04 
Current POS tag NNP 0.47 0.45 
Prev and cur tags IN NNP -0.10 0.14 
Current signature Xx 0.80 0.46 
Prev-cur-next sig x-Xx-Xx -0.69 0.37 
P. state - p-cur sig O-x-Xx -0.20 0.82 
… 
Total: -0.58 2.68 

Prev Cur Next 
Word at Grace Road 
Tag IN NNP NNP 
Sig x Xx Xx 

Local Context 

Feature Weights 
Because of smoothing, 
the more common 
prefixes have larger 
weights even though 
entire-word features are 
more specific. 



Word Sense Disambiguation  Results 
n  With clever features, small variations on simple log-linear (Maximum 

Entropy – ME) models did very well in an word sense competition: 

 
n  The winning system is a famous semi-supervised learning approach 

by Yarowsky 
n  The other systems include many different approaches: Naïve Bayes, 

SVMS, etc 

[Suarez and Palomar, 2002] 



How to pick weights? 

n  Goal: choose “best” vector w given training data 
n  For now, we mean “best for classification” 

n  The ideal: the weights which have greatest test set 
accuracy / F1 / whatever 
n  But, don’t have the test set 
n  Must compute weights from training set 

n  Maybe we want weights which give best training set 
accuracy? 
n  Hard discontinuous optimization problem 
n  May not (does not) generalize to test set 
n  Easy to overfit 



Learning Classifiers 
n  Two probabilistic approaches to predicting classes y*  

n  Joint: work with a joint probabilistic model of the data, weights 
are (often) local conditional probabilities 

n  E.g., represent p(y,x) as Naïve Bayes model, compute y*=argmaxy p(y,x) 
n  Conditional: work with conditional probability p(y|x) 

n  We can then direct compute y* = argmaxy p(y|x) Can develop feature 
rich models for  p(y|x). 

n  But, why estimate a distribution at all? 
n  Linear predictor: y* = argmaxy w�ϕ(x,y) 
n  Perceptron algorithm  

n  Online 
n  Error driven 
n  Simple, additive updates 



Multiclass Perceptron Decision Rule 

n  Compare all possible 
outputs 
n  Highest score wins 
n  Boundaries are more 

complex 
n  Harder to visualize 

y∗ = argmax
y

w · φ(x, y)

w · φ(x, y1)
biggest

w · φ(x, y3)
biggest

w · φ(x, y2)
biggest



Linear Models: Perceptron 
n  The perceptron algorithm 

n  Iteratively processes the training set, reacting to training errors 
n  Can be thought of as trying to drive down training error 

n  The (online) perceptron algorithm: 
n  Start with zero weights 
n  Visit training instances (xi,yi) one by one 

n  Make a prediction 

n  If correct (y*==yi): no change, goto next example! 
n  If wrong: adjust weights 

w = w + φ(xi, yi)− φ(xi, y
∗)

y∗ = argmax
y

w · φ(xi, y)



Example: Perceptron 
n  The separable case 



Example: Perceptron 
n  The inseparable case 



Proper<es	
  of	
  Perceptrons	
  
n  Separability:	
  some	
  parameters	
  get	
  the	
  

training	
  set	
  perfectly	
  correct	
  

n  Convergence:	
  if	
  the	
  training	
  is	
  
separable,	
  perceptron	
  will	
  eventually	
  
converge	
  

n  Mistake	
  Bound:	
  the	
  maximum	
  number	
  
of	
  mistakes	
  (binary	
  case)	
  related	
  to	
  the	
  
margin	
  or	
  degree	
  of	
  separability	
  

Separable 

Non-Separable 



Problems with the Perceptron 

n  Noise: if the data isn’t 
separable, weights might thrash 

n  Averaging weight vectors over time 
can help (averaged perceptron) 

n  Mediocre generalization: finds a 
“barely” separating solution 

n  Overtraining: test / held-out 
accuracy usually rises, then falls 

n  Overtraining is a kind of overfitting 



Summary:	
  Three	
  
Views	
  of	
  

Classifica<on	
  	
  
	
  

n  Naïve	
  Bayes:	
  
n  Parameters	
  from	
  data	
  sta<s<cs	
  
n  Parameters:	
  probabilis<c	
  interpreta<on	
  
n  Training:	
  one	
  pass	
  through	
  the	
  data	
  

n  Log-­‐linear	
  models:	
  
n  Parameters	
  from	
  gradient	
  ascent	
  
n  Parameters:	
  linear,	
  probabilis<c	
  model,	
  
and	
  discrimina<ve	
  

n  Training:	
  gradient	
  ascent	
  (usually	
  batch),	
  
regularize	
  to	
  stop	
  overfiSng	
  

n  The	
  Perceptron:	
  
n  Parameters	
  from	
  reac<ons	
  to	
  mistakes	
  
n  Parameters:	
  discrimina<ve	
  
interpreta<on	
  

n  Training:	
  go	
  through	
  the	
  data	
  un<l	
  held-­‐
out	
  accuracy	
  maxes	
  out	
  

Training 
Data 

Held-Out 
Data 

Test 
Data 



Clustering vs. Classification 
n  Classification: we specify which pattern we want, 

features uncorrelated with that pattern are idle 

n  Clustering: the clustering procedure locks on to 
whichever pattern is most salient, statistically 
n  P(content words | class) will learn topics 
n  P(length, function words | class) will learn style 
n  P(characters | class) will learn “language” 

P(w|sports)  P(w|politics) 

the 0.1   the 0.1 

game 0.02  game 0.005 

win 0.02  win 0.01 

P(w|headline)  P(w|story) 

the 0.05  the 0.1 

game 0.01  game 0.01 

win 0.01  win 0.01 



Model-Based Clustering 
n  Clustering with probabilistic models: 

n  Problem 2: The relationship between the structure of your model 
and the kinds of patterns it will detect is complex. 

LONDON -- Soccer team wins match 

NEW YORK – Stocks close up 3% 

Investing in the stock market has … 

The first game of the world series … 

Observed (X) Unobserved (Y) 

?? 

?? 

?? 

?? 

Often: find θ to maximize: 

Build a model of the domain: 

y 

x1 x2 xn . . . 



Learning Models with EM 

n  Hard EM: 
 alternate between 

n  Example: K-Means 
  

 

 

E-step: Find best “completions” Y for fixed θ 

M-step: Find best parameters θ for fixed Y 



K-Means Example 



Hard EM for Naïve-Bayes 

n  Procedure: (1) we calculate best completions: 

n  (2) compute relevant counts from the completed data: 

n  (3) compute new parameters from these counts (divide) 
n  (4) repeat until convergence 



(Soft) EM for Naïve-Bayes 

n  Procedure: (1) calculate posteriors (soft completions): 

n  (2) compute expected counts under those posteriors: 

n  (3) compute new parameters from these counts (divide) 
n  (4) repeat until convergence 
n  Can also do this when some docs are labeled 



EM in General 
n  We’ll use EM over and over again to fill in missing data, e.g. we 

want P(x,y) but our training data has only xs (no ys labeled) 
n  Convenience Scenario: we want P(x), including y just makes the model 

simpler (e.g. mixing weights for language models) 
n  Induction Scenario: we actually want to know y (e.g. clustering) 
n  NLP differs from much of statistics / machine learning in that we often 

want to interpret or use the induced variables (which is tricky at best) 

n  General approach: alternately update y and θ 
n  E-step: compute posteriors P(y|x,θ) 

n  This means scoring all completions with the current parameters 
n  Usually, we do this implicitly with dynamic programming 

n  M-step: fit θ to these completions 
n  This is usually the easy part – treat the completions as (fractional) complete 

data 
n  Initialization: start with some noisy labelings and the noise adjusts into 

patterns based on the data and the model 
n  We’ll see lots of examples in this course 

n  EM is only locally optimal (why?) 



EM for Semi-supervised Learning 
n  Define data log 

likelihood to be       
L(y,x) + L(x), 
computed on 
labeled and 
unlabeled data.  
Find parameters 
that maximize the 
total likelihood. 

 
n  Paper also presents 

a number of other 
fancier models 
where the unlabeled 
data helps more. 

[Nigam, McCallum, Mitchel, 2006] 
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Figure 3.1 Classification accuracy on the 20 Newsgroups data set, both with and without 10,000
unlabeled documents. With small amounts of training data, using EM yields more accurate classifiers.
With large amounts of labeled training data, accurate parameter estimates can be obtained without
the use of unlabeled data, and classification accuracies of the two methods begin to converge.

additive and multiplicative constants are dropped, but the relative values are maintained.
Figure 3.1 shows the effect of using EMwith unlabeled data on this data set. The vertical

axis indicates average classifier accuracy on test sets, and the horizontal axis indicates the
amount of labeled training data on a log scale. We vary the amount of labeled training
data, and compare the classification accuracy of traditional naive Bayes (no unlabeled
documents) with an EM learner that has access to 10000 unlabeled documents.
EM performs significantly better than traditional naive Bayes. For example, with 300

labeled documents (15 documents per class), naive Bayes reaches 52% accuracy while
EM achieves 66%. This represents a 30% reduction in classification error. Note that EM
also performs well even with a very small number of labeled documents; with only 20
documents (a single labeled document per class), naive Bayes obtains 20%, EM 35%. As
expected, when there is a lot of labeled data, and the naive Bayes learning curve is close
to a plateau, having unlabeled data does not help nearly as much, because there is already
enough labeled data to accurately estimate the classifier parameters. With 5500 labeled
documents (275 per class), classification accuracy increases from 76% to 78%. Each of
these results is statistically significant (p < 0.05).4
How does EM findmore accurate classifiers? It does so by optimizing on posterior model

probability, not classification accuracy directly. If our generative model were perfect then
we would expect model probability and accuracy to be correlated and EM to be helpful.

4. When the number of labeled examples is small, we have multiple trials, and use paired t-tests.
When the number of labeled examples is large, we have a single trial, and report results instead with
a McNemar test. These tests are discussed further by Dietterich [1998].


