
Sampling for graphical
models

Inference in Bayesian Networks
Goal: compute queries like or in words “the probability
of high intelligence given medium grade and low SAT?”

P(I = i1 |G = g2, S = s0)

P(L, G, S, D, I) = P(L |G)P(G |D, I)P(S | I)P(D)P(I)

Inference in Bayesian Networks
Goal: compute queries like or in words “the probability
of high intelligence given medium grade and low SAT?”

P(I = i1 |G = g2, S = s0)

Approaches:
• Exact inference by variable elimination:

P(L, G, S, D, I) = P(L |G)P(G |D, I)P(S | I)P(D)P(I)

P(I = i1 |G = g2, S = s0) =
P(I = i1, G = g2, S = s0)

P(G = g2, S = s0)

P(I = i1, G = g2, S = s0) = ∑
l,d

P(L = l, G = g2, S = s0, D = d, I = i1)

Inference in Bayesian Networks
Goal: compute queries like or in words “the probability
of high intelligence given medium grade and low SAT?”

P(I = i1 |G = g2, S = s0)

Approaches:
• Exact inference by variable elimination:

P(L, G, S, D, I) = P(L |G)P(G |D, I)P(S | I)P(D)P(I)

P(I = i1 |G = g2, S = s0) =
P(I = i1, G = g2, S = s0)

P(G = g2, S = s0)

P(I = i1, G = g2, S = s0) = ∑
l,d

P(L = l, G = g2, S = s0, D = d, I = i1)

= ∑
l,d

P(L = l |G = g2)P(G = g2 |D = d, I = i1)P(S = s0 | I = i1)P(D = d)P(I = i1)

Inference in Bayesian Networks
Goal: compute queries like or in words “the probability
of high intelligence given medium grade and low SAT?”

P(I = i1 |G = g2, S = s0)

Approaches:
• Exact inference by variable elimination:

P(L, G, S, D, I) = P(L |G)P(G |D, I)P(S | I)P(D)P(I)

P(I = i1 |G = g2, S = s0) =
P(I = i1, G = g2, S = s0)

P(G = g2, S = s0)

P(I = i1, G = g2, S = s0) = ∑
l,d

P(L = l, G = g2, S = s0, D = d, I = i1)

= ∑
l,d

P(L = l |G = g2)P(G = g2 |D = d, I = i1)P(S = s0 | I = i1)P(D = d)P(I = i1)

= (∑
d

P(G = g2 |D = d, I = i1)P(D = d))P(S = s0 | I = i1)P(I = i1)

P(G = g2, S = s0) = ∑
i

(∑
d

P(G = g2 |D = d, I = i)P(D = d))P(S = s0 | I = i)P(I = i)

Inference in Bayesian Networks
Goal: compute queries like or in words “the probability
of high intelligence given medium grade and low SAT?”

P(I = i1 |G = g2, S = s0)

P(I = i1 |G = g2, S = s0) =
P(I = i1, G = g2, S = s0)

P(G = g2, S = s0)Approaches:
• Exact inference by variable elimination

- Straightforward, but can be computationally prohibitive
• Variational inference

- Approximate, biased
• Sampling strategies

- Rejection sampling
- Importance weighted sampling
- MCMC

Rejection sampling

Rejection sampling
Goal: compute queries like or in words “the probability
of high intelligence given medium grade and low SAT?”

P(I = i1 |G = g2, S = s0)

P(I = i1 |G = g2, S = s0) =
P(I = i1, G = g2, S = s0)

P(G = g2, S = s0)

Rejection sampling
Goal: compute queries like or in words “the probability
of high intelligence given medium grade and low SAT?”

P(I = i1 |G = g2, S = s0)

P(I = i1 |G = g2, S = s0) =
P(I = i1, G = g2, S = s0)

P(G = g2, S = s0)

All outcomes

(G = g2, S = s0)(I = i1, G = g2, S = s0)

Draw samples using forward sampling and

Set and output

M {(Lk, Gk, Sk, Dk, Ik)}M
k=1

χ = {k : Gk = g2, Sk = s0}

̂P (I = i1 |G = g2, S = s0) =
1

| χ | ∑
k∈χ

1{Ik = i1, Gk = g2, Sk = s0}

Rejection sampling
Goal: compute queries like or in words “the probability
of high intelligence given medium grade and low SAT?”

P(I = i1 |G = g2, S = s0)

P(I = i1 |G = g2, S = s0) =
P(I = i1, G = g2, S = s0)

P(G = g2, S = s0)

𝔼[̂P (I = i1 |G = g2, S = s0)] = 𝔼[1
| χ | ∑

k∈χ

1{Ik = i1, Gk = g2, Sk = s0}]
=

∞

∑
n=1

𝔼[1
n ∑

k∈χ

1{Ik = i1, Gk = g2, Sk = s0} | χ | = n]ℙ(| χ | = n)

=
∞

∑
n=1

nP(I = i1 |G = g2, S = s0)
n

ℙ(| χ | = n)

Draw samples using forward sampling and

Set and output

M {(Lk, Gk, Sk, Dk, Ik)}M
k=1

χ = {k : Gk = g2, Sk = s0}

̂P (I = i1 |G = g2, S = s0) =
1

| χ | ∑
k∈χ

1{Ik = i1, Gk = g2, Sk = s0}

Unbiased estimator of !P(I = i1 |G = g2, S = s0)

Rejection sampling
Goal: compute queries like or in words “the probability
of high intelligence given medium grade and low SAT?”

P(I = i1 |G = g2, S = s0)

P(I = i1 |G = g2, S = s0) =
P(I = i1, G = g2, S = s0)

P(G = g2, S = s0)

How big goes M need to be to get an accurate estimate?

Draw samples using forward sampling and

Set and output

M {(Lk, Gk, Sk, Dk, Ik)}M
k=1

χ = {k : Gk = g2, Sk = s0}

̂P (I = i1 |G = g2, S = s0) =
1

| χ | ∑
k∈χ

1{Ik = i1, Gk = g2, Sk = s0}

All outcomes

(G = g2, S = s0)(I = i1, G = g2, S = s0)

Rejection sampling
Goal: compute queries like or in words “the probability
of high intelligence given medium grade and low SAT?”

P(I = i1 |G = g2, S = s0)

P(I = i1 |G = g2, S = s0) =
P(I = i1, G = g2, S = s0)

P(G = g2, S = s0)

Draw samples using forward sampling and

Set and output

M {(Lk, Gk, Sk, Dk, Ik)}M
k=1

χ = {k : Gk = g2, Sk = s0}

̂P (I = i1 |G = g2, S = s0) =
1

| χ | ∑
k∈χ

1{Ik = i1, Gk = g2, Sk = s0}

Rejection sampling takeaways:
- Very simple to implement
- May require an enormous amount of samples if the conditional statement is rare.

- Consider P(disease | symptoms). Any precise set of symptoms is going to be rare.

Importance sampling

Inference in Bayesian Networks
Goal: compute queries like or in words “the probability
of high intelligence given medium grade and low SAT?”

P(I = i1 |G = g2, S = s0)

P(I = i1 |G = g2, S = s0) =
P(I = i1, G = g2, S = s0)

P(G = g2, S = s0)Approaches:
• Exact inference by variable elimination

- Straightforward, but can be computationally prohibitive
• Variational inference

- Approximate, biased
• Sampling strategies

- Rejection sampling
- Importance weighted sampling
- MCMC

Importance sampling

Fix any function and suppose we wish to estimate f : 𝒳 → [0,1] μ = 𝔼P[f (X)]

If I draw and define then X1, …, XM ∼ P ̂μP :=
1
M

M

∑
i=1

f (Xi) 𝔼P[̂μP] = 𝔼P[f (X)]

Importance sampling

𝔼Q[1
M

M

∑
i=1

f (Yi)
P(Yi)
Q(Yi)] =

Fix any function and suppose we wish to estimate f : 𝒳 → [0,1] μ = 𝔼P[f (X)]

If I draw and define then Y1, …, YM ∼ Q ̂μQ :=
1
M

M

∑
i=1

f (Yi)
P(Yi)
Q(Yi)

𝔼Q[̂μQ] = 𝔼P[f (X)]

Importance sampling with candidate distribution Q:

If I draw and define then X1, …, XM ∼ P ̂μP :=
1
M

M

∑
i=1

f (Xi) 𝔼P[̂μP] = 𝔼P[f (X)]

Importance sampling

𝔼Q[1
M

M

∑
i=1

f (Yi)
P(Yi)
Q(Yi)] = 𝔼Q[f (Y1)

P(Y1)
Q(Y1)]

= ∑
x

Q(x) ⋅ f (x)
P(x)
Q(x)

= ∑
x

P(x) ⋅ f (x)

= 𝔼P[f (X)]

Fix any function and suppose we wish to estimate f : 𝒳 → [0,1] μ = 𝔼P[f (X)]

If I draw and define then Y1, …, YM ∼ Q ̂μQ :=
1
M

M

∑
i=1

f (Yi)
P(Yi)
Q(Yi)

𝔼Q[̂μQ] = 𝔼P[f (X)]

Importance sampling with candidate distribution Q:

If I draw and define then X1, …, XM ∼ P ̂μP :=
1
M

M

∑
i=1

f (Xi) 𝔼P[̂μP] = 𝔼P[f (X)]

Importance sampling

Moreover, as we have whereM → ∞
1
M

M

∑
i=1

f (Yi)
P(Yi)
Q(Yi)

∼ 𝒩(𝔼P[f (X)], σ2
Q /M)

σ2
Q = 𝔼Q[(f (Y)

P(Y)
Q(Y))2] − 𝔼Q[f (Y)

P(Y)
Q(Y)

]2
 is minimizes when σ2

Q

Q(x) ∝ | f (x) |P(x)= 𝔼P[f(X)2 P(X)
Q(X)

] − 𝔼P[f(X)]2

Fix any function and suppose we wish to estimate f : 𝒳 → [0,1] μ = 𝔼P[f (X)]

If I draw and define then Y1, …, YM ∼ Q ̂μQ :=
1
M

M

∑
i=1

f (Yi)
P(Yi)
Q(Yi)

𝔼Q[̂μQ] = 𝔼P[f (X)]

Importance sampling with candidate distribution Q:

If I draw and define then X1, …, XM ∼ P ̂μP :=
1
M

M

∑
i=1

f (Xi) 𝔼P[̂μP] = 𝔼P[f (X)]

Importance sampling

Example: rare event sampling

x

P(X) f (x) = 1{ |x − a | ≤ 1/2}
Q(X)

a

If I draw and define then Y1, …, YM ∼ Q ̂μQ :=
1
M

M

∑
i=1

f (Yi)
P(Yi)
Q(Yi)

𝔼Q[̂μQ] = 𝔼P[f (X)]

Importance sampling with candidate distribution Q:

Importance sampling

Example: rare event sampling

x

P(X) f (x) = 1{ |x − a | ≤ 1/2}
Q(X)

a

𝔼P[f (X)] = ∫x
P(x)1{ |x − a | ≤ 1/2}dx ≈ P(a)

σ2
Q ≈ P(a)2

σ2
P ≈ P(a)

 sampling from requires for relative error ⟹ Q M ≥ ϵ−2
̂μQ − μ
μ

≤ ϵ

 sampling from requires for relative error ⟹ P M ≥
ϵ−2

P(a)
̂μP − μ
μ

≤ ϵ

If I draw and define then Y1, …, YM ∼ Q ̂μQ :=
1
M

M

∑
i=1

f (Yi)
P(Yi)
Q(Yi)

𝔼Q[̂μQ] = 𝔼P[f (X)]

Importance sampling with candidate distribution Q:

Self-normalized Importance sampling

Self-normalized Importance sampling with candidate distribution Q:

Fix any function and suppose we wish to estimate f : 𝒳 → [0,1] μ = 𝔼P[f (X)]

If I draw and define then Y1, …, YM ∼ Q ̂μQ :=
1
M

M

∑
i=1

f (Yi)
P(Yi)
Q(Yi)

𝔼Q[̂μQ] = 𝔼P[f (X)]

Importance sampling with candidate distribution Q:

If I draw and define then X1, …, XM ∼ P ̂μP :=
1
M

M

∑
i=1

f (Xi) 𝔼P[̂μP] = 𝔼P[f (X)]

If I draw and define then Y1, …, YM ∼ Q ̂μ sn
Q :=

∑M
i=1 f (Yi)

P(Yi)
Q(Yi)

∑M
i=1

P(Yi)
Q(Yi)

𝔼Q[̂μQ] = 𝔼P[f (X)]

Biased but is asymptotically consistent since 𝔼Q[̂μ sn
Q] ≠ μ 𝔼Q[

P(Yi)
Q(Yi)

] = 1

Self-normalized Importance sampling

Self-normalized Importance sampling with candidate distribution Q:

Fix any function and suppose we wish to estimate f : 𝒳 → [0,1] μ = 𝔼P[f (X)]

If I draw and define then Y1, …, YM ∼ Q ̂μQ :=
1
M

M

∑
i=1

f (Yi)
P(Yi)
Q(Yi)

𝔼Q[̂μQ] = 𝔼P[f (X)]

Importance sampling with candidate distribution Q:

If I draw and define then X1, …, XM ∼ P ̂μP :=
1
M

M

∑
i=1

f (Xi) 𝔼P[̂μP] = 𝔼P[f (X)]

If I draw and define then Y1, …, YM ∼ Q ̂μ sn
Q :=

∑M
i=1 f (Yi)

P(Yi)
Q(Yi)

∑M
i=1

P(Yi)
Q(Yi)

𝔼Q[̂μQ] = 𝔼P[f (X)]

If we only know up to a normalizing

constant such that we have ,

we can use to obtain the same estimator:

P
P̃ (x) = ZP(x)

P̃
̂μ sn
Q =

∑M
i=1 f (Yi)

P̃ (Yi)
Q(Yi)

∑M
i=1

P̃ (Yi)
Q(Yi)

=
∑M

i=1 f (Yi)
P(Yi)
Q(Yi)

∑M
i=1

P(Yi)
Q(Yi)

Bayesian Network Inference with Importance Sampling

P(X) := P(L, G, S, D, I)

If and denotes a Bayesian network then as we
saw earlier, sampling from conditionals of directly is awkward and
inefficient. Can we define a convenient Q and use important sampling?

X := (L, G, S, D, I) P(X)
P

= P(L |G)P(G |D, I)P(S | I)P(D)P(I)

Bayesian Network Inference with Importance Sampling

P(X) := P(L, G, S, D, I)
= P(L |G)P(G |D, I)P(S | I)P(D)P(I)

QI=i1,G=g2(Y) = P(L |G = g2)P(S | I = i1)P(D)

If and denotes a Bayesian network then as we
saw earlier, sampling from conditionals of directly is awkward and
inefficient. Can we define a convenient Q and use important sampling?

X := (L, G, S, D, I) P(X)
P

“Mutilated” network ℬI=i1,G=g2Original network ℬ

Bayesian Network Inference with Importance Sampling

P(X) := P(L, G, S, D, I)
= P(L |G)P(G |D, I)P(S | I)P(D)P(I)

QI=i1,G=g2(Y) = P(L |G = g2)P(S | I = i1)P(D)

“Mutilated” network ℬI=i1,G=g2Original network ℬ

Note that P(I = i1, G = g2) = 𝔼P[1{I = i1, G = g2}]

= 𝔼Q[
1
M

M

∑
k=1

1{Ik = i1, Gk = g2}
P(Yk)
Q(Yk)]

If is a rare event, this could require substantial fewer samples!{I = i1, G = g2}

Bayesian Network Inference with Importance Sampling

P(X) := P(L, G, S, D, I)
= P(L |G)P(G |D, I)P(S | I)P(D)P(I)

QI=i1,G=g2(Y) = P(L |G = g2)P(S | I = i1)P(D)

Note that P(I = i1, G = g2) = 𝔼P[1{I = i1, G = g2}]

= 𝔼Q[
1
M

M

∑
k=1

1{Ik = i1, Gk = g2}
P(Yk)
Q(Yk)]

If is a rare event, this could require substantial fewer samples!{I = i1, G = g2}

How do we compute ? Let
P(Y)
Q(Y)

Y = (L = l, g = g2, S = s, D = d, I = i1)

Then
P(Y)
Q(Y)

=
P(L = l, g = g2, S = s, D = d, I = i1)

QI=i1,G=g2(L = l, g = g2, S = s, D = d, I = i1)

Bayesian Network Inference with Importance Sampling

P(X) := P(L, G, S, D, I)
= P(L |G)P(G |D, I)P(S | I)P(D)P(I)

QI=i1,G=g2(Y) = P(L |G = g2)P(S | I = i1)P(D)

Note that P(I = i1, G = g2) = 𝔼P[1{I = i1, G = g2}]

= 𝔼Q[
1
M

M

∑
k=1

1{Ik = i1, Gk = g2}
P(Yk)
Q(Yk)]

If is a rare event, this could require substantial fewer samples!{I = i1, G = g2}

How do we compute ? Let
P(Y)
Q(Y)

Y = (L = l, g = g2, S = s, D = d, I = i1)

Then
P(Y)
Q(Y)

=
P(L = l, g = g2, S = s, D = d, I = i1)

QI=i1,G=g2(L = l, g = g2, S = s, D = d, I = i1)

=
P(G = g2 |D = d, I = i1)P(I = i1)

1

Note: all but the
“mutilated” terms
cancel.

Bayesian Network Inference with Importance Sampling

Theorem: If the above algorithm is run on the mutilated network wrt to a set of

set variables z and represents its probability, then . Q(Y) w =
P(Y)
Q(Y)

Bayesian Network Inference with Importance Sampling

Theorem: If the above algorithm is run on the mutilated network wrt to a set of

set variables z and represents its probability, then . Q(Y) w =
P(Y)
Q(Y)

Algorithm to estimate :
1. Execute algorithm on previous slide times with event
2. Get back

3. Set

P(χ(X) = z)
M {χ(X) = z}

(Y1, w1), …, (YM, wM)

̂P (χ(X) = z) =
1
M

M

∑
k=1

1{χ(Yk) = z}wk

Takeaway: is an unbiased estimator of .
By the properties of importance sampling estimators of the previous slides, if Q is
close to P, the critical size of may not even depend on , even if it is
very rare. But if Q is very far, this could be worse than rejection sampling.

̂P (χ(X) = z) P(χ(X) = z)

M P(χ(X) = z)

Bayesian Network Inference with Importance Sampling

How do we use estimators like to compute

conditional queries like ?

̂P (χ(X) = z) =
1
M

M

∑
k=1

1{χ(Yk) = z}wk

P(I = i1 |G = g2, S = s0)

P(I = i1 |G = g2, S = s0) =
P(I = i1, G = g2, S = s0)

P(G = g2, S = s0)

Ratio method

Use M samples to compute
̂P (I = i1, G = g2, S = s0)

̂P (G = g2, S = s0)

and take the ratio!

Self-normalized method

Collect data

using event

(Y1, w1), …, (YM, wM)
{G = g2, S = s0}

Use M’ samples to compute

Output

∑M

k=1 1{Ik = i1, Gk = g2, Sk = s0}wk

∑M
k=1 wk

Numerator and denominator unbiased:

𝔼Q[wk] = 𝔼Q[wk1{Gk = g2, Sk = s0}]
= P(G = g2, S = s0)Numerator and denominator unbiased.

MCMC

Inference in Bayesian Networks
Goal: compute queries like or in words “the probability
of high intelligence given medium grade and low SAT?”

P(I = i1 |G = g2, S = s0)

P(I = i1 |G = g2, S = s0) =
P(I = i1, G = g2, S = s0)

P(G = g2, S = s0)Approaches:
• Exact inference by variable elimination

- Straightforward, but can be computationally prohibitive
• Variational inference

- Approximate, biased
• Sampling strategies

- Rejection sampling
- Importance weighted sampling
- MCMC

Markov Chain Monte Carlo (MCMC)
Goal: compute queries like or in words “the probability
of high intelligence given medium grade and low SAT?”

P(I = i1 |G = g2, S = s0)

P(I = i1 |G = g2, S = s0) =
P(I = i1, G = g2, S = s0)

P(G = g2, S = s0)

Sampling from the “mutilated” network will give you sample such that
. The problem is that this sample is drawn from

and not . Importance sampling tries to “correct” the
misalignment by weighting the sample appropriately.

MCMC starts with the candidate distribution and then evolves the
distribution slowly over time until it converges . Sampling
from this distribution results in a sample from

{G = g2, s = s0} QI=i1,G=g2(Y)

P(I = i1 |G = g2, S = s0)

π(0) := Q
π(t) π(t) → π* := P

P

Gibbs sampling

P(Xi |x−i) = P(Xi |MarkovBlanket(i))

= P(Xi |parents(i)) ∏
j∈child(i)

P(xj |parents(j))

Figure credit: Pedro Domingos

Gibbs sampling

Figure credit: https://jessicastringham.net/2018/05/09/gibbs-sampling/

Markov Chain Monte Carlo (MCMC)

Gibb’s sampling is just one example of a MCMC algorithm.

In general, the approach to sampling from distribution :

- Construct a Markov chain transition kernel whose
stationary distribution is equal to

- Start with a realization drawn from an arbitrary
starting distribution

- Run Markov chain to evolve (equiv.)
and return sample once convergence

π*

T : 𝒳 → 𝒳
π*

x(0) ∼ π(0)

π(0)

x(t) ↦ x(t+1) π(t) → π(t+1)

π(t) ≈ π*

Is it guaranteed to converge? How fast does it converge?

Markov Chain Monte Carlo (MCMC)

Consider a Markov chain defined by: Txy = ℙ(xt+1 = y |xt = x)

We say a Markov chain is reversible if there exists a distribution that
satisfies the detailed balance equation:

 for all

If such a exists, then it is a stationary distribution satisfying

.

π

πxTxy = πyTyx x, y

π

π⊤T = π⊤

Markov Chain Monte Carlo (MCMC)

Consider a Markov chain defined by: Txy = ℙ(xt+1 = y |xt = x)

We say a Markov chain is reversible if there exists a distribution that
satisfies the detailed balance equation:

 for all

If such a exists, then it is a stationary distribution satisfying

.

Proof:

π

πxTxy = πyTyx x, y

π

π⊤T = π⊤

[π⊤T]y = ∑
x

πxTxy = ∑
x

πyTyx = πy

Idea: construct a reversible Markov chain with respect to target
distribution , and run the chain until it mixes to the stationary distributor

T
π π

Markov Chain Monte Carlo (MCMC)

Consider a Markov chain defined by: Txy = ℙ(xt+1 = y |xt = x)

We say a Markov chain is reversible if there exists a distribution that
satisfies the detailed balance equation:

 for all

If such a exists, then it is a stationary distribution satisfying

.

A chain is regular if there exists a such that .

Theorem: If a chain is regular then its stationary distribution is unique.

If and the chain is irreducible, then the chain is regular.

π

πxTxy = πyTyx x, y

π

π⊤T = π⊤

k ∈ ℕ [Tk]x,y>0

Txx > 0

Markov Chain Monte Carlo (MCMC)

Revisit Gibb’s sampling as MCMC:

 Txy =
1
d

d

∑
i=1

ℙ(yi |y−i = x−i)1{y−i = x−i}

πxTxy =
1
d

d

∑
i=1

ℙ(yi |y−i = x−i)1{y−i = x−i}πx

=
1
d

d

∑
i=1

πy1{y−i = x−i}ℙ(xi |x−i = y−i)

= πyTyx

Gibb’s sampling is reversible but not necessarily regular (no guarantee of converging to)π

Metropolis-Hastings Algorithm

The problem with Gibbs is that the chain wasn’t guaranteed to traverse the entire space.
Can we construct a chain that is reversible and regular?

Idea: construct a random walk chain that is guaranteed to traverse everywhere, then bias
it towards the target distribution π

Let be a regular Markov chain whose support includes support of Kxy π

Define Txy =
Kxy min{1,

πyKyx

πxKxy
} if x ≠ y

Kxx + ∑y≠x Kxy(1 − Kxy) otherwise.

Metropolis-Hastings Algorithm

The problem with Gibbs is that the chain wasn’t guaranteed to traverse the entire space.
Can we construct a chain that is reversible and regular?

Idea: construct a random walk chain that is guaranteed to traverse everywhere, then bias
it towards the target distribution π

Let be a regular Markov chain whose support includes support of Kxy π

Define Txy =
Kxy min{1,

πyKyx

πxKxy
} if x ≠ y

Kxx + ∑y≠x Kxy(1 − Kxy) otherwise.

Implementation: Given draw with probability . Set with probability

, otherwise set .

xt y Kxt y xt+1 = y

min{1,
πyKyxt

πxt
Kxt y

} xt+1 = xt

Metropolis-Hastings Algorithm

The problem with Gibbs is that the chain wasn’t guaranteed to traverse the entire space.
Can we construct a chain that is reversible and regular?

Idea: construct a random walk chain that is guaranteed to traverse everywhere, then bias
it towards the target distribution π

Let be a regular Markov chain whose support includes support of Kxy π

Define Txy =
Kxy min{1,

πyKyx

πxKxy
} if x ≠ y

Kxx + ∑y≠x Kxy(1 − Kxy) otherwise.

Note:
• The MH transition kernel satisfies by construction, thus reversible.

• Since is regular, so is . Thus, this chain converges to !

Txy πxTxy = πyTyx

Kxy Txy π

Metropolis-Hastings Algorithm

The problem with Gibbs is that the chain wasn’t guaranteed to traverse the entire space.
Can we construct a chain that is reversible and regular?

Idea: construct a random walk chain that is guaranteed to traverse everywhere, then bias
it towards the target distribution π

Let be a regular Markov chain whose support includes support of Kxy π

Define Txy =
Kxy min{1,

πyKyx

πxKxy
} if x ≠ y

Kxx + ∑y≠x Kxy(1 − Kxy) otherwise.

If then natural to take

Warning: if too small, exploration is slow and takes a very long time to traverse space.
If is too large, you’ll leave the support of and samples will keep getting rejected.

𝒳 ⊂ ℝd Kxy = 1

2πσd
exp(−∥x − y∥2/2σ2)

σ
σ π

Metropolis-Hastings Algorithm

The problem with Gibbs is that the chain wasn’t guaranteed to traverse the entire space.
Can we construct a chain that is reversible and regular?

Idea: construct a random walk chain that is guaranteed to traverse everywhere, then bias
it towards the target distribution π

Let be a regular Markov chain whose support includes support of Kxy π

Define Txy =
Kxy min{1,

πyKyx

πxKxy
} if x ≠ y

Kxx + ∑y≠x Kxy(1 − Kxy) otherwise.

You only need to evaluate so you don’t need to know normalization constant of Markov

Networks

πy

πx
π(x) =

1
Z

∏(i, j)∈E ϕi, j(xi, xj)

MCMC in continuous domains

MH Algorithm with Gaussian candidate distribution:
Init:
For

Draw

Set with probability , otherwise

θ0 ∈ ℝd

t = 1,2,…
θ̃t+1 ∼ 𝒩(θt, σ2I)

θt+1 = θ̃t+1 min{1,
π(θ̃t+1)
π(θt)

} θt+1 = θt

If then natural to take

Warning: if too small, exploration is slow and takes a very long time to traverse space.
If is too large, you’ll leave the support of and samples will keep getting rejected.

𝒳 ⊂ ℝd Kxy = 1

2πσd
exp(−∥x − y∥2/2σ2)

σ
σ π

Define Txy =
Kxy min{1,

πyKyx

πxKxy
} if x ≠ y

Kxx + ∑y≠x Kxy(1 − Kxy) otherwise.

MCMC in continuous domains

MH Algorithm with Gaussian candidate distribution:
Init:
For

Draw

Set with probability , otherwise

θ0 ∈ ℝd

t = 1,2,…
θ̃t+1 ∼ 𝒩(θt, σ2I)

θt+1 = θ̃t+1 min{1,
π(θ̃t+1)
π(θt)

} θt+1 = θt

If then natural to take

Warning: if too small, exploration is slow and takes a very long time to traverse space.
If is too large, you’ll leave the support of and samples will keep getting rejected.

𝒳 ⊂ ℝd Kxy = 1

2πσd
exp(−∥x − y∥2/2σ2)

σ
σ π

Define Txy =
Kxy min{1,

πyKyx

πxKxy
} if x ≠ y

Kxx + ∑y≠x Kxy(1 − Kxy) otherwise.

This is hill climbing in a random direction.
Very similar to derivative free optimization.
EXTREMELY inefficient in large dimensions

MCMC in continuous domains

If then natural to take 𝒳 ⊂ ℝd Kxy = 1

2πσd
exp(−∥x − y∥2/2σ2)

Define Txy =
Kxy min{1,

πyKyx

πxKxy
} if x ≠ y

Kxx + ∑y≠x Kxy(1 − Kxy) otherwise.

Langevin Monte Carlo (LMC) takes Kxy = 1
(2πσ2)d/2 exp(−∥x+ σ2

2 ∇zlog(π(z)) |z=x − y∥2/2σ2)

As the acceptance probability and the chain just becomesσ → 0 min{1,
πyKyx

πxKxy
} → 1

xt+1 = xt+
σ2

2 ∇zlog(π(z)) |z=xt
+ σ2ηt ηt ∼ 𝒩(0,I)

which is what people use in practice. Converges much faster than traditional MH.

Hit and run sampling

Frequently we have a set and we would like to sample from a uniform
measure over this set. Useful in its own right, but can also be used for a candidate
distribution to sample from.

K ⊂ ℝd

Hit and run sampling:
Initialize:
For

Pick a uniformly distributed random line through
Set to a uniform random point along

a1 ∈ K
t = 1,2,…

ℓ at
at+1 ℓ ∩ K

Claim: Under benign smoothness
conditions on , Hit and run converges
to a uniform stationary distribution.

K

Hit and run sampling

Frequently we have a connected set and we would like to sample from a
uniform measure over this set. Useful in its own right, but can also be used for a
candidate distribution to sample from.

K ⊂ ℝd

Hit and run sampling:
Initialize:
For

Pick a uniformly distributed random line through
Set to a uniform random point along

a1 ∈ K
t = 1,2,…

ℓ at
at+1 ℓ ∩ K

Claim: Under benign smoothness
conditions on , Hit and run converges
to a uniform stationary distribution.

K

Proof by vacuum:

MCMC Convergence

Okay, so we now have a reversible and regular Markov chain that is

guaranteed to converge to our target distribution as its stationary
distribution. How long do we have to wait for convergence?

Txy

π

The -mixing time of chain T is the smallest time such that for all

.

ϵ t > Tmin(ϵ)
∥π(0)Tt − π∥TV ≤ ϵ

Theorem: where is the second largest eigenvalue of .Tmix(ϵ) = O(1
1 − λ2

) λ2 < 1 T

Proof sketch: consider special case where is diagonalizable so that

Fact: The largest eigenvalue of is with and .

T T = Udiag(λ)U−1

T λ1 = 1 π⊤T = π⊤ T1 = 1

∥π⊤
0 Tt − π∥TV = ∥(π⊤

0 − π⊤)Tt∥TV ≤ n∥(π⊤
0 − π⊤)Tt∥2 = n∥(π⊤

0 − π⊤)
n

∑
i=2

uiv⊤
i λt

i∥2 ≤ 2nλ t
2

Tmix(ϵ) ≤
log(2n /ϵ)
log(1/λ2) ≤

log(2n /ϵ)
1 − λ2

Deterministic methods

Core sets

We wish to estimate .

If mass is concentrated on just a small number of heavy hitters s.t.
Then we just need to cover these elements to answer many queries.

Identifying these heavy hitters is an inference task in itself, but may dwarf the computation
of sampling. Very heuristic-y but could be effective

𝔼P[1{X ∈ A}] = ∑
i

P(xi)1{xi ∈ A}

ℙ(X ∈ {xi}k
i=1) ≥ .99

Quasi Monte Carlo

At the end of the day we wish to estimate .

Suppose we knew . Why are we sampling instead of approximating the integral?

𝔼P[1{X ∈ A}] = ∫x
P(x)1{x ∈ A}dx

P

Example: Let and , set P = uniform([0,1]) A ⊂ [0,1] μ = 𝔼P[1{X ∈ A}]

10

A

x

Draw , set x1, …, xn ∼ P ̂μ =
1
n

n

∑
i=1

1{xi ∈ A} Set μ̃ =
1
n

n

∑
i=1

1{ i − 1/2
n ∈ A}

𝔼[| ̂μ − μ |] ≈
1

n
𝔼[| μ̃ − μ |] ≤

1
n

Quasi Monte Carlo

At the end of the day we wish to estimate .

Suppose we knew . Why are we sampling instead of approximating the integral?

𝔼P[1{X ∈ A}] = ∫x
P(x)1{x ∈ A}dx

P

Sobol SequenceRandom Uniform

𝔼[| ̂μ − μ |] ≈
1

n 𝔼[| μ̃ − μ |] ≤
log(n)d−1

n

