Relation Extraction II

Luke Zettlemoyer CSE 517 Winter 2013

[with slides adapted from many people, including Bill MacCartney, Raphael Hoffmann, Dan Jurafsky, Rion Snow, Jim Martin, Chris Manning, William Cohen, and others]

Supervised RE: summary

- Supervised approach can achieve high accuracy
 - At least, for *some* relations
 - o If we have lots of hand-labeled training data
- But has significant limitations!
 - Labeling 5,000 relations (+ named entities) is expensive
 - Doesn't generalize to different relations
- Next: beyond supervised relation extraction
 - Distantly supervised relation extraction
 - Unsupervised relation extraction

Relation extraction: 5 easy methods

- 1. Hand-built patterns
- 2. Bootstrapping methods
- 3. Supervised methods
- 4. Distant supervision
- 5. Unsupervised methods

Extracting structured knowledge

Each article can contain hundreds or thousands of items of knowledge

Distant supervision

Snow, Jurafsky, Ng. 2005. Learning syntactic patterns for automatic hypernym discovery. NIPS 17

Mintz, Bills, Snow, Jurafsky. 2009. Distant supervision for relation extraction without labeled data. ACL-2009.

- Hypothesis: If two entities belong to a certain relation, any sentence containing those two entities is likely to express that relation
- Key idea: use a *database* of relations to get lots of *noisy* training examples
 - instead of hand-creating seed tuples (bootstrapping)
 - instead of using hand-labeled corpus (supervised)

Benefits of distant supervision

- Has advantages of supervised approach
 - leverage rich, reliable hand-created knowledge
 - relations have canonical names
 - can use rich features (e.g. syntactic features)
- Has advantages of unsupervised approach
 - leverage unlimited amounts of text data
 - allows for very large number of weak features
 - not sensitive to training corpus: genreindependent

Hypernyms via distant supervision

We construct a noisy training set consisting of occurrences from our corpus that contain a hyponym-hypernym pair from WordNet.

This yields high-signal examples like:

"...consider authors like Shakespeare..." "Some authors (including Shakespeare)..." "Shakespeare was the author of several..." "Shakespeare, author of *The Tempest*..."

slide adapted from Rion Snow

Hypernyms via distant supervision

We construct a noisy training set consisting of occurrences from our corpus that contain a hyponym-hypernym pair from WordNet.

This yields high-signal examples like:

"...consider authors like Shakespeare..." "Some authors (including Shakespeare)..." "Shakespeare was the author of several..." "Shakespeare, author of *The Tempest*..."

But also noisy examples like:

"The author of *Shakespeare in Love*..." "...authors at the Shakespeare Festival..."

slide adapted from Rion Snow

Learning hypernym patterns

Key idea: work at corpus level (entity pairs), instead of sentence level!

1. Take corpus sentences

... doubly heavy hydrogen atom called deuterium ...

2. Collect noun pairs

e.g. (atom, deuterium) 752,311 pairs from 6M sentences of newswire

- 3. Is pair an IS-A in WordNet?
- 4. Parse the sentences
- Extract patterns 5.

N:desc:V V:vrel:N called deute atom V:vrel:N called Х

69,592 dependency paths with >5 pairs

6. Train classifier on patterns logistic regression with 70K features (converted to 974,288 bucketed binary features)

slide adapted from Rion Snow

14,387 yes; 737,924 no

One of 70,000 patterns

Pattern: <superordinate> called <subordinate>

Learned from cases such as:

(sarcoma, cancer) ...an uncommon bone cancer called osteogenic sarcoma and to...(deuterium, atom) ...heavy water rich in the doubly heavy hydrogen atom called deuterium.

New pairs discovered:

(efflorescence, condition) (O'neal_inc, company) (hat_creek_outfit, ranch) (hiv-1, aids_virus) (bateau_mouche, attraction)

- ...and a condition called efflorescence are other reasons for...
- ... The company, now called O'Neal Inc., was sole distributor of...
- ...run a small ranch called the Hat Creek Outfit.
- ...infected by the AIDS virus, called HIV-1.
- ...local sightseeing attraction called the Bateau Mouche...

Syntactic dependency paths

Patterns are based on paths through dependency parses generated by MINIPAR (Lin, 1998)

Example word pair: Example sentence: (Shakespeare, author)

"Shakespeare was the author of several plays..."

Minipar parse:

Extract shortest path: -N:s:VBE, be, VBE:pred:N

slide adapted from Rion Snow

Hearst patterns to dependency paths

slide adapted from Rion Snow

P/R of hypernym classifier

P/R of hypernym classifier

What about other relations?

Mintz, Bills, Snow, Jurafsky (2009).

Distant supervision for relation extraction without labeled data.

Training set

102 relations 940,000 entities 1.8 million instances Corpus

WIKIPEDIA

1.8 million articles 25.7 million sentences

slide adapted from Rion Snow

Frequent Freebase relations

Relation name	Size	Example
/people/person/nationality	281,107	John Dugard, South Africa
/location/location/contains	253,223	Belgium, Nijlen
/people/person/profession	208,888	Dusa McDuff, Mathematician
/people/person/place_of_birth	105,799	Edwin Hubble, Marshfield
/dining/restaurant/cuisine	86,213	MacAyo's Mexican Kitchen, Mexican
/business/business_chain/location	66,529	Apple Inc., Apple Inc., South Park, NC
/biology/organism_classification_rank	42,806	Scorpaeniformes, Order
/film/film/genre	40,658	Where the Sidewalk Ends, Film noir
/film/film/language	31,103	Enter the Phoenix, Cantonese
/biology/organism_higher_classification	30,052	Calopteryx, Calopterygidae
/film/film/country	27,217	Turtle Diary, United States
/film/writer/film	23,856	Irving Shulman, Rebel Without a Cause
/film/director/film	23,539	Michael Mann, Collateral
/film/producer/film	22,079	Diane Eskenazi, Aladdin
/people/deceased_person/place_of_death	18,814	John W. Kern, Asheville
/music/artist/origin	18,619	The Octopus Project, Austin
/people/person/religion	17,582	Joseph Chartrand, Catholicism
/book/author/works_written	17,278	Paul Auster, Travels in the Scriptorium
/soccer/football_position/players	17,244	Midfielder, Chen Tao
/people/deceased_person/cause_of_death	16,709	Richard Daintree, Tuberculosis
/book/book/genre	16,431	Pony Soldiers, Science fiction
/film/film/music	14,070	Stavisky, Stephen Sondheim
/business/company/industry	13,805	ATS Medical, Health care

Corpus text

Bill Gates founded Microsoft in 1975.Bill Gates, founder of Microsoft, ...Bill Gates attended Harvard from...Google was founded by Larry Page ...

Training data

Freebase

Founder: (Bill Gates, Microsoft) Founder: (Larry Page, Google) CollegeAttended: (Bill Gates, Harvard)

Corpus text

<u>Bill Gates</u> founded <u>Microsoft</u> in 1975. Bill Gates, founder of Microsoft, ... Bill Gates attended Harvard from... Google was founded by Larry Page ...

Training data

(Bill Gates, Microsoft)Label: FounderFeature: X founded Y

Freebase

Founder: (<u>Bill Gates</u>, <u>Microsoft</u>) Founder: (Larry Page, Google) CollegeAttended: (Bill Gates, Harvard)

Corpus text

Bill Gates founded Microsoft in 1975.
<u>Bill Gates</u>, founder of <u>Microsoft</u>, ...
Bill Gates attended Harvard from...
Google was founded by Larry Page ...

Training data

(Bill Gates, Microsoft)Label: FounderFeature: X founded YFeature: X, founder of Y

Freebase

Founder: (<u>Bill Gates</u>, <u>Microsoft</u>) Founder: (Larry Page, Google) CollegeAttended: (Bill Gates, Harvard)

Corpus text

Bill Gates founded Microsoft in 1975.Bill Gates, founder of Microsoft, ...Bill Gates attended Harvard from...Google was founded by Larry Page ...

Training data

(Bill Gates, Microsoft)Label: FounderFeature: X founded YFeature: X, founder of Y

(Bill Gates, Harvard)Label: CollegeAttendedFeature: X attended Y

Freebase

Founder: (Bill Gates, Microsoft) Founder: (Larry Page, Google) CollegeAttended: (<u>Bill Gates</u>, <u>Harvard</u>)

Corpus text

Bill Gates founded Microsoft in 1975.Bill Gates, founder of Microsoft, ...Bill Gates attended Harvard from...<u>Google</u> was founded by <u>Larry Page</u> ...

Freebase

Founder: (Bill Gates, Microsoft) Founder: (Larry Page, Google) CollegeAttended: (Bill Gates, Harvard)

Training data

(Bill Gates, Microsoft)Label: FounderFeature: X founded YFeature: X, founder of Y

(Bill Gates, Harvard)Label: CollegeAttendedFeature: X attended Y

(Larry Page, Google)Label: FounderFeature: Y was founded by X

Negative training data

Test data

Corpus text

Henry Ford founded Ford Motor Co. in... Ford Motor Co. was founded by Henry Ford... Steve Jobs attended Reed College from...

Corpus text

Henry Ford founded Ford Motor Co. in...

Ford Motor Co. was founded by Henry Ford... Steve Jobs attended Reed College from... Test data

(Henry Ford, Ford Motor Co.) Label: ??? Feature: X founded Y

Corpus text

Henry Ford founded Ford Motor Co. in... <u>Ford Motor Co.</u> was founded by <u>Henry Ford</u>... Steve Jobs attended Reed College from...

Test data

(Henry Ford, Ford Motor Co.)Label: ???Feature: X founded YFeature: Y was founded by X

Corpus text

Henry Ford founded Ford Motor Co. in... Ford Motor Co. was founded by Henry Ford... <u>Steve Jobs attended Reed College</u> from...

Test data

(Henry Ford, Ford Motor Co.)Label: ???Feature: X founded YFeature: Y was founded by X

(Steve Jobs, Reed College) Label: ??? Feature: X attended Y

The experiment

Advantages of the approach

- ACE paradigm: labeling sentences
- This paradigm: labeling entity pairs
- We make use of multiple appearances of entities
- If a pair of entities appears in 10 sentences, and each sentence has 5 features extracted from it, the entity pair will have 50 associated features

Lexical and syntactic features

Astronomer Edwin Hubble was born in Marshfield, Missouri.

Feature type	Left window	NE1	Middle	NE2	Right window
Lexical	[]	PER	[was/VERB born/VERB in/CLOSED]	LOC	[]
Lexical	[Astronomer]	PER	[was/VERB born/VERB in/CLOSED]	LOC	[,]
Lexical	[#PAD#, Astronomer]	PER	[was/VERB born/VERB in/CLOSED]	LOC	[, Missouri]
Syntactic	[]	PER	$[\Uparrow_s \text{ was } \Downarrow_{pred} \text{ born } \Downarrow_{mod} \text{ in } \Downarrow_{pcomp-n}]$	LOC	[]
Syntactic	[Edwin Hubble $\Downarrow_{lex-mod}$]	PER	$[\Uparrow_s \text{ was } \Downarrow_{pred} \text{ born } \Downarrow_{mod} \text{ in } \Downarrow_{pcomp-n}]$	LOC	[]
Syntactic	[Astronomer $\Downarrow_{lex-mod}$]	PER	$[\Uparrow_s \text{ was } \Downarrow_{pred} \text{ born } \Downarrow_{mod} \text{ in } \Downarrow_{pcomp-n}]$	LOC	[]
Syntactic	[]	PER	$[\Uparrow_s \text{ was } \Downarrow_{pred} \text{ born } \Downarrow_{mod} \text{ in } \Downarrow_{pcomp-n}]$	LOC	$[\Downarrow_{lex-mod},]$
Syntactic	[Edwin Hubble $\Downarrow_{lex-mod}$]	PER	$[\Uparrow_s \text{ was } \Downarrow_{pred} \text{ born } \Downarrow_{mod} \text{ in } \Downarrow_{pcomp-n}]$	LOC	$[\Downarrow_{lex-mod},]$
Syntactic	[Astronomer $\Downarrow_{lex-mod}$]	PER	$[\Uparrow_s \text{ was } \Downarrow_{pred} \text{ born } \Downarrow_{mod} \text{ in } \Downarrow_{pcomp-n}]$	LOC	$[\Downarrow_{lex-mod},]$
Syntactic	[]	PER	$[\Uparrow_s \text{ was } \Downarrow_{pred} \text{ born } \Downarrow_{mod} \text{ in } \Downarrow_{pcomp-n}]$	LOC	[↓ _{inside} Missouri]
Syntactic	[Edwin Hubble $\Downarrow_{lex-mod}$]	PER	$[\Uparrow_s \text{ was } \Downarrow_{pred} \text{ born } \Downarrow_{mod} \text{ in } \Downarrow_{pcomp-n}]$	LOC	[↓ _{inside} Missouri]
Syntactic	[Astronomer $\Downarrow_{lex-mod}$]	PER	$[\Uparrow_s \text{ was } \Downarrow_{pred} \text{ born } \Downarrow_{mod} \text{ in } \Downarrow_{pcomp-n}]$	LOC	[↓ _{inside} Missouri]

High-weight features

Relation	Feature type	Left window	NE1	Middle	NE2	Right window
/architecture/structure/architect	LEX		ORG	, the designer of the	PER	
	SYN	designed ↑s	ORG	\Uparrow_s designed $\Downarrow_{by-subj}$ by \Downarrow_{pcn}	PER	↑s designed
/book/author/works_written	LEX		PER	s novel	ORG	
	SYN		PER	\bigwedge_{pcn} by \bigwedge_{mod} story \bigwedge_{pred} is \Downarrow_s	ORG	
/book/book_edition/author_editor	LEX		ORG	s novel	PER	
	SYN		PER	\Uparrow_{nn} series \Downarrow_{gen}	PER	
/business/company/founders	LEX		ORG	co - founder	PER	
	SYN		ORG	\uparrow_{nn} owner \downarrow_{person}	PER	
/business/company/place_founded	LEX		ORG	- based	LOC	
	SYN		ORG	\Uparrow_s founded \Downarrow_{mod} in \Downarrow_{pcn}	LOC	
/film/film/country	LEX		PER	, released in	LOC	
	SYN	opened ↑s	ORG	\Uparrow_s opened \Downarrow_{mod} in \Downarrow_{pcn}	LOC	\uparrow_s opened
/geography/river/mouth	LEX		LOC	, which flows into the	LOC	
	SYN	the \Downarrow_{det}	LOC	\Uparrow_s is \Downarrow_{pred} tributary \Downarrow_{mod} of \Downarrow_{pcn}	LOC	\Downarrow_{det} the
/government/political_party/country	LEX		ORG	politician of the	LOC	
	SYN	candidate ↑ <i>nn</i>	ORG	\Uparrow_{nn} candidate \Downarrow_{mod} for \Downarrow_{pcn}	LOC	\Uparrow_{nn} candidate
/influence/influence_node/influenced	LEX		PER	, a student of	PER	
	SYN	of \Uparrow_{pcn}	PER	\bigwedge_{pcn} of \bigwedge_{mod} student \bigwedge_{appo}	PER	\uparrow_{pcn} of
/language/human_language/region	LEX		LOC	- speaking areas of	LOC	
	SYN		LOC	$\uparrow_{lex-mod}$ speaking areas \Downarrow_{mod} of \Downarrow_{pcn}	LOC	
/music/artist/origin	LEX		ORG	based band	LOC	
_	SYN	is ↑s	ORG	\Uparrow_s is \Downarrow_{pred} band \Downarrow_{mod} from \Downarrow_{pcn}	LOC	∱s is
/people/deceased_person/place_of_death	LEX		PER	died in	LOC	
	SYN	hanged \uparrow_s	PER	\Uparrow_s hanged \Downarrow_{mod} in \Downarrow_{pcn}	LOC	\uparrow_s hanged
/people/person/nationality	LEX		PER	is a citizen of	LOC	
	SYN		PER	\Downarrow_{mod} from \Downarrow_{pcn}	LOC	
/people/person/parents	LEX		PER	, son of	PER	
	SYN	father ↑ _{gen}	PER	\Uparrow_{gen} father \Downarrow_{person}	PER	↑ _{gen} father
/people/person/place_of_birth	LEX		PER	is the birthplace of	PER	
	SYN		PER	\Uparrow_s born \Downarrow_{mod} in \Downarrow_{pcn}	LOC	
/people/person/religion	LEX		PER	embraced	LOC	
	SYN	convert \Downarrow_{appo}	PER	$ \downarrow_{appo} \text{ convert } \downarrow_{mod} \text{ to } \downarrow_{pcn} $	LOC	\Downarrow_{appo} convert

Implementation

- Classifier: multi-class logistic regression optimized using L-BFGS with Gaussian regularization (Manning & Klein 2003)
- Parser: MINIPAR (Lin 1998)
- POS tagger: MaxEnt tagger trained on the Penn Treebank (Toutanova et al. 2003)
- NER tagger: Stanford four-class tagger {PER, LOC, ORG, MISC, NONE} (Finkel et al. 2005)
- 3 configurations: lexical features, syntax features, both

Experimental set-up

- 1.8 million relation instances used for training
 o Compared to 17,000 relation instances in ACE
- 800,000 Wikipedia articles used for training, 400,000 different articles used for testing
- Only extract relation instances not already in Freebase
Newly discovered instances

Ten relation instances extracted by the system that weren't in Freebase

Relation name	New instance
/location/location/contains	Paris, Montmartre
/location/location/contains	Ontario, Fort Erie
/music/artist/origin	Mighty Wagon, Cincinnati
/people/deceased_person/place_of_death	Fyodor Kamensky, Clearwater
/people/person/nationality	Marianne Yvonne Heemskerk, Netherlands
/people/person/place_of_birth	Wavell Wayne Hinds, Kingston
/book/author/works_written	Upton Sinclair, Lanny Budd
/business/company/founders	WWE, Vince McMahon
/people/person/profession	Thomas Mellon, judge

Human evaluation

Precision, using Mechanical Turk labelers:

Palation name		100 instances			1000 instances		
Relation name	Syn	Lex	Both	Syn	Lex	Both	
/film/director/film	0.49	0.43	0.44	0.49	0.41	0.46	
/film/writer/film	0.70	0.60	0.65	0.71	0.61	0.69	
/geography/river/basin_countries	0.65	0.64	0.67	0.73	0.71	0.64	
/location/country/administrative_divisions	0.68	0.59	0.70	0.72	0.68	0.72	
/location/location/contains	0.81	0.89	0.84	0.85	0.83	0.84	
/location/us_county/county_seat	0.51	0.51	0.53	0.47	0.57	0.42	
/music/artist/origin	0.64	0.66	0.71	0.61	0.63	0.60	
/people/deceased_person/place_of_death	0.80	0.79	0.81	0.80	0.81	0.78	
/people/person/nationality	0.61	0.70	0.72	0.56	0.61	0.63	
/people/person/place_of_birth	0.78	0.77	0.78	0.88	0.85	0.91	
Average	0.67	0.66	0.69	0.68	0.67	0.67	

- At recall of 100 instances, using both feature sets (lexical and syntax) offers the best performance for a majority of the relations
- At recall of 1000 instances, using syntax features improves performance for a majority of the relations

Knowledge-Based Weak Supervision for Information Extraction of Overlapping Relations

Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke Zettlemoyer, Daniel S. Weld

University of Washington

06/20/11

Previous Work: Aggregate Extraction

Steve Jobs presents²Apple's HQ. Apple CEO Steve Jobs ... CEO-of(1,2)Steve Jobs holds² Apple stock. Steve Jobs, CEO of Apple, ... N/A(1,2)Google's takeover of Youtube ... Youtube, now part of Google, ... Acquired(1,2)Apple and IBM are public. ?(1.2)...¹Microsoft's purchase of Skype. Acquired CEO-of(Rob Iger, Disney)

- CEO-of(Steve Jobs, Apple)
- Acquired(Google, Youtube)
- Acquired(Msft, Skype)
- Acquired(Citigroup, EMI)

This Talk: Sentence-level Reasoning

¹Steve Jobs presents ²Apple's HQ. $-1 \Rightarrow ?(1,2)$ ²Apple CEO ¹Steve Jobs ... $-1 \Rightarrow ?(1,2)$ ¹Steve Jobs holds ²Apple stock. $-1 \Rightarrow ?(1,2)$ ²Steve Jobs, CEO of Apple, ... $-1 \Rightarrow ?(1,2)$ ¹Google's takeover of Youtube ... $-1 \Rightarrow ?(1,2)$ ²Youtube, now part of ¹Google, ... $-1 \Rightarrow ?(1,2)$ ²Apple and ¹IBM are public. $-1 \Rightarrow ?(1,2)$... ¹Microsoft's purchase of ²Skype. $1 \Rightarrow ?(1,2)$

CEO-of(Rob Iger, Disney) CEO-of(Steve Jobs, Apple) Acquired(Google, Youtube) Acquired(Msft, Skype) Acquired(Citigroup, EMI)

Inference

Need:

• Most likely sentence labels:

• Most likely sentence labels given facts:

Learning: Hidden-Variable Perceptron

Experimental Setup

- Data as in Riedel et al. 10:
 - LDC NYT corpus, 2005-06 (training), 2007 (testing)
 - Data first tagged with Stanford NER system
 - Entities matched to Freebase, ~ top 50 relations
 - Mention-level features as in Mintz et al. 09
- Systems:
 - MultiR: proposed approach
 - SoloR: re-implementation of Riedel et al. 2010

Aggregate Extraction

How does set of predicted facts match to facts in Freebase?

Metric

- For each entity pair compare inferred facts to facts in Freebase
- Automated, but underestimates precision

Aggregate Extraction

Sentential Extraction

How accurate is extraction from a given sentence?

Metric

- Sample 1000 sentences from test set
- Manual evaluation of precision and recall

Sentential Extraction

Relation-specific Performance

What is the quality of the matches for different relations?

How does our approach perform for different relations?

Metric:

- Select 10 relations with highest #matches
- Sample 100 sentences for each relation
- Manually evaluate precision and recall

Quality of the Matching

Polation	Freebas	e Matches
Relation	#sents	
/business/person/company	302	
/people/person/place_lived	450	
/location/location/contains	2793)
/business/company/founders	95	
/people/person/nationality	723	
/location/neighborhood/neighborhood_of	68	
/people/person/children	30)
/people/deceased_person/place_of_death	68	
/people/person/place_of_birth	162	
/location/country/administrative_divisions	424	

Quality of the Matching

Polation	Freebase Matches			
Relation	#sents	% true		
/business/person/company	302	89.0		
/people/person/place_lived	450	60.0		
/location/location/contains	2793	51.0		
/business/company/founders	95	48.4		
/people/person/nationality	723	41.0		
/location/neighborhood/neighborhood_of	68	39.7		
/people/person/children	30	80.0		
/people/deceased_person/place_of_death	68	22.1		
/people/person/place_of_birth	162	12.0		
/location/country/administrative_divisions	424	0.2		

Performance of MultiR

Polation	Freebas	e Matches	MultiR		
Relation	#sents	% true	precision	recall	
/business/person/company	302	89.0	100.0	25.8	
/people/person/place_lived	450	60.0	80.0	6.7	
/location/location/contains	2793	51.0	100.0	56.0	
/business/company/founders	95	48.4	71.4	10.9	
/people/person/nationality	723	41.0	85.7	15.0	
/location/neighborhood/neighborhood_of	68	39.7	100.0	11.1	
/people/person/children	30	80.0	100.0	8.3	
/people/deceased_person/place_of_death	68	22.1	100.0	20.0	
/people/person/place_of_birth	162	12.0	100.0	33.0	
/location/country/administrative_divisions	424	0.2	N/A	0.0	

Overlapping Relations

Polation	Freebas	e Matches	MultiR		
Relation	#sents	% true	precision	recall	
/business/person/company	302	89.0	100.0	25.8	
/people/person/place_lived	450	60.0	80.0	6.7	
/location/location/contains	2793	51.0	100.0	56.0	
/business/company/founders	95	48.4	71.4	10.9	
/people/person/nationality	723	41.0	85.7	15.0	
/location/neighborhood/neighborhood_of	68	39.7	100.0	11.1	
/people/person/children	30	80.0	100.0	8.3	
<pre>/people/deceased_person/place_of_death</pre>	68	22.1	100.0	20.0	
/people/person/place_of_birth	162	12.0	100.0	33.0	
/location/country/administrative_divisions	424	0.2	N/A	0.0	

Running Time

- MultiR
 - Training: 1 minute
 - Testing: 1 second
- SoloR
 - Training: 6 hours
 - Testing: 4 hours

Sentence-level extractions are efficient

Joint reasoning across sentences is computationally expensive

Distant supervision: conclusions

- Distant supervision extracts high-precision patterns for a variety of relations
- Can make use of 1000x more data than simple supervised algorithms
- Syntax features almost always help
- The combination of syntax and lexical features is sometimes even better
- Syntax features are probably most useful when entities are far apart, often when there are modifiers in between

Relation extraction: 5 easy methods

- 1. Hand-built patterns
- 2. Bootstrapping methods
- 3. Supervised methods
- 4. Distant supervision
- 5. Unsupervised methods

DIRT (Lin & Pantel 2003)

- DIRT = Discovery of Inference Rules from Text
- Looks at MINIPAR dependency paths between noun pairs
 - $\circ N:subj:V \leftarrow find \rightarrow V:obj:N \rightarrow solution \rightarrow N:to:N$
 - $\circ~$ i.e., X finds solution to Y
- Applies "extended distributional hypothesis"
 - If two paths tend to occur in similar contexts, the meanings of the paths tend to be similar.
- So, defines path similarity in terms of cooccurrence counts with various slot fillers
- Thus, extends ideas of (Lin 1998) from *words* to *paths*

DIRT examples

The top-20 most similar paths to "X solves Y":

Y is solved by X X resolves Y X finds a solution to Y X tries to solve Y X deals with Y Y is resolved by X X addresses Y X seeks a solution to Y X do something about Y X solution to Y Y is resolved in X Y is solved through X X rectifies Y X copes with Y X overcomes Y X eases Y X eases Y X tackles Y X alleviates Y X corrects Y X is a solution to Y

Ambiguous paths in DIRT

• X addresses Y

- I addressed my letter to him personally.
- She addressed an audience of Shawnee chiefs.
- Will Congress finally address the immigration issue?
- X tackles Y
 - Foley tackled the quarterback in the endzone.
 - Police are beginning to tackle rising crime.
- X is a solution to Y
 - (5, 1) is a solution to the equation 2x 3y = 7
 - Nuclear energy is a solution to the energy crisis.

TextRunner (Banko et al. 2007)

- Self-supervised learner: automatically labels +/– examples & learns a crude relation extractor
- 2. Single-pass extractor: makes one pass over corpus, extracting candidate relations in each sentence
- 3. Redundancy-based assessor: assigns a probability to each extraction, based on frequency counts

Step 1: Self-supervised learner

- Run a parser over 2000 sentences
 - Parsing is relatively expensive, so can't run on whole web
 - $_{\circ}$ $\,$ For each pair of base noun phrases NP_i and NP_j $\,$
 - Extract all tuples $t = (NP_i, relation_{i,j}, NP_j)$
- Label each tuple based on features of parse:
 - Positive iff the dependency path between the NPs is short, and doesn't cross a clause boundary, and neither NP is a pronoun
- Now train a Naïve Bayes classifier on the labeled tuples
 - Using *lightweight* features like POS tags nearby, stop words, etc.

Step 2: Single-pass extractor

- Over a huge (web-sized) corpus:
 - Run a dumb POS tagger
 - Run a dumb Base Noun Phrase chunker
 - Extract all text strings between base NPs
 - Run heuristic rules to simplify text strings
 Scientists from many universities are intently studying stars
 → ⟨scientists, are studying, stars⟩
- Pass candidate tuples to Naïve Bayes classifier
- Save only those predicted to be "trustworthy"

Step 3: Redundancy-based assessor

- Collect counts for each simplified tuple $\langle scientists, are studying, stars \rangle \rightarrow 17$
- Compute likelihood of each tuple
 - $_{\circ}$ given the counts for each relation
 - $_{\circ}$ $\,$ and the number of sentences
 - o and a combinatoric balls-and-urns model [Downey et al. 05]

 $P(x \in C | x \text{ appears } k \text{ times in } n \text{ draws}) \approx$

$$\frac{1}{1 + \frac{|E|}{|C|} (\frac{p_E}{p_C})^k e^{n(p_C - p_E)}}$$

TextRunner demo

http://www.cs.washington.edu/research/textrunner/

(Note that they've re-branded TextRunner as ReVerb, but it's largely the same system.)

TextRunner examples

Probability	Count	Argl	Predicate	Arg2	
0.98	59	Smith	invented	the margherita	
0.97	49	Al Gore	invented	the Internet	
0.97	44	manufacturing plant	first invented	the automatic revolver	
0.97	41	Alexander Graham Bell	invented	the telephone	
0.97	36	Thomas Edison	invented	light bulbs	
0.97	29	Eli Whitney	invented	the cotton gin	
0.96	23	C. Smith	invented	the margherita	
0.96	19	the Digital Equipment Corporation manufacturing plant	first invented	the automatic revolver	
0.96	18	Edison	invented	the phonograph	

slide from Oren Etzioni

TextRunner results

- From corpus of 9M web pages, containing 133M sentences
- Extracted 60.5 million tuples
 - *FCI, specializes in, software development*
- Evaluation
 - Not well formed:
 - 〈demands, of securing, border〉 〈29, dropped, instruments〉
 - Abstract:
 - 〈Einstein, derived, theory〉 〈executive, hired by, company〉
 - True, concrete:
 - 〈Tesla, invented, coil transformer〉

Yao et al. 2012: motivation

- Goal: induce clusters of dependency paths which express the same semantic relation, like DIRT
- But, improve upon DIRT by properly handling semantic ambiguity of individual paths

Yao et al. 2012: approach

- 1. Extract tuples (entity, path, entity) from corpus
- 2. Construct feature representations of every tuple
- 3. Group the tuples for each path into sense clusters
- 4. Cluster the sense clusters into semantic relations

Extracting tuples

- Start with NYT corpus
- Apply lemmatization, NER tagging, dependency parsing
- For each pair of entities in a sentence:
 - \circ Extract dependency path between them, as in Lin
 - Form a tuple consisting of the two entities and the path
- Filter rare tuples, tuples with two direct objects, etc.
- Result: 1M tuples, 500K entities, 1300 patterns

Feature representation

- Entity names, as bags of words, prefixed with "I:" or "r:"
 - o ex: ("LA Lakers", "NY Knicks") => {I:LA, I:Lakers, r:NY, r:Knicks}
 - Using bag-of-words encourages overlap, i.e., combats sparsity
- Words between and around the two entities
 - Exclude stop words, words with capital letters
 - Include two words to the left and right
- Document theme (e.g. sports, politics, finance)
 - Assigned by an LDA topic model which treats NYTimes topic descriptors as words in a synthetic document
- Sentence theme
 - Assigned by a standard LDA topic model
Clustering tuples into senses

- Goal: group tuples for each path into coherent sense clusters
- Currently exploring multiple different approaches:
 - LDA-like topic models
 - Matrix factorization approaches
- Result: each tuple is assigned one topic/sense
- Tuples with the same topic/sense constitute a cluster

Sense cluster examples

Path	20:sports	30:entertainment	25:music/art		
	Americans, Ireland	Jean-Pierre Bacri, Jacques	Daniel Barenboim, recital of Mozart		
A play B	Yankees, Angels	Rita Benton, Gay Head Dance	Mr. Rose, Ballade		
	Ecuador, England	Jeanie, Scrabble	Gil Shaham, Violin Romance		
	Redskins, Detroit	Meryl Streep, Leilah Ms. Golabek, St			
	Red Bulls, F.C. Barcelona	Kevin Kline, Douglas Fairbanks	Bruce Springsteen, Saints		
doc theme	sports	music books television	music theater		
sen theme	game yankees	theater production book film show	music reviews opera		
lexical words	beat victory num-num won	played plays directed artistic	director conducted production r:theater r:hall r:york l:opera		
entity names		r:theater			

Sense clusters for path "A play B", along with sample entity pairs and top features.

Clustering the clusters!

- Now cluster sense clusters from different paths into semantic relations — this is the part most similar to Lin & Pantel 2003
- Use Hierarchical Agglomerative Clustering (HAC)
- Start with minimal clustering, then merge progressively
- Uses cosine similarity between sense-cluster feature
 vectors
 b
 c
 e
 f
- Uses complete-linkage strategy

Semantic relation results

relation	paths	
entertainment	A, who play B:30; A play B:30; star A as B:30	
sports	lead A to victory over B:20; A play to B:20, A play B:20; A's loss to B:20; A beat B:20; A trail B:20; A face B:26; A hold B:26; A play B:26; A acquire (X) from B:26; A send (X) to B:26;	
politics	A nominate B:39; A name B:39; A select B:39; A name B:42; A select B:42; A ask B:42; A choose B:42; A nominate B:42; A turn to B:42;	
law	A charge B:39; A file against B:39; A accuse B:39; A sue B:39	

Just like DIRT, each semantic relation has multiple paths.

But, one path can now appear in multiple semantic relations.

DIRT can't do that!

Evaluation against Freebase

System	Pairwise				B^3		
System	Prec.	Rec.	F-0.5	MCC	Prec.	Rec.	F-0.5
Rel-LDA/300	0.593	0.077	0.254	0.191	0.558	0.183	0.396
Rel-LDA/1000	0.638	0.061	0.220	0.177	0.626	0.160	0.396
HAC	0.567	0.152	0.367	0.261	0.523	0.248	0.428
Local	0.625	0.136	0.364	0.264	0.626	0.225	0.462
Local+Type	0.718	0.115	0.350	0.265	0.704	0.201	0.469
Our Approach	0.736	0.156	0.422	0.314	0.677	0.233	0.490
Our Approach+Type	0.682	0.110	0.334	0.250	0.687	0.199	0.460

Automatic evaluation against Freebase

HAC = hierarchical agglomerative clustering alone

(i.e. no sense disambiguation — most similar to DIRT)

Sense clustering adds 17% to precision!