
CSE	
 517	

Natural	
 Language	
 Processing	

Winter	
 2013	

Luke Zettlemoyer - University of Washington

[Many slides from Dan Klein and Michael Collins]

Text Classification

Overview: Classification
n  Classification Problems

n  Spam vs. Non-spam, Text Genre, Word Sense, etc.
n  Supervised Learning

n  Naïve Bayes
n  Log-linear models (Maximum Entropy Models)
n  Weighted linear models and the Perceptron

n  Unsupervised Learning
n  The EM Algorithm for Naïve Bayes
n  Simple Semi-supervised approach

Where are we
n  So far: language models give P(s)

n  Help model fluency for various noisy-channel processes (MT,
ASR, etc.)

n  N-gram models don’t represent any deep variables involved in
language structure or meaning

n  Usually we want to know something about the input other than
how likely it is (syntax, semantics, topic, etc)

n  Next: Naïve Bayes models
n  We introduce a single new global variable
n  Still a very simplistic model family
n  Lets us model properties of text, but only very non-local ones…
n  In particular, we can only model properties which are largely

invariant to word order (like topic)

Text Categorization
n  Want to classify documents into broad semantic topics

n  Which one is the politics document? (And how much deep
processing did that decision take?)

n  First approach: bag-of-words and Naïve-Bayes models
n  More approaches later…
n  Usually begin with a labeled corpus containing examples of each

class

Obama is hoping to rally support
for his $825 billion stimulus
package on the eve of a crucial
House vote. Republicans have
expressed reservations about the
proposal, calling for more tax
cuts and less spending. GOP
representatives seemed doubtful
that any deals would be made.

California will open the 2009
season at home against
Maryland Sept. 5 and will play a
total of six games in Memorial
Stadium in the final football
schedule announced by the
Pacific-10 Conference Friday.
The original schedule called for
12 games over 12 weekends.

Example: Spam Filter

n  Input: email
n  Output: spam/ham
n  Setup:

n  Get a large collection of
example emails, each
labeled “spam” or “ham”

n  Note: someone has to hand
label all this data!

n  Want to learn to predict
labels of new, future emails

n  Features: The attributes used to
make the ham / spam decision

n  Words: FREE!
n  Text Patterns: $dd, CAPS
n  Non-text: SenderInContacts
n  …

Dear Sir.

First, I must solicit your confidence in this
transaction, this is by virture of its nature
as being utterly confidencial and top
secret. …

TO BE REMOVED FROM FUTURE
MAILINGS, SIMPLY REPLY TO THIS
MESSAGE AND PUT "REMOVE" IN THE
SUBJECT.

99 MILLION EMAIL ADDRESSES
 FOR ONLY $99

Ok, Iknow this is blatantly OT but I'm
beginning to go insane. Had an old Dell
Dimension XPS sitting in the corner and
decided to put it to use, I know it was
working pre being stuck in the corner, but
when I plugged it in, hit the power nothing
happened.

Word Sense Disambiguation
n  Example: living plant vs. manufacturing plant

n  How do we tell these senses apart?
n  “context”

n  It’s just text categorization! (at the word level)
n  Each word sense represents a topic

The manufacturing plant which had previously sustained the
town’s economy shut down after an extended labor strike.

Naïve-Bayes Models
n  Generative model: pick a topic, then generate a document using a

language model for that topic
n  Naïve-Bayes assumption: all words are independent given the topic.

n  Compare to a unigram language model:

y

x1 x2 xn . . .

p(y, x1, x2…xn) = q(y) q(xi | y)
i
!

p(x1, x2,…xn) = q(xi)
i
!

Using NB for Classification
n  We have a joint model of topics and documents

n  To assign a label y* to a new document <x1, x1 … xn>:

n  How do we do learning?
n  Smoothing? What about totally unknown words?
n  Can work shockingly well for textcat (especially in the wild)
n  How can unigram models be so terrible for language modeling, but class-conditional

unigram models work for textcat?
n  Numerical / speed issues?

y*= argmax
y
p(y, x1, x2…xn) = argmaxy q(y) q(xi | y)

i
!

p(y, x1, x2…xn) = q(y) q(xi | y)
i
! We have to

smooth these!

Language Identification
n  How can we tell what language a document is in?

n  How to tell the French from the English?
n  Treat it as word-level textcat?

n  Overkill, and requires a lot of training data
n  You don’t actually need to know about words!

n  Option: build a character-level language model

The 38th Parliament will meet on
Monday, October 4, 2004, at 11:00 a.m.
The first item of business will be the
election of the Speaker of the House of
Commons. Her Excellency the Governor
General will open the First Session of the
38th Parliament on October 5, 2004, with
a Speech from the Throne.

La 38e législature se réunira à 11 heures le
lundi 4 octobre 2004, et la première affaire
à l'ordre du jour sera l’élection du président
de la Chambre des communes. Son
Excellence la Gouverneure générale
ouvrira la première session de la 38e
législature avec un discours du Trône le
mardi 5 octobre 2004.

Σύµφωνο σταθερότητας και ανάπτυξης
Patto di stabilità e di crescita

Class-Conditional LMs
n  Can add a topic variable to richer language models

n  Could be characters instead of words, used for language ID
n  Could sum out the topic variable and use as a language model
n  How might a class-conditional n-gram language model behave

differently from a standard n-gram model?
n  Many other options are also possible!

y

x1 x2 xn . . . START

p(y, x1, x2…xn) = q(y) q(xi | y, xi!1)
i
"

Word Senses
n  Words have multiple distinct meanings, or senses:

n  Plant: living plant, manufacturing plant, …
n  Title: name of a work, ownership document, form of address,

material at the start of a film, …

n  Many levels of sense distinctions
n  Homonymy: totally unrelated meanings (river bank, money bank)
n  Polysemy: related meanings (star in sky, star on tv)
n  Systematic polysemy: productive meaning extensions

(metonymy such as organizations to their buildings) or metaphor
n  Sense distinctions can be extremely subtle (or not)

n  Granularity of senses needed depends a lot on the task

n  Why is it important to model word senses?
n  Translation, parsing, information retrieval?

Word Sense Disambiguation
n  Example: living plant vs. manufacturing plant

n  How do we tell these senses apart?
n  “context”

n  Maybe it’s just text categorization
n  Each word sense represents a topic
n  Run a naive-bayes classifier?

n  Bag-of-words classification works ok for noun senses
n  90% on classic, shockingly easy examples (line, interest, star)
n  80% on senseval-1 nouns
n  70% on senseval-1 verbs

The manufacturing plant which had previously sustained the
town’s economy shut down after an extended labor strike.

Various Approaches to WSD
n  Unsupervised learning

n  Bootstrapping (Yarowsky 95)
n  Clustering

n  Indirect supervision
n  From thesauri
n  From WordNet
n  From parallel corpora

n  Supervised learning
n  Most systems do some kind of supervised learning
n  Many competing classification technologies perform about the

same (it’s all about the knowledge sources you tap)
n  Problem: training data available for only a few words

Verb WSD
n  Why are verbs harder?

n  Verbal senses less topical
n  More sensitive to structure, argument choice

n  Verb Example: “Serve”
n  [function] The tree stump serves as a table
n  [enable] The scandal served to increase his popularity
n  [dish] We serve meals for the homeless
n  [enlist] She served her country
n  [jail] He served six years for embezzlement
n  [tennis] It was Agassi's turn to serve
n  [legal] He was served by the sheriff

Better Features
n  There are smarter features:

n  Argument selectional preference:
n  serve NP[meals] vs. serve NP[papers] vs. serve NP[country]

n  Subcategorization:
n  [function] serve PP[as]
n  [enable] serve VP[to]
n  [tennis] serve <intransitive>
n  [food] serve NP {PP[to]}

n  Can be captured poorly (but robustly) with modified Naïve Bayes
approach

n  Other constraints (Yarowsky 95)
n  One-sense-per-discourse (only true for broad topical distinctions)
n  One-sense-per-collocation (pretty reliable when it kicks in:

manufacturing plant, flowering plant)

Complex Features with NB?
n  Example:

n  So we have a decision to make based on a set of cues:
n  context:jail, context:county, context:feeding, …
n  local-context:jail, local-context:meals
n  subcat:NP, direct-object-head:meals

n  Not clear how build a generative derivation for these:
n  Choose topic, then decide on having a transitive usage, then

pick “meals” to be the object’s head, then generate other words?
n  How about the words that appear in multiple features?
n  Hard to make this work (though maybe possible)
n  No real reason to try

Washington County jail served 11,166 meals last
month - a figure that translates to feeding some
120 people three times daily for 31 days.

A Discriminative Approach
n  View WSD as a discrimination task, directly estimate:

n  Have to estimate multinomial (over senses) where there
are a huge number of things to condition on
n  History is too complex to think about this as a smoothing / back-

off problem

n  Many feature-based classification techniques out there
n  Log-linear models extremely popular in the NLP

community!

P(sense | context:jail, context:county,
 context:feeding, …
 local-context:jail, local-context:meals
 subcat:NP, direct-object-head:meals, ….)

Learning Probabilistic Classifiers

n  Two broad approaches to predicting classes y*

n  Joint: work with a joint probabilistic model of the data,
weights are (often) local conditional probabilities
n  E.g., represent p(y,x) as Naïve Bayes model, compute

y*=argmaxy p(y,x)
n  Advantages: learning weights is easy, smoothing is well-

understood, backed by understanding of modeling

n  Conditional: work with conditional probability p(y|x)
n  We can then direct compute y* = argmaxy p(y|x)
n  Advantages: Don’t have to model p(x)! Can develop feature

rich models for p(y|x).

Feature Representations

n  Features are indicator functions

which count the occurrences of
certain patterns in the input

n  We will have different feature values
for every pair of input x and class y

Washington County jail served
11,166 meals last month - a
figure that translates to feeding
some 120 people three times
daily for 31 days.

context:jail = 1
context:county = 1
context:feeding = 1
context:game = 0
…
local-context:jail = 1
local-context:meals = 1
…
subcat:NP = 1
subcat:PP = 0
…
object-head:meals = 1
object-head:ball = 0

Example: Text Classification
n  We want to classify documents into categories

n  Classically, do this on the basis of words in the document, but
other information sources are potentially relevant:
n  Document length
n  Average word length
n  Document’s source
n  Document layout

… win the election …

… win the game …

… see a movie …

SPORTS

POLITICS

OTHER

DOCUMENT CATEGORY

Linear Models: Scoring
n  In a linear model, each feature gets a weight in w

n  We compare ys on the basis of their linear scores:

score(x, y;w) = w · φ(x, y)

φ(x, SPORTS) = [1 0 1 0 0 0 0 0 0 0 0 0]

φ(x, POLITICS) = [0 0 0 0 1 0 1 0 0 0 0 0]
w = [1 1 −1−2 1 −1 1 −2 −2 −1 −1 1]

score(x, POLITICS;w) = 1× 1 + 1× 1 = 2

Block Feature Vectors
n  Sometimes, we think of the input as having features,

which are multiplied by outputs to form the candidates

… win the election …

“win” “election”

φ(x, SPORTS) = [1 0 1 0 0 0 0 0 0 0 0 0]
φ(x, POLITICS) = [0 0 0 0 1 0 1 0 0 0 0 0]

φ(x,OTHER) = [0 0 0 0 0 0 0 0 1 0 1 0]

Non-Block Feature Vectors
n  Sometimes the features of candidates cannot be

decomposed in this regular way
n  Example: a parse tree’s features may be the rules

used for sentence x

n  Different candidates will thus often share features
n  We’ll return to the non-block case later

S
NP VP

V N N

S
NP VP

N V N

S
NP VP

NP

N N

VP

V

NP

N

VP

V N

φ(x,) = [1 0 1 0 1]

φ(x,) = [1 1 0 1 0]

Log-linear Models (Maximum Entropy)
n  Maximum entropy (logistic regression)

n  Model: use the scores as probabilities:

n  Learning: maximize the (log) conditional likelihood of training
data

n  Prediction: output argmaxy p(y|x;w)

Make positive
Normalize

p(y|x;w) = exp (w · φ(x, y))�
y� exp (w · φ(x, y�))

{(xi, yi)}ni=1

L(w) =
n�

i=1

log p(yi|xi;w) w∗ = argmax
w

L(w)

Adam L. Bergert;
Vincent J. Della Pietra;
Stephen A. Della Pietra.
Computational Linguistics,
22(1), 1996

Derivative of Log-linear Models

Total count of feature j
in correct candidates

Expected count of
feature j in predicted

candidates

•  Unfortunately, argmaxw L(w) doesn’t have a close formed solution
•  We will have to differentiate and use gradient ascent

L(w) =
n�

i=1

log p(yi|xi;w)

L(w) =
n�

i=1

�
w · φ(xi, yi)− log

�

y

exp(w · φ(xi, y))

�

∂

∂wj
L(w) =

n�

i=1

�
φj(xi, yi)−

�

y

p(y|xi;w)φj(xi, y)

�

Unconstrained Optimization
n  The maxent objective is an unconstrained optimization problem

n  Basic idea: move uphill from current guess
n  Gradient ascent / descent follows the gradient incrementally
n  At local optimum, derivative vector is zero
n  Will converge if step sizes are small enough, but not efficient
n  All we need is to be able to evaluate the function and its derivative

Unconstrained Optimization
n  Once we have a function f, we can find a local optimum by

iteratively following the gradient

n  For convex functions, a local optimum will be global
n  Basic gradient ascent isn’t very efficient, but there are

simple enhancements which take into account previous
gradients: conjugate gradient, L-BFGs

n  There are special-purpose optimization techniques for
maxent, like iterative scaling, but they aren’t better

What About Overfitting?
n  For Language Models and Naïve Bayes, we were

worried about zero counts in MLE estimates
n  Can that happen here?

n  Regularization (smoothing) for Log-linear models
n  Instead, we worry about large feature weights
n  Add a regularization term to the likelihood to push weights

towards zero

L(w) =
n�

i=1

log p(yi|xi;w)−
λ

2
||w||2

Derivative for Regularized Maximum Entropy

Big weights
are bad Total count of feature j

in correct candidates
Expected count of

feature j in predicted
candidates

L(w) =
n�

i=1

�
w · φ(xi, yi)− log

�

y

exp(w · φ(xi, y))

�
− λ

2
||w||2

•  Unfortunately, argmaxw L(w) still doesn’t have a close formed solution
•  We will have to differentiate and use gradient ascent

∂

∂wj
L(w) =

n�

i=1

�
φj(xi, yi)−

�

y

p(y|xi;w)φj(xi, y)

�
− λwj

Example: NER Smoothing

Feature Type Feature PERS LOC
Previous word at -0.73 0.94
Current word Grace 0.03 0.00
Beginning bigram Gr 0.45 -0.04
Current POS tag NNP 0.47 0.45
Prev and cur tags IN NNP -0.10 0.14
Current signature Xx 0.80 0.46
Prev-cur-next sig x-Xx-Xx -0.69 0.37
P. state - p-cur sig O-x-Xx -0.20 0.82
…
Total: -0.58 2.68

Prev Cur Next
Word at Grace Road
Tag IN NNP NNP
Sig x Xx Xx

Local Context

Feature Weights
Because of smoothing,
the more common
prefixes have larger
weights even though
entire-word features are
more specific.

Word Sense Disambiguation Results
n  With clever features, small variations on simple log-linear (Maximum

Entropy – ME) models did very well in an word sense competition:

n  The winning system is a famous semi-supervised learning approach

by Yarowsky
n  The other systems include many different approaches: Naïve Bayes,

SVMS, etc

[Suarez and Palomar, 2002]

How to pick weights?

n  Goal: choose “best” vector w given training data
n  For now, we mean “best for classification”

n  The ideal: the weights which have greatest test set
accuracy / F1 / whatever
n  But, don’t have the test set
n  Must compute weights from training set

n  Maybe we want weights which give best training set
accuracy?
n  Hard discontinuous optimization problem
n  May not (does not) generalize to test set
n  Easy to overfit

Learning Classifiers
n  Two probabilistic approaches to predicting classes y*

n  Joint: work with a joint probabilistic model of the data, weights
are (often) local conditional probabilities

n  E.g., represent p(y,x) as Naïve Bayes model, compute y*=argmaxy p(y,x)
n  Conditional: work with conditional probability p(y|x)

n  We can then direct compute y* = argmaxy p(y|x) Can develop feature
rich models for p(y|x).

n  But, why estimate a distribution at all?
n  Linear predictor: y* = argmaxy w�ϕ(x,y)
n  Perceptron algorithm

n  Online
n  Error driven
n  Simple, additive updates

Multiclass Perceptron Decision Rule

n  Compare all possible
outputs
n  Highest score wins
n  Boundaries are more

complex
n  Harder to visualize

y∗ = argmax
y

w · φ(x, y)

w · φ(x, y1)
biggest

w · φ(x, y3)
biggest

w · φ(x, y2)
biggest

Linear Models: Perceptron
n  The perceptron algorithm

n  Iteratively processes the training set, reacting to training errors
n  Can be thought of as trying to drive down training error

n  The (online) perceptron algorithm:
n  Start with zero weights
n  Visit training instances (xi,yi) one by one

n  Make a prediction

n  If correct (y*==yi): no change, goto next example!
n  If wrong: adjust weights

w = w + φ(xi, yi)− φ(xi, y
∗)

y∗ = argmax
y

w · φ(xi, y)

Example: Perceptron
n  The separable case

Example: Perceptron
n  The inseparable case

Proper<es	
 of	
 Perceptrons	

n  Separability:	
 some	
 parameters	
 get	
 the	

training	
 set	
 perfectly	
 correct	

n  Convergence:	
 if	
 the	
 training	
 is	

separable,	
 perceptron	
 will	
 eventually	

converge	

n  Mistake	
 Bound:	
 the	
 maximum	
 number	

of	
 mistakes	
 (binary	
 case)	
 related	
 to	
 the	

margin	
 or	
 degree	
 of	
 separability	

Separable

Non-Separable

Problems with the Perceptron

n  Noise: if the data isn’t
separable, weights might thrash

n  Averaging weight vectors over time
can help (averaged perceptron)

n  Mediocre generalization: finds a
“barely” separating solution

n  Overtraining: test / held-out
accuracy usually rises, then falls

n  Overtraining is a kind of overfitting

Summary:	
 Three	

Views	
 of	

Classifica<on	
 	

	

n  Naïve	
 Bayes:	

n  Parameters	
 from	
 data	
 sta<s<cs	

n  Parameters:	
 probabilis<c	
 interpreta<on	

n  Training:	
 one	
 pass	
 through	
 the	
 data	

n  Log-­‐linear	
 models:	

n  Parameters	
 from	
 gradient	
 ascent	

n  Parameters:	
 linear,	
 probabilis<c	
 model,	

and	
 discrimina<ve	

n  Training:	
 gradient	
 ascent	
 (usually	
 batch),	

regularize	
 to	
 stop	
 overfiSng	

n  The	
 Perceptron:	

n  Parameters	
 from	
 reac<ons	
 to	
 mistakes	

n  Parameters:	
 discrimina<ve	

interpreta<on	

n  Training:	
 go	
 through	
 the	
 data	
 un<l	
 held-­‐
out	
 accuracy	
 maxes	
 out	

Training
Data

Held-Out
Data

Test
Data

Clustering vs. Classification
n  Classification: we specify which pattern we want,

features uncorrelated with that pattern are idle

n  Clustering: the clustering procedure locks on to
whichever pattern is most salient, statistically
n  P(content words | class) will learn topics
n  P(length, function words | class) will learn style
n  P(characters | class) will learn “language”

P(w|sports) P(w|politics)

the 0.1 the 0.1

game 0.02 game 0.005

win 0.02 win 0.01

P(w|headline) P(w|story)

the 0.05 the 0.1

game 0.01 game 0.01

win 0.01 win 0.01

Model-Based Clustering
n  Clustering with probabilistic models:

n  Problem 2: The relationship between the structure of your model
and the kinds of patterns it will detect is complex.

LONDON -- Soccer team wins match

NEW YORK – Stocks close up 3%

Investing in the stock market has …

The first game of the world series …

Observed (X) Unobserved (Y)

??

??

??

??

Often: find θ to maximize:

Build a model of the domain:

y

x1 x2 xn . . .

Learning Models with EM

n  Hard EM:
 alternate between

n  Example: K-Means

E-step: Find best “completions” Y for fixed θ

M-step: Find best parameters θ for fixed Y

K-Means Example

Hard EM for Naïve-Bayes

n  Procedure: (1) we calculate best completions:

n  (2) compute relevant counts from the completed data:

n  (3) compute new parameters from these counts (divide)
n  (4) repeat until convergence

(Soft) EM for Naïve-Bayes

n  Procedure: (1) calculate posteriors (soft completions):

n  (2) compute expected counts under those posteriors:

n  (3) compute new parameters from these counts (divide)
n  (4) repeat until convergence
n  Can also do this when some docs are labeled

EM in General
n  We’ll use EM over and over again to fill in missing data, e.g. we

want P(x,y) but our training data has only xs (no ys labeled)
n  Convenience Scenario: we want P(x), including y just makes the model

simpler (e.g. mixing weights for language models)
n  Induction Scenario: we actually want to know y (e.g. clustering)
n  NLP differs from much of statistics / machine learning in that we often

want to interpret or use the induced variables (which is tricky at best)

n  General approach: alternately update y and θ
n  E-step: compute posteriors P(y|x,θ)

n  This means scoring all completions with the current parameters
n  Usually, we do this implicitly with dynamic programming

n  M-step: fit θ to these completions
n  This is usually the easy part – treat the completions as (fractional) complete

data
n  Initialization: start with some noisy labelings and the noise adjusts into

patterns based on the data and the model
n  We’ll see lots of examples in this course

n  EM is only locally optimal (why?)

EM for Semi-supervised Learning
n  Define data log

likelihood to be
L(y,x) + L(x),
computed on
labeled and
unlabeled data.
Find parameters
that maximize the
total likelihood.

n  Paper also presents

a number of other
fancier models
where the unlabeled
data helps more.

[Nigam, McCallum, Mitchel, 2006]

Chapelle, Schölkopf & Zien: Semi-Supervised Learning 2005/11/18 18:05

3.3 Experimental Results with Basic EM 39

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10 20 50 100 200 500 1000 2000 5000

Ac
cu

ra
cy

Number of Labeled Documents

10000 unlabeled documents
No unlabeled documents

Figure 3.1 Classification accuracy on the 20 Newsgroups data set, both with and without 10,000
unlabeled documents. With small amounts of training data, using EM yields more accurate classifiers.
With large amounts of labeled training data, accurate parameter estimates can be obtained without
the use of unlabeled data, and classification accuracies of the two methods begin to converge.

additive and multiplicative constants are dropped, but the relative values are maintained.
Figure 3.1 shows the effect of using EMwith unlabeled data on this data set. The vertical

axis indicates average classifier accuracy on test sets, and the horizontal axis indicates the
amount of labeled training data on a log scale. We vary the amount of labeled training
data, and compare the classification accuracy of traditional naive Bayes (no unlabeled
documents) with an EM learner that has access to 10000 unlabeled documents.
EM performs significantly better than traditional naive Bayes. For example, with 300

labeled documents (15 documents per class), naive Bayes reaches 52% accuracy while
EM achieves 66%. This represents a 30% reduction in classification error. Note that EM
also performs well even with a very small number of labeled documents; with only 20
documents (a single labeled document per class), naive Bayes obtains 20%, EM 35%. As
expected, when there is a lot of labeled data, and the naive Bayes learning curve is close
to a plateau, having unlabeled data does not help nearly as much, because there is already
enough labeled data to accurately estimate the classifier parameters. With 5500 labeled
documents (275 per class), classification accuracy increases from 76% to 78%. Each of
these results is statistically significant (p < 0.05).4
How does EM findmore accurate classifiers? It does so by optimizing on posterior model

probability, not classification accuracy directly. If our generative model were perfect then
we would expect model probability and accuracy to be correlated and EM to be helpful.

4. When the number of labeled examples is small, we have multiple trials, and use paired t-tests.
When the number of labeled examples is large, we have a single trial, and report results instead with
a McNemar test. These tests are discussed further by Dietterich [1998].

