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Inference in Bayesian Networks

Goal: compute queries like P(I = i' |G = g2, S = sY) or in words “the probability
of high intelligence given medium grade and low SAT?”
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P(L,G,S,D,I)=P(L|G)P(G|D,DHP(S|I)P(D)P)



Inference in Bayesian Networks

Goal: compute queries like P(I = i' |G = g2, S = sY) or in words “the probability
of high intelligence given medium grade and low SAT?”

PI=i,G=g%S=s"
PU=i"1G =g 5 =50 =" d )
Approaches: P(G = g2, 8 =sY)
e Exact inference by variable elimination:

P(L,G,S,D,I)=P(L|G)P(G|D,P(S|I)P(D)P)

p(]:il,G=g2,S=S0)=ZP(L=1,G=g2,S=SO,D=d,I=i1)
l,d



Inference in Bayesian Networks

Goal: compute queries like P(I = i' |G = g2, S = sY) or in words “the probability
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Inference in Bayesian Networks

Goal: compute queries like P(I = i' |G = g2, S = sY) or in words “the probability
of high intelligence given medium grade and low SAT?”

PI=i,G=g%S=s"
PU=i"1G =g 5 =50 =" d )
Approaches: P(G = g2, 8 =sY)
e Exact inference by variable elimination:
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Inference in Bayesian Networks

Goal: compute queries like P(I = i' |G = g2, S = sY) or in words “the probability
of high intelligence given medium grade and low SAT?”

| — 2 — <0
PUI=i'|G = g% 8 = 5% = Pl=i,G=g*S5S=s")
Approaches: P(G = g2, 8 =sY)
¢ Exact inference by variable elimination
- Straightforward, but can be computationally prohibitive
¢ Variational inference
- Approximate, biased
e Sampling strategies
- Rejection sampling
- Importance weighted sampling
- MCMC




Rejection sampling
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Rejection sampling

Goal: compute queries like P(I = i' |G = g2, S = sY) or in words “the probability
of high intelligence given medium grade and low SAT?”
PI=i',G=g%S5=s"

PI=i'|G=¢%285=sY=
( | g ) PG = 2.5 = s0)

Algorithm 12.1 Forward Sampling in a Bayesian network
Procedure Forward-Sample (

B I/ Bayesian network over X
)

1 Let X1,...,X, be a topological ordering of X

2 fori=1,...,n

3 u; < x(Pax,) I/ Assignment to Pax, in z1,...,%i—1
|

d

Sample z; from P(X; | u;)
return (z1,...,Z,)




Rejection sampling

Goal: compute queries like P(I = il |G = gz, S = SO) or in words “the probability
of high intelligence given medium grade and low SAT?”
PI=i',G=g%S5=s"

PI=i'|G=g%85=s"=
( | g ) PG = 225 = 5

Draw M samples {(L;, G, Sy, Dy, Ik)}flz1 using forward sampling and
Sety = {k: G, = g%, 5, = 5"} and output

s 1
PU=i'|G=g%S=s)=— 1{],=i'.G, =g 5, ="}
X key

All outcomes




Rejection sampling

Goal: compute queries like P(I = i! |G = gz, S = SO) or in words “the probability

of high intelligence given medium grade and low SAT?”

PI=i',G=g%S5=s"
P(G =g%5=19

PUl=i'|G=g%S=5")=

Draw M samples {(L;, G, Sy, Dy, Ik)}flz1 using forward sampling and
Sety = {k : G, = g%, 5, = 5"} and output

PU=i'1G=g%L85=s"= —Zl{lk—z G, =g2S, =s°)
X key

Zl{lk—l G, = g%, =s"}
key

E[ﬁ(1=i1|G=g2,S=s0)] _ [le

_i[gl Sl =G =% 5, =5 | x| = n| Lyl =
n=1

key

°°nP(I—z|G g%, S =59
Z P(lxI=n)  Unbiased estimator of P(I = i'|G = g2, § = s°)!
n=1



Rejection sampling

Goal: compute queries like P(I = il |G = gz, S = SO) or in words “the probability

of high intelligence given medium grade and low SAT?”

PI=i',G=g%S5=s"
P(G =g%5=19

PUl=i'|G=g%S=5")=

Draw M samples {(L;, G, Sy, Dy, Ik)}flz1 using forward sampling and
Sety = {k: G, = g%, 5, = 5"} and output

s 1
PU=i'|G=g%S=s)=— 1{],=i'.G, =g 5, ="}
X key

How big goes M need to be to get an accurate estimate?

All outcomes




Rejection sampling

Goal: compute queries like P(I = i! |G = gz, S = SO) or in words “the probability

of high intelligence given medium grade and low SAT?”

PI=i',G=g%S5=s"
P(G =g%5=19

PUl=i'|G=g%S=5")=

Draw M samples {(L;, G, Sy, Dy, Ik)}flz1 using forward sampling and
Sety = {k : G, = g%, 5, = 5"} and output

s 1
P(I=i1|G=g2,S=SO)=—21{Ik=i1,Gk=g2,Sk=s0}
X key

Rejection sampling takeaways:
- Very simple to implement
- May require an enormous amount of samples if the conditional statement is rare.
- Consider P( disease | symptoms ). Any precise set of symptoms is going to be rare.
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Inference in Bayesian Networks

Goal: compute queries like P(I = i' |G = g2, S = sY) or in words “the probability
of high intelligence given medium grade and low SAT?”

| — 2 — 0
PUI=i'|G = g% 8 = 5% = Pl=i,G=g*S5S=s")
Approaches: P(G = g% 5 =59
¢ Exact inference by variable elimination
- Straightforward, but can be computationally prohibitive
¢ Variational inference
- Approximate, biased
e Sampling strategies
- Rejection sampling V
- Importance weighted sampling
- MCMC




Importance sampling

Fix any function f : & — [0,1] and suppose we wish to estimate 4 = Ep[ f(X)]

. _ 13 A
If ldraw X, ..., X;; ~ P and define up := sz(xi) then [EP[,MP] = Ep[ f(X)]
i=1



Importance sampling

Fix any function f : & — [0,1] and suppose we wish to estimate 4 = Ep[ f(X)]

.13 R
If I draw X, ..., X, ~ P and define up:=— ) f(X)then Ep|up| = Ep[f(X)]
1 M P i plHP P
i=1

Importance sampling with candidate distribution Q:

N -
If Idraw Y, ..., Y, ~ O and define u, :=— ) f(Y)
1 M 0] M i

i=1

P(Y))
oY)

then Eg|fio| = ELf(X)]



Importance sampling

Fix any function f : & — [0,1] and suppose we wish to estimate 4 = Ep[ f(X)]
M

1 A
If ldraw X, ..., X,; ~ P anddefine jip:=— ) f(X)then Ep|up| = Ep[f(X)]
1 M PI= 7 i plHPp P
i=1

Importance sampling with candidate distribution Q

If Idraw Y;, ..., Yy, ~ Qanddefme/,tQ =—2f( f)

P )the [EQ[,u

o o| = ELr00N

[ Zf( )Q(Y)]_ o 1)Q(an;]

=Y 0w - f)
- 0()

=) P()-f()
= Eplf(X)]



Importance sampling

Fix any function f : & — [0,1] and suppose we wish to estimate 4 = Ep[ f(X)]

L1 "
If I draw X, ..., X, ~ P and define up:=— ) f(X)then Ep|up| = Ep[f(X)]
1 M P i plHP P
i=1

Importance sampling with candidate distribution Q:

LS, PO
If Idraw Y, ..., Y, ~ O and define u, :=— ) f(Y)
1 M 0] M i
i=1

oY)

then Eg|fio| = ELf(X)]

1 P(Y)) ,
Moreover, as M — oo we have — Zf(Yi)— ~ /V([EP[f(X)], GQ/M) where
M= o)

P(Y) P(Y)

2 _ 27 _ 72
% = [EQ[<f(Y) Q(Y)) 1= Eolf(¥) Q(Y)] 64, is minimizes when

P(X) O(x) « | f(x)| P(x)
= E, [ A(X)>——=1 = E, [ f(X))?
s f(X) Q(X)] HLf(X)]



Importance sampling

Importance sampling with candidate distribution Q:

1K, PO "
IfIdraw Y, ..., Y, ~ Q and define ji, := sz(yi) o) then [EQ[uQ] = Ep[f(X)]
i=1 ‘

Example: rare event sampling

Q(X)
| PX) \ fx)=1{|x—al| <1/2}

i




Importance sampling

Importance sampling with candidate distribution Q:

. 1 & P(Y)
If Idraw Y}, ..., ¥}, ~ Q and define y, := 7 Zf(Yi)
i=1

o) en Eo| o] = B /001

Example: rare event sampling

Q(X)
| PX) \ fx)=1{|x—al| <1/2}

i

X a

Eplf(X)] = [ P)1{|x—a| <1/2}dx ~ P(a)

X A

05 R Pa)y = sampling from Q requires M > e~ for relative error

€2 [0
for relative error
P(a) I

01% ~ P(a) = sampling from P requires M >



Self-normalized Importance sampling

Fix any function f : & — [0,1] and suppose we wish to estimate 4 = Ep[ f(X)]
M

N\ 1 P
If I draw X, ..., X, ~ P and define up:=— ) f(X)then Ep|up| = Ep[f(X)]
1 M P i plHP P
i=1

Importance sampling with candidate distribution Q

If Idraw Y, ..., Y}, ~ O and define [[Q: —Zf( )

the [EQ[ ]_[EP[f(X)]

Self-normalized Importance sampling with candidate distribution Q:

P(Y)

zl lf( )Q(Y)
ZM P(Y))
=1 O(Y)

If I draw Yy, ..., ¥, ~ Q and define ji) := then [EQ[[[Q] = Ep[f(X)]

P(Y))
Biased [EQ[,u "] # u but is asymptotically consistent since [EQ[%] =1



Self-normalized Importance sampling

Fix any function f : & — [0,1] and suppose we wish to estimate 4 = Ep[ f(X)]

L1 "
If I draw X, ..., X, ~ P and define up:=— ) f(X)then Ep|up| = Ep[f(X)]
1 M P i plHP P
i=1

Importance sampling with candidate distribution Q:

.1
If Idraw Y|, ..., Y;; ~ O and define Ko = sz(Yi)
i=1

Y)
Y,

then Eo| To| = E LX)

P(
o

Self-normalized Importance sampling with candidate distribution Q:

M P(Y))
Ifldraw Yy, ..., Yy, ~ Q and define i) := ) — then [EQ[,uQ] = Ep[f(X)]
Zi=1 oY)
If we only know P up to a noinalizing ZM 1) ) ZM 1) P(Y)
constant such that we have P (x) = ZP(x), fn — =1 o) ~iElT o)
~ Q Py P(Y))
: : _ M PX) M i
we can use P to obtain the same estimator: Zi:l o Zizl oY)



Bayesian Network Inference with Importance Sampling
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P(X):=P(L,G,S,D,I)
= P(L|G)P(G|D,)P(S|P(D)P()

fX = (,G,S,D,I)and P(X) denotes a Bayesian network then as we
saw earlier, sampling from conditionals of P directly is awkward and
inefficient. Can we define a convenient Q and use important sampling?



Bayesian Network Inference with Importance Sampling
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P(X):=P(L,G,S,D,I) Qi g=(Y) = P(L|G = g*)P(S|I = i")P(D)

= P(L|G)P(G|D,)P(S|P(D)P()

fX = (,G,S,D,I)and P(X) denotes a Bayesian network then as we
saw earlier, sampling from conditionals of P directly is awkward and
inefficient. Can we define a convenient Q and use important sampling?



Bayesian Network Inference with Importance Sampling
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P(X):=P(L,G,S,D,I) Qi g=(Y) = P(L|G = g*)P(S|I = i")P(D)

= P(L|G)P(G|D,)P(S|I)P(D)P(I)
Note that P(I = i!,G = g°) = Ep[1{I = i!,G = g°}]
P(Y)

| M
_ . z: _ 1 _ .2
If {I = i',G = gz} is a rare event, this could require substantial fewer samples!




Bayesian Network Inference with Importance Sampling

P(Y) [ R
Y)? letY=(L=Lg=g°,S=s,D=d,[=1i")

How do we compute

P(Y) PL=1Lg=g*S=s,D=d I=i)
N =
OY) OQOrigpL=1g=g%S=s5D=dI=il)

The

P(X):=P(L,G,S,D,I) Qi g=(Y) = P(L|G = g*)P(S|I = i")P(D)
= P(L|G)P(G|D,)P(S|I)P(D)P(I)

Note that P(I = i!,G = g°) = Ep[1{I = i',G = g°}]
1 ¥ P(Y,)
— _ I | 2 k
= EQ[MEI{Ik—z .Gy =8V 505
If {I = i',G = gz} is a rare event, this could require substantial fewer samples!




Bayesian Network Inference with Importance Sampling

P(Y) [ R
Y)? letY=(L=Lg=g°,S=s,D=d,[=1i")

How do we compute

P(Y) PL=1Lg=g*S=s,D=d I=i)
N =
OY) OQOrigpL=1g=g%S=s5D=dI=il)

The

_ P(G=g*|D=dI=i"PU=i"
a 1

P(X):=P(L,G,S,D,I) Qi g=(Y) = P(L|G = g*)P(S|I = i")P(D)
= P(L|G)P(G|D,)P(S|I)P(D)P(I)

Note that P(I = i!,G = g°) = Ep[1{I = i',G = g°}]
1 ¥ P(Y,)
— _ I | 2 k
= EQ[MEI{Ik—z .Gy =8V 505
If {I = i',G = gz} is a rare event, this could require substantial fewer samples!




Bayesian Network Inference with Importance Sampling

Algorithm 12.2 Likelihood-weighted particle generation

Procedure LW-Sample (
B, Il Bayesian network over X
Z = z |/ Event in the network

1 Let X1,...,X, be a topological ordering of X

2 w1

3 fori=1,...,n

4 u; — x(Payx,) I/ Assignment to Pax, in z1,...,Z;—1

5 if X; & Z then

6 Sample z; from P(X; | u;)

7 else

8 x; < 2z(X;) Il Assignment to X; in z

9 w < w- P(z; | w;) /] Multiply weight by probability of desired value
10 return (21,...,ZT,),w

Theorem: If the above algorithm is run on the mutilated network wrt to a set of
P(Y)

set variables zand Q(Y) represents its probability, then w = %




Bayesian Network Inference with Importance Sampling

Algorithm to estimate P(y(X) = 2):

1. Execute algorithm on previous slide M times with event {y(X) = z}
2.Get (Y, w)), ..., (Yy, wy,) back

~ 1 &
3.5et P(y(X) =) =— 3 1{y(¥) =z}w,
k=1

Takeaway: ﬁ(;((X) = z) is an unbiased estimator of P(y(X) = z).

By the properties of importance sampling estimators of the previous slides, if Q is
close to P, the critical size of M may not even depend on P(y(X) = z), even if it is
very rare. But if Q is very far, this could be worse than rejection sampling.

Theorem: If the above algorithm is run on the mutilated network wrt to a set of
P(Y)

set variables zand Q(Y) represents its probability, then w = %




Bayesian Network Inference wit

h Importance Sampling

—~ 1 &
How do we use estimators like P (y(X) =2) = v 2 1{y(Y,) = z}w, to compute

conditional queries like P(I = i'|G = gz, S =592

Ratio method

PU=i,G=g%85=5"

PI=i'1G=g%S=s"=
=i g s°) PG =5 =)

Use M samples to compute
PU=i,G=g%8=s%

Use M’ samples to compute

P(G=g%S=sY

and take the ratio!

Numerator and denominator unbiased.

k=1

Self-normalized method

Collect data (Y, wy), ..., (Y3, wyy)
using event {G = g2, S = 5"}

Output
M .
Zkzl 1{[, =i',G, = g* S, = s"}w,

224:1 Wi
Numerator and denominator unbiased:
Eplwi] = Eglwd{G; = g° S, = 5°}]
=P(G=g>S=s"




MCMC

UNIVERSITY of WASHINGTON




Inference in Bayesian Networks

Goal: compute queries like P(I = i' |G = g2, S = sY) or in words “the probability
of high intelligence given medium grade and low SAT?”

| — 2 — 0
PUI=i'|G = g% 8 = 5% = Pl=i,G=g*S5S=s")
Approaches: P(G = g% 5 =59
¢ Exact inference by variable elimination
- Straightforward, but can be computationally prohibitive
¢ Variational inference
- Approximate, biased
e Sampling strategies
- Rejection sampling V
- Importance weighted sampling «
- MCMC




Markov Chain Monte Carlo (MCMC)

Goal: compute queries like P(I = i! |G = g2, S = SO) or in words “the probability

of high intelligence given medium grade and low SAT?”

PI=i',G=g%S5=s"
P(G =g%5=19

PUl=i'|G=g%S=5")=

Sampling from the “mutilated” network will give you sample such that

{G = g2, 5 = s"}. The problem is that this sample is drawn from Qi1 g=g2(¥)

andnot Pl =i'|G = gz, S = sY). Importance sampling tries to “correct” the
misalignment by weighting the sample appropriately.

MCMC starts with the candidate distribution 7 := 0O and then evolves the

distribution 7 slowly over time until it converges 7 — 7. := P. Sampling
from this distribution results in a sample from P



Gibbs sampling

Algorithm 12.4 Generating a Gibbs chain trajectory

Procedure Gibbs-Sample (

X /I Set of variables to be sampled
® // Set of factors defining Ps
PO)(X), /I Initial state distribution
T /] Number of time steps

) . :
1 Sample 2 from PO (X)) P(X;|x_;,) = P(X;| MarkovBlanket(i))
2 fort=1,...,T = P(X;| parents(i)) H P(x;| parents(j))
3 (") 2= echild)
4 for each X; € X /
5 Sample :L'gt) from Py(X; | _;)
6 /| Change X; in «®
7  return z(© ... ()
Markov blanket of C'loudy is Gou)

Sprinkler and Rain
Markov blanket of Rain is '@
Cloudy, Sprinkler, and WetGrass

Figure credit: Pedro Domingos



Gibbs sampling

original p(a, b)

gibbs sampling path

gibbs samples

Figure credit: https://jessicastringham.net/2018/05/09/gibbs-sampling/

~
~
~
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Markov Chain Monte Carlo (MCMC)

Gibb’s sampling is just one example of a MCMC algorithm.

In general, the approach to sampling from distribution 7.:

- Construct a Markov chain transition kernel T : & — 2 whose

stationary distribution is equal to 7.

- Start with a realization x> ~ 79 drawn from an arbitrary
starting distribution ¥

- Run Markov chain to evolve x® i x™*D (equiv. 7 — 7(+1D)

and return sample once convergence 79~ 1,

Is it guaranteed to converge? How fast does it converge?



Markov Chain Monte Carlo (MCMC)

Consider a Markov chain defined by: 7, = P(x,,; = y|x, = x)

We say a Markov chain is reversible if there exists a distribution z that

satisfies the detailed balance equation:

ndy, =1, forall x,y

If such a & exists, then it is a stationary distribution satisfying

o T=nr'



Markov Chain Monte Carlo (MCMC)

Consider a Markov chain defined by: 7T, = P(x_., =y|x, = x)
Xy +1 Y1X

We say a Markov chain is reversible if there exists a distribution z that
satisfies the detailed balance equation:

ndy, =1, forall x,y

If such a & exists, then it is a stationary distribution satisfying

JZ'T T

Proof: [JZ'TT] = Z T, = Z nT,, =,

Idea: construct a reversible Markov chain 7" with respect to target
distribution z, and run the chain until it mixes to the stationary distributor



Markov Chain Monte Carlo (MCMC)

Consider a Markov chain defined by: 7, = P(x,,; = y|x, = x)

We say a Markov chain is reversible if there exists a distribution z that
satisfies the detailed balance equation:

ndy, =1, forall x,y

If such a & exists, then it is a stationary distribution satisfying
' T=n'
A chain is regular if there exists a k € N such that [Tk]x’y>0.

Theorem: If a chain is regular then its stationary distribution is unique.

If .. > 0 and the chain is irreducible, then the chain is regular.



Markov Chain Monte Carlo (MCMC)

Revisit Gibb’s sampling as MCMC:

1 d
Ty=— 2 POl = x )ty = x)
=1

1 d
ﬂxTxy — E Z H:D(yily—i — x—i)l{y—i - x—i}ﬂx
i=1

1 d
— E 2 ]Z'yl{y_l‘ — x_l'}lp(xi | X_j= y—i)
i=1
=1

yoyXx

Gibb’s sampling is reversible but not necessarily regular (no guarantee of converging to x)



Metropolis-Hastings Algorithm

The problem with Gibbs is that the chain wasn’t guaranteed to traverse the entire space.
Can we construct a chain that is reversible and regular?

Idea: construct a random walk chain that is guaranteed to traverse everywhere, then bias
it towards the target distribution

Let ny be a regular Markov chain whose support includes support of 7

a

KX
K, min{1,~] ifx #y
Define 7, = 1 Py |
K. + Zy#x K. (1 -K,) otherwise.



Metropolis-Hastings Algorithm

The problem with Gibbs is that the chain wasn’t guaranteed to traverse the entire space.
Can we construct a chain that is reversible and regular?

Idea: construct a random walk chain that is guaranteed to traverse everywhere, then bias
it towards the target distribution

Let ny be a regular Markov chain whose support includes support of 7

4 Kx
K, min{1,~] ifx #y
Define T, = 1 Py |
K. + Zy#x K. (1 -K,) otherwise.

Implementation: Given x, draw y with probability Kx[y. Set x,,; = y with probability

ﬂ:y nyt

min{1, }, otherwise set x,, | = x..

ﬂxt Xty



Metropolis-Hastings Algorithm

The problem with Gibbs is that the chain wasn’t guaranteed to traverse the entire space.
Can we construct a chain that is reversible and regular?

Idea: construct a random walk chain that is guaranteed to traverse everywhere, then bias
it towards the target distribution

Let ny be a regular Markov chain whose support includes support of 7

a

KX
K, min{1,~] ifx #y
Define 7, = 1 Py |
K. + Zy#x K. (1 -K,) otherwise.

Note:

o The MH transition kernel T, satisfies z,1 ., = 7,1, by construction, thus reversible.

o Since K, is regular, so is T . Thus, this chain converges to 7!



Metropolis-Hastings Algorithm

The problem with Gibbs is that the chain wasn’t guaranteed to traverse the entire space.
Can we construct a chain that is reversible and regular?

Idea: construct a random walk chain that is guaranteed to traverse everywhere, then bias
it towards the target distribution

Let ny be a regular Markov chain whose support includes support of 7

4 Kx
K, min{1,~] ifx #y
Define T, = 1 Py |
K. + Zy#x K. (1 -K,) otherwise.

1

y \ 2709

If & C R?then natural to take K exp( —||x — y||*/26?)

Warning: if 6 too small, exploration is slow and takes a very long time to traverse space.
If o is too large, you’ll leave the support of 7 and samples will keep getting rejected.



Metropolis-Hastings Algorithm

The problem with Gibbs is that the chain wasn’t guaranteed to traverse the entire space.
Can we construct a chain that is reversible and regular?

Idea: construct a random walk chain that is guaranteed to traverse everywhere, then bias
it towards the target distribution

Let ny be a regular Markov chain whose support includes support of 7

a

KX
K, min{1,~] ifx #y
Define 7, = 1 Py |
K. + Zy#x K. (1 -K,) otherwise.

T

You only need to evaluate — 50 you don’t need to know normalization constant of Markov

7Ty

1
Networks z(x) = E H () ¢,-, j(xia Xj)



MCMC in continuous domains

( ‘Kx
| K,, min| 1ZK ) ifx #y
Define 7}, = 4 |
L K. . + Z#x K. (1 -K,) otherwise.

1

If & C R?then natural to take K, exp( —||x — y||*/26?)

Y 2ncd

Warning: if 6 too small, exploration is slow and takes a very long time to traverse space.
If o is too large, you’ll leave the support of 7 and samples will keep getting rejected.

MH Algorithm with Gaussian candidate distribution:
Init: 6, € R4
Fort =1,2,...

Draw 6,,, ~ N0, )

~~/

(0,4 1)

Set0,, | = 5t+1 with probability min{1, }, otherwise 8, | = 6,

n(6,)




MCMC in continuous domains

-

Kx
| K,,min{1,~"} ifx #y
Define 7}, = < xRy |
L K. . + Z#x K. (1 -K,) otherwise.

1

If & C R?then natural to take K, exp( —||x — y||*/26?)

Y 2nod

Warning: if 6 too small, exploration is slow and takes a very long time to traverse space.
If o is too large, you’ll leave the support of 7 and samples will keep getting rejected.

MH Algorithm with Gaussian candidate distribution:

Init: 6, € R4 This is hill climbing in a random direction.
Fort =1,2,... Very similar to derivative free optimization.
~ EXTREMELY inefficient in large dimensions
Draw 6,,, ~ N0, ) &

~~/

~ . - i ﬂ(9t+1) _
Set 0,, | = 0, with probability min{ I,W}’ otherwise 0,,; = 0,
t




MCMC in continuous domains

-

K.x
| K, min{1,—) ifx #y
Define 7}, = < x Ty |
L K. . + Z#x K. (1 -K,) otherwise.

1

If & C R?then natural to take K, exp( —||x — y||*/26?)

y:

2rnod
2
Langevin Monte Carlo (LMC) takes K, = T exp( —||x+% V. log(7(z)) |Z=x — y[|?/26?)
As 0 — 0 the acceptance probability min{1, } = 1 and the chain just becomes
Ty Xy
2
Xyl = xt+% V log(z(2)| o, +V o’ n, ~ N(O,I)

which is what people use in practice. Converges much faster than traditional MH.



Hit and run sampling

Frequently we have a set K C R? and we would like to sample from a uniform
measure over this set. Useful in its own right, but can also be used for a candidate
distribution to sample from.

Hit and run sampling:
Initialize: a; € K
Fort =1,2,...
Pick a uniformly distributed random line £ through q,

Set a,, | to a uniform random point along £ N K

Claim: Under benign smoothness
conditions on K, Hit and run converges
to a uniform stationary distribution.



Hit and run sampling

Frequently we have a connected set K C R? and we would like to sample from a
uniform measure over this set. Useful in its own right, but can also be used for a
candidate distribution to sample from.

Hit and run sampling:
Initialize: a; € K
Fort =1,2,...
Pick a uniformly distributed random line £ through q,

Set a,, | to a uniform random point along £ N K

Claim: Under benign smoothness
conditions on K, Hit and run converges
to a uniform stationary distribution.

Proof by vacuum:




MCMC Convergence

Okay, so we now have a reversible and regular Markov chain 7 that is

guaranteed to converge to our target distribution 7z as its stationary
distribution. How long do we have to wait for convergence?

The e-mixing time of chain T is the smallest time such that for all # > Tin(€)

|2OT" = zll7y < e

Theorem: Tyix(€) = O(5 1/1 ) where 4, < 1 is the second largest eigenvalue of 7.
— 2

Proof sketch: consider special case where T is diagonalizable so that T = Udiag(/l)U_1

Fact: The largest eigenvalue of T'is A; = 1 with ' T=r"andT1=1.
n

I T = xllgy = g = 2Dy < Vali(ag — 2Dl = Vallerg =27 Y, a2l < /2044
=2

log(v/2n/€) < log(v/2n/€)
log(1/,) — 1—2,

Trmix(€e) <



Deterministic methods

UNIVERSITY of WASHINGTON



Core sets

We wish to estimate Ep[1{X € A}] = Z P(x)1{x, € A}.

If mass is concentrated on just a small number of heavy hitters s.t. P(X € {x,-}f.‘zl) > .99

Then we just need to cover these elements to answer many queries.

Identifying these heavy hitters is an inference task in itself, but may dwarf the computation
of sampling. Very heuristic-y but could be effective



Quasi Monte Carlo

At the end of the day we wish to estimate Ep[1{X € A}] = [ Px)1{x € A}dx.

X
Suppose we knew P. Why are we sampling instead of approximating the integral?

Example: Let P = uniform([0,1]) and A C [0,1], setu = Ep[1{X € A}]

0 X 1
1 « 1 « :
Draw xy, ..., x, ~ P, setﬁz—Zl{xieA} Set/l?’z—Zl{l_nl/2 e A}
A g
N 1 - 1
Ellpg —pll=— Ellp—pll<—
Vn "



Quasi Monte Carlo

At the end of the day we wish to estimate Ep[1{X € A}] = [ P(x)1{x € A}dx.

X
Suppose we knew P. Why are we sampling instead of approximating the integral?
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