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models



Inference in Bayesian Networks
Goal: compute queries like  or in words “the probability 
of high intelligence given medium grade and low SAT?” 

P(I = i1 |G = g2, S = s0)

P(L, G, S, D, I ) = P(L |G)P(G |D, I )P(S | I )P(D)P(I )



Inference in Bayesian Networks
Goal: compute queries like  or in words “the probability 
of high intelligence given medium grade and low SAT?” 
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• Exact inference by variable elimination:

P(L, G, S, D, I ) = P(L |G)P(G |D, I )P(S | I )P(D)P(I )

P(I = i1 |G = g2, S = s0) =
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Inference in Bayesian Networks
Goal: compute queries like  or in words “the probability 
of high intelligence given medium grade and low SAT?” 

P(I = i1 |G = g2, S = s0)

Approaches: 
• Exact inference by variable elimination:
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Inference in Bayesian Networks
Goal: compute queries like  or in words “the probability 
of high intelligence given medium grade and low SAT?” 

P(I = i1 |G = g2, S = s0)

P(I = i1 |G = g2, S = s0) =
P(I = i1, G = g2, S = s0)

P(G = g2, S = s0)Approaches: 
• Exact inference by variable elimination 

- Straightforward, but can be computationally prohibitive  
• Variational inference  

- Approximate, biased 
• Sampling strategies 

- Rejection sampling 
- Importance weighted sampling 
- MCMC 



Rejection sampling



Rejection sampling
Goal: compute queries like  or in words “the probability 
of high intelligence given medium grade and low SAT?” 

P(I = i1 |G = g2, S = s0)

P(I = i1 |G = g2, S = s0) =
P(I = i1, G = g2, S = s0)

P(G = g2, S = s0)



Rejection sampling
Goal: compute queries like  or in words “the probability 
of high intelligence given medium grade and low SAT?” 

P(I = i1 |G = g2, S = s0)

P(I = i1 |G = g2, S = s0) =
P(I = i1, G = g2, S = s0)

P(G = g2, S = s0)

All outcomes

(G = g2, S = s0)(I = i1, G = g2, S = s0)

Draw  samples  using forward sampling and 

Set  and output   

M {(Lk, Gk, Sk, Dk, Ik)}M
k=1

χ = {k : Gk = g2, Sk = s0}

̂P (I = i1 |G = g2, S = s0) =
1

| χ | ∑
k∈χ

1{Ik = i1, Gk = g2, Sk = s0}



Rejection sampling
Goal: compute queries like  or in words “the probability 
of high intelligence given medium grade and low SAT?” 

P(I = i1 |G = g2, S = s0)

P(I = i1 |G = g2, S = s0) =
P(I = i1, G = g2, S = s0)

P(G = g2, S = s0)

𝔼[ ̂P (I = i1 |G = g2, S = s0)] = 𝔼[ 1
| χ | ∑

k∈χ

1{Ik = i1, Gk = g2, Sk = s0}]
=

∞

∑
n=1

𝔼[ 1
n ∑

k∈χ

1{Ik = i1, Gk = g2, Sk = s0} | χ | = n]ℙ( | χ | = n)

=
∞

∑
n=1

nP(I = i1 |G = g2, S = s0)
n

ℙ( | χ | = n)

Draw  samples  using forward sampling and 

Set  and output   

M {(Lk, Gk, Sk, Dk, Ik)}M
k=1

χ = {k : Gk = g2, Sk = s0}

̂P (I = i1 |G = g2, S = s0) =
1

| χ | ∑
k∈χ

1{Ik = i1, Gk = g2, Sk = s0}

Unbiased estimator of !P(I = i1 |G = g2, S = s0)



Rejection sampling
Goal: compute queries like  or in words “the probability 
of high intelligence given medium grade and low SAT?” 

P(I = i1 |G = g2, S = s0)

P(I = i1 |G = g2, S = s0) =
P(I = i1, G = g2, S = s0)

P(G = g2, S = s0)

How big goes M need to be to get an accurate estimate?

Draw  samples  using forward sampling and 

Set  and output   

M {(Lk, Gk, Sk, Dk, Ik)}M
k=1

χ = {k : Gk = g2, Sk = s0}

̂P (I = i1 |G = g2, S = s0) =
1

| χ | ∑
k∈χ

1{Ik = i1, Gk = g2, Sk = s0}

All outcomes

(G = g2, S = s0)(I = i1, G = g2, S = s0)



Rejection sampling
Goal: compute queries like  or in words “the probability 
of high intelligence given medium grade and low SAT?” 

P(I = i1 |G = g2, S = s0)

P(I = i1 |G = g2, S = s0) =
P(I = i1, G = g2, S = s0)

P(G = g2, S = s0)

Draw  samples  using forward sampling and 

Set  and output   

M {(Lk, Gk, Sk, Dk, Ik)}M
k=1

χ = {k : Gk = g2, Sk = s0}

̂P (I = i1 |G = g2, S = s0) =
1

| χ | ∑
k∈χ

1{Ik = i1, Gk = g2, Sk = s0}

Rejection sampling takeaways: 
- Very simple to implement 
- May require an enormous amount of samples if the conditional statement is rare.  

- Consider P( disease | symptoms ). Any precise set of symptoms is going to be rare. 



Importance sampling



Inference in Bayesian Networks
Goal: compute queries like  or in words “the probability 
of high intelligence given medium grade and low SAT?” 

P(I = i1 |G = g2, S = s0)

P(I = i1 |G = g2, S = s0) =
P(I = i1, G = g2, S = s0)

P(G = g2, S = s0)Approaches: 
• Exact inference by variable elimination 

- Straightforward, but can be computationally prohibitive  
• Variational inference  

- Approximate, biased 
• Sampling strategies 

- Rejection sampling 
- Importance weighted sampling 
- MCMC 



Importance sampling

Fix any function  and suppose we wish to estimate f : 𝒳 → [0,1] μ = 𝔼P[ f (X )]

If I draw    and define  then  X1, …, XM ∼ P ̂μP :=
1
M

M

∑
i=1

f (Xi) 𝔼P[ ̂μP] = 𝔼P[ f (X )]



Importance sampling

𝔼Q[ 1
M

M

∑
i=1

f (Yi)
P(Yi)
Q(Yi) ] =

Fix any function  and suppose we wish to estimate f : 𝒳 → [0,1] μ = 𝔼P[ f (X )]

If I draw   and define  then   Y1, …, YM ∼ Q ̂μQ :=
1
M

M

∑
i=1

f (Yi)
P(Yi)
Q(Yi)

𝔼Q[ ̂μQ] = 𝔼P[ f (X )]

Importance sampling with candidate distribution Q:

If I draw    and define  then  X1, …, XM ∼ P ̂μP :=
1
M

M

∑
i=1

f (Xi) 𝔼P[ ̂μP] = 𝔼P[ f (X )]



Importance sampling

𝔼Q[ 1
M

M

∑
i=1

f (Yi)
P(Yi)
Q(Yi) ] = 𝔼Q[f (Y1)

P(Y1)
Q(Y1) ]

= ∑
x

Q(x) ⋅ f (x)
P(x)
Q(x)

= ∑
x

P(x) ⋅ f (x)

= 𝔼P[ f (X )]

Fix any function  and suppose we wish to estimate f : 𝒳 → [0,1] μ = 𝔼P[ f (X )]

If I draw   and define  then   Y1, …, YM ∼ Q ̂μQ :=
1
M

M

∑
i=1

f (Yi)
P(Yi)
Q(Yi)

𝔼Q[ ̂μQ] = 𝔼P[ f (X )]

Importance sampling with candidate distribution Q:

If I draw    and define  then  X1, …, XM ∼ P ̂μP :=
1
M

M

∑
i=1

f (Xi) 𝔼P[ ̂μP] = 𝔼P[ f (X )]



Importance sampling

Moreover,  as  we have     whereM → ∞
1
M

M

∑
i=1

f (Yi)
P(Yi)
Q(Yi)

∼ 𝒩(𝔼P[ f (X )], σ2
Q /M)

σ2
Q = 𝔼Q[(f (Y )

P(Y )
Q(Y ) )2] − 𝔼Q[ f (Y )

P(Y )
Q(Y )

]2
 is minimizes when  σ2

Q

Q(x) ∝ | f (x) |P(x)= 𝔼P[ f(X )2 P(X )
Q(X )

] − 𝔼P[ f(X )]2

Fix any function  and suppose we wish to estimate f : 𝒳 → [0,1] μ = 𝔼P[ f (X )]

If I draw   and define  then   Y1, …, YM ∼ Q ̂μQ :=
1
M

M

∑
i=1

f (Yi)
P(Yi)
Q(Yi)

𝔼Q[ ̂μQ] = 𝔼P[ f (X )]

Importance sampling with candidate distribution Q:

If I draw    and define  then  X1, …, XM ∼ P ̂μP :=
1
M

M

∑
i=1

f (Xi) 𝔼P[ ̂μP] = 𝔼P[ f (X )]



Importance sampling

Example: rare event sampling  

x

P(X ) f (x) = 1{ |x − a | ≤ 1/2}
Q(X )

a

If I draw   and define  then   Y1, …, YM ∼ Q ̂μQ :=
1
M

M

∑
i=1

f (Yi)
P(Yi)
Q(Yi)

𝔼Q[ ̂μQ] = 𝔼P[ f (X )]

Importance sampling with candidate distribution Q:



Importance sampling

Example: rare event sampling  

x

P(X ) f (x) = 1{ |x − a | ≤ 1/2}
Q(X )

a

𝔼P[ f (X )] = ∫x
P(x)1{ |x − a | ≤ 1/2}dx ≈ P(a)

σ2
Q ≈ P(a)2

σ2
P ≈ P(a)

 sampling from  requires  for relative error ⟹ Q M ≥ ϵ−2
̂μQ − μ
μ

≤ ϵ

 sampling from  requires  for relative error ⟹ P M ≥
ϵ−2

P(a)
̂μP − μ
μ

≤ ϵ

If I draw   and define  then   Y1, …, YM ∼ Q ̂μQ :=
1
M

M

∑
i=1

f (Yi)
P(Yi)
Q(Yi)

𝔼Q[ ̂μQ] = 𝔼P[ f (X )]

Importance sampling with candidate distribution Q:



Self-normalized Importance sampling

Self-normalized Importance sampling with candidate distribution Q:

Fix any function  and suppose we wish to estimate f : 𝒳 → [0,1] μ = 𝔼P[ f (X )]

If I draw   and define  then   Y1, …, YM ∼ Q ̂μQ :=
1
M

M

∑
i=1

f (Yi)
P(Yi)
Q(Yi)

𝔼Q[ ̂μQ] = 𝔼P[ f (X )]

Importance sampling with candidate distribution Q:

If I draw    and define  then  X1, …, XM ∼ P ̂μP :=
1
M

M

∑
i=1

f (Xi) 𝔼P[ ̂μP] = 𝔼P[ f (X )]

If I draw   and define  then   Y1, …, YM ∼ Q ̂μ sn
Q :=

∑M
i=1 f (Yi)

P(Yi)
Q(Yi)

∑M
i=1

P(Yi)
Q(Yi)

𝔼Q[ ̂μQ] = 𝔼P[ f (X )]

Biased  but is asymptotically consistent since  𝔼Q[ ̂μ sn
Q ] ≠ μ 𝔼Q[

P(Yi)
Q(Yi)

] = 1



Self-normalized Importance sampling

Self-normalized Importance sampling with candidate distribution Q:

Fix any function  and suppose we wish to estimate f : 𝒳 → [0,1] μ = 𝔼P[ f (X )]

If I draw   and define  then   Y1, …, YM ∼ Q ̂μQ :=
1
M

M

∑
i=1

f (Yi)
P(Yi)
Q(Yi)

𝔼Q[ ̂μQ] = 𝔼P[ f (X )]

Importance sampling with candidate distribution Q:

If I draw    and define  then  X1, …, XM ∼ P ̂μP :=
1
M

M

∑
i=1

f (Xi) 𝔼P[ ̂μP] = 𝔼P[ f (X )]

If I draw   and define  then   Y1, …, YM ∼ Q ̂μ sn
Q :=

∑M
i=1 f (Yi)

P(Yi)
Q(Yi)

∑M
i=1

P(Yi)
Q(Yi)

𝔼Q[ ̂μQ] = 𝔼P[ f (X )]

If we only know  up to a normalizing 

constant such that we have , 

we can use  to obtain the same estimator:

P
P̃ (x) = ZP(x)

P̃
̂μ sn
Q =

∑M
i=1 f (Yi)

P̃ (Yi)
Q(Yi)

∑M
i=1

P̃ (Yi)
Q(Yi)

=
∑M

i=1 f (Yi)
P(Yi)
Q(Yi)

∑M
i=1

P(Yi)
Q(Yi)



Bayesian Network Inference with Importance Sampling

P(X ) := P(L, G, S, D, I )

If  and  denotes a Bayesian network then as we 
saw earlier, sampling from conditionals of  directly is awkward and 
inefficient. Can we define a convenient Q and use important sampling?

X := (L, G, S, D, I ) P(X )
P

= P(L |G)P(G |D, I )P(S | I )P(D)P(I )



Bayesian Network Inference with Importance Sampling

P(X ) := P(L, G, S, D, I )
= P(L |G)P(G |D, I )P(S | I )P(D)P(I )

QI=i1,G=g2(Y ) = P(L |G = g2)P(S | I = i1)P(D)

If  and  denotes a Bayesian network then as we 
saw earlier, sampling from conditionals of  directly is awkward and 
inefficient. Can we define a convenient Q and use important sampling?

X := (L, G, S, D, I ) P(X )
P

“Mutilated” network ℬI=i1,G=g2Original network ℬ



Bayesian Network Inference with Importance Sampling

P(X ) := P(L, G, S, D, I )
= P(L |G)P(G |D, I )P(S | I )P(D)P(I )

QI=i1,G=g2(Y ) = P(L |G = g2)P(S | I = i1)P(D)

“Mutilated” network ℬI=i1,G=g2Original network ℬ

Note that P(I = i1, G = g2) = 𝔼P[1{I = i1, G = g2}]

= 𝔼Q[
1
M

M

∑
k=1

1{Ik = i1, Gk = g2}
P(Yk)
Q(Yk) ]

If  is a rare event, this could require substantial fewer samples!{I = i1, G = g2}



Bayesian Network Inference with Importance Sampling

P(X ) := P(L, G, S, D, I )
= P(L |G)P(G |D, I )P(S | I )P(D)P(I )

QI=i1,G=g2(Y ) = P(L |G = g2)P(S | I = i1)P(D)

Note that P(I = i1, G = g2) = 𝔼P[1{I = i1, G = g2}]

= 𝔼Q[
1
M

M

∑
k=1

1{Ik = i1, Gk = g2}
P(Yk)
Q(Yk) ]

If  is a rare event, this could require substantial fewer samples!{I = i1, G = g2}

How do we compute ?           Let 
P(Y )
Q(Y )

Y = (L = l, g = g2, S = s, D = d, I = i1)

Then 
P(Y )
Q(Y )

=
P(L = l, g = g2, S = s, D = d, I = i1)

QI=i1,G=g2(L = l, g = g2, S = s, D = d, I = i1)



Bayesian Network Inference with Importance Sampling

P(X ) := P(L, G, S, D, I )
= P(L |G)P(G |D, I )P(S | I )P(D)P(I )

QI=i1,G=g2(Y ) = P(L |G = g2)P(S | I = i1)P(D)

Note that P(I = i1, G = g2) = 𝔼P[1{I = i1, G = g2}]

= 𝔼Q[
1
M

M

∑
k=1

1{Ik = i1, Gk = g2}
P(Yk)
Q(Yk) ]

If  is a rare event, this could require substantial fewer samples!{I = i1, G = g2}

How do we compute ?           Let 
P(Y )
Q(Y )

Y = (L = l, g = g2, S = s, D = d, I = i1)

Then 
P(Y )
Q(Y )

=
P(L = l, g = g2, S = s, D = d, I = i1)

QI=i1,G=g2(L = l, g = g2, S = s, D = d, I = i1)

=
P(G = g2 |D = d, I = i1)P(I = i1)

1

Note: all but the 
“mutilated” terms 
cancel.



Bayesian Network Inference with Importance Sampling

Theorem: If the above algorithm is run on the mutilated network wrt to a set of 

set variables z and  represents its probability, then . Q(Y ) w =
P(Y )
Q(Y )



Bayesian Network Inference with Importance Sampling

Theorem: If the above algorithm is run on the mutilated network wrt to a set of 

set variables z and  represents its probability, then . Q(Y ) w =
P(Y )
Q(Y )

Algorithm to estimate : 
1. Execute algorithm on previous slide  times with event   
2. Get  back 

3. Set 

P(χ(X ) = z)
M {χ(X ) = z}

(Y1, w1), …, (YM, wM)

̂P (χ(X ) = z) =
1
M

M

∑
k=1

1{χ(Yk) = z}wk

Takeaway:  is an unbiased estimator of . 
By the properties of importance sampling estimators of the previous slides, if Q is 
close to P, the critical size of  may not even depend on , even if it is 
very rare. But if Q is very far, this could be worse than rejection sampling.

̂P (χ(X ) = z) P(χ(X ) = z)

M P(χ(X ) = z)



Bayesian Network Inference with Importance Sampling

How do we use estimators like  to compute 

conditional queries like ?

̂P (χ(X ) = z) =
1
M

M

∑
k=1

1{χ(Yk) = z}wk

P(I = i1 |G = g2, S = s0)

P(I = i1 |G = g2, S = s0) =
P(I = i1, G = g2, S = s0)

P(G = g2, S = s0)

Ratio method

Use M samples to compute
̂P (I = i1, G = g2, S = s0)

̂P (G = g2, S = s0)

and take the ratio!

Self-normalized method

Collect data  

using event  

(Y1, w1), …, (YM, wM)
{G = g2, S = s0}

Use M’ samples to compute

Output 

 
∑M

k=1 1{Ik = i1, Gk = g2, Sk = s0}wk

∑M
k=1 wk

Numerator and denominator unbiased: 
  

      

𝔼Q[wk] = 𝔼Q[wk1{Gk = g2, Sk = s0}]
= P(G = g2, S = s0)Numerator and denominator unbiased.



MCMC



Inference in Bayesian Networks
Goal: compute queries like  or in words “the probability 
of high intelligence given medium grade and low SAT?” 

P(I = i1 |G = g2, S = s0)

P(I = i1 |G = g2, S = s0) =
P(I = i1, G = g2, S = s0)

P(G = g2, S = s0)Approaches: 
• Exact inference by variable elimination 

- Straightforward, but can be computationally prohibitive  
• Variational inference  

- Approximate, biased 
• Sampling strategies 

- Rejection sampling 
- Importance weighted sampling 
- MCMC 



Markov Chain Monte Carlo (MCMC)
Goal: compute queries like  or in words “the probability 
of high intelligence given medium grade and low SAT?” 

P(I = i1 |G = g2, S = s0)

P(I = i1 |G = g2, S = s0) =
P(I = i1, G = g2, S = s0)

P(G = g2, S = s0)

Sampling from the “mutilated” network will give you sample such that 
. The problem is that this sample is drawn from  

and not . Importance sampling tries to “correct” the 
misalignment by weighting the sample appropriately.  

MCMC starts with the candidate distribution  and then evolves the 
distribution  slowly over time until it converges . Sampling 
from this distribution results in a sample from 

{G = g2, s = s0} QI=i1,G=g2(Y )

P(I = i1 |G = g2, S = s0)

π(0) := Q
π(t) π(t) → π* := P

P



Gibbs sampling

P(Xi |x−i) = P(Xi |MarkovBlanket(i))

= P(Xi |parents(i)) ∏
j∈child(i)

P(xj |parents( j))

Figure credit: Pedro Domingos



Gibbs sampling

Figure credit: https://jessicastringham.net/2018/05/09/gibbs-sampling/



Markov Chain Monte Carlo (MCMC)

Gibb’s sampling is just one example of a MCMC algorithm. 

In general, the approach to sampling from distribution : 

- Construct a Markov chain transition kernel  whose 
stationary distribution is equal to  

- Start with a realization  drawn from an arbitrary 
starting distribution  

- Run Markov chain to evolve   (equiv. ) 
and return sample once convergence 

π*

T : 𝒳 → 𝒳
π*

x(0) ∼ π(0)

π(0)

x(t) ↦ x(t+1) π(t) → π(t+1)

π(t) ≈ π*

Is it guaranteed to converge? How fast does it converge?



Markov Chain Monte Carlo (MCMC)

Consider a Markov chain defined by:      Txy = ℙ(xt+1 = y |xt = x)

We say a Markov chain is reversible if there exists a distribution  that 
satisfies the detailed balance equation:  

               for all  

If such a  exists, then it is a stationary distribution satisfying 

. 

π

πxTxy = πyTyx x, y

π

π⊤T = π⊤



Markov Chain Monte Carlo (MCMC)

Consider a Markov chain defined by:      Txy = ℙ(xt+1 = y |xt = x)

We say a Markov chain is reversible if there exists a distribution  that 
satisfies the detailed balance equation:  

               for all  

If such a  exists, then it is a stationary distribution satisfying 

. 

Proof: 

π

πxTxy = πyTyx x, y

π

π⊤T = π⊤

[π⊤T ]y = ∑
x

πxTxy = ∑
x

πyTyx = πy

Idea: construct a reversible Markov chain  with respect to target 
distribution , and run the chain until it mixes to the stationary distributor   

T
π π



Markov Chain Monte Carlo (MCMC)

Consider a Markov chain defined by:      Txy = ℙ(xt+1 = y |xt = x)

We say a Markov chain is reversible if there exists a distribution  that 
satisfies the detailed balance equation:  

               for all  

If such a  exists, then it is a stationary distribution satisfying 

. 

A chain is regular if there exists a  such that . 
  

Theorem: If a chain is regular then its stationary distribution is unique. 

If  and the chain is irreducible, then the chain is regular. 

π

πxTxy = πyTyx x, y

π

π⊤T = π⊤

k ∈ ℕ [Tk]x,y>0

Txx > 0



Markov Chain Monte Carlo (MCMC)

Revisit Gibb’s sampling as MCMC: 

  Txy =
1
d

d

∑
i=1

ℙ(yi |y−i = x−i)1{y−i = x−i}

πxTxy =
1
d

d

∑
i=1

ℙ(yi |y−i = x−i)1{y−i = x−i}πx

=
1
d

d

∑
i=1

πy1{y−i = x−i}ℙ(xi |x−i = y−i)

= πyTyx

Gibb’s sampling is reversible but not necessarily regular (no guarantee of converging to )π



Metropolis-Hastings Algorithm

The problem with Gibbs is that the chain wasn’t guaranteed to traverse the entire space.  
Can we construct a chain that is reversible and regular? 

Idea: construct a random walk chain that is guaranteed to traverse everywhere, then bias 
it towards the target distribution π

Let  be a regular Markov chain whose support includes support of Kxy π

Define Txy =
Kxy min{1,

πyKyx

πxKxy
}  if x ≠ y

Kxx + ∑y≠x Kxy(1 − Kxy)  otherwise.



Metropolis-Hastings Algorithm

The problem with Gibbs is that the chain wasn’t guaranteed to traverse the entire space.  
Can we construct a chain that is reversible and regular? 

Idea: construct a random walk chain that is guaranteed to traverse everywhere, then bias 
it towards the target distribution π

Let  be a regular Markov chain whose support includes support of Kxy π

Define Txy =
Kxy min{1,

πyKyx

πxKxy
}  if x ≠ y

Kxx + ∑y≠x Kxy(1 − Kxy)  otherwise.

Implementation: Given  draw  with probability . Set  with probability 

, otherwise set .

xt y Kxt y xt+1 = y

min{1,
πyKyxt

πxt
Kxt y

} xt+1 = xt



Metropolis-Hastings Algorithm

The problem with Gibbs is that the chain wasn’t guaranteed to traverse the entire space.  
Can we construct a chain that is reversible and regular? 

Idea: construct a random walk chain that is guaranteed to traverse everywhere, then bias 
it towards the target distribution π

Let  be a regular Markov chain whose support includes support of Kxy π

Define Txy =
Kxy min{1,

πyKyx

πxKxy
}  if x ≠ y

Kxx + ∑y≠x Kxy(1 − Kxy)  otherwise.

Note:  
• The MH transition kernel  satisfies  by construction, thus reversible. 

• Since  is regular, so is . Thus, this chain converges to !

Txy πxTxy = πyTyx

Kxy Txy π



Metropolis-Hastings Algorithm

The problem with Gibbs is that the chain wasn’t guaranteed to traverse the entire space.  
Can we construct a chain that is reversible and regular? 

Idea: construct a random walk chain that is guaranteed to traverse everywhere, then bias 
it towards the target distribution π

Let  be a regular Markov chain whose support includes support of Kxy π

Define Txy =
Kxy min{1,

πyKyx

πxKxy
}  if x ≠ y

Kxx + ∑y≠x Kxy(1 − Kxy)  otherwise.

If  then natural to take  

Warning: if  too small, exploration is slow and takes a very long time to traverse space.  
If  is too large, you’ll leave the support of  and samples will keep getting rejected. 

𝒳 ⊂ ℝd Kxy = 1

2πσd
exp( −∥x − y∥2/2σ2)

σ
σ π



Metropolis-Hastings Algorithm

The problem with Gibbs is that the chain wasn’t guaranteed to traverse the entire space.  
Can we construct a chain that is reversible and regular? 

Idea: construct a random walk chain that is guaranteed to traverse everywhere, then bias 
it towards the target distribution π

Let  be a regular Markov chain whose support includes support of Kxy π

Define Txy =
Kxy min{1,

πyKyx

πxKxy
}  if x ≠ y

Kxx + ∑y≠x Kxy(1 − Kxy)  otherwise.

You only need to evaluate  so you don’t need to know normalization constant of Markov 

Networks 

πy

πx
π(x) =

1
Z

∏(i, j)∈E ϕi, j(xi, xj)



MCMC in continuous domains

MH Algorithm with Gaussian candidate distribution: 
Init:  
For  

Draw   

Set  with probability , otherwise  

θ0 ∈ ℝd

t = 1,2,…
θ̃t+1 ∼ 𝒩(θt, σ2I )

θt+1 = θ̃t+1 min{1,
π(θ̃t+1)
π(θt)

} θt+1 = θt

If  then natural to take  

Warning: if  too small, exploration is slow and takes a very long time to traverse space.  
If  is too large, you’ll leave the support of  and samples will keep getting rejected. 

𝒳 ⊂ ℝd Kxy = 1

2πσd
exp( −∥x − y∥2/2σ2)

σ
σ π

Define Txy =
Kxy min{1,

πyKyx

πxKxy
}  if x ≠ y

Kxx + ∑y≠x Kxy(1 − Kxy)  otherwise.



MCMC in continuous domains

MH Algorithm with Gaussian candidate distribution: 
Init:  
For  

Draw   

Set  with probability , otherwise  

θ0 ∈ ℝd

t = 1,2,…
θ̃t+1 ∼ 𝒩(θt, σ2I )

θt+1 = θ̃t+1 min{1,
π(θ̃t+1)
π(θt)

} θt+1 = θt

If  then natural to take  

Warning: if  too small, exploration is slow and takes a very long time to traverse space.  
If  is too large, you’ll leave the support of  and samples will keep getting rejected. 

𝒳 ⊂ ℝd Kxy = 1

2πσd
exp( −∥x − y∥2/2σ2)

σ
σ π

Define Txy =
Kxy min{1,

πyKyx

πxKxy
}  if x ≠ y

Kxx + ∑y≠x Kxy(1 − Kxy)  otherwise.

This is hill climbing in a random direction.  
Very similar to derivative free optimization. 
EXTREMELY inefficient in large dimensions



MCMC in continuous domains

If  then natural to take  𝒳 ⊂ ℝd Kxy = 1

2πσd
exp( −∥x − y∥2/2σ2)

Define Txy =
Kxy min{1,

πyKyx

πxKxy
}  if x ≠ y

Kxx + ∑y≠x Kxy(1 − Kxy)  otherwise.

Langevin Monte Carlo (LMC) takes    Kxy = 1
(2πσ2)d/2 exp( −∥x+ σ2

2 ∇zlog(π(z)) |z=x − y∥2/2σ2)

As  the acceptance probability  and the chain just becomesσ → 0 min{1,
πyKyx

πxKxy
} → 1

xt+1 = xt+
σ2

2 ∇zlog(π(z)) |z=xt
+ σ2ηt ηt ∼ 𝒩(0,I )

which is what people use in practice. Converges much faster than traditional MH.



Hit and run sampling

Frequently we have a set  and we would like to sample from a uniform 
measure over this set. Useful in its own right, but can also be used for a candidate 
distribution to sample from.

K ⊂ ℝd

Hit and run sampling: 
Initialize:  
For  

Pick a uniformly distributed random line  through  
Set  to a uniform random point along 

a1 ∈ K
t = 1,2,…

ℓ at
at+1 ℓ ∩ K

Claim: Under benign smoothness 
conditions on , Hit and run converges 
to a uniform stationary distribution.

K



Hit and run sampling

Frequently we have a connected set  and we would like to sample from a 
uniform measure over this set. Useful in its own right, but can also be used for a 
candidate distribution to sample from.

K ⊂ ℝd

Hit and run sampling: 
Initialize:  
For  

Pick a uniformly distributed random line  through  
Set  to a uniform random point along 

a1 ∈ K
t = 1,2,…

ℓ at
at+1 ℓ ∩ K

Claim: Under benign smoothness 
conditions on , Hit and run converges 
to a uniform stationary distribution.

K

Proof by vacuum:



MCMC Convergence

Okay, so we now have a reversible and regular Markov chain  that is 

guaranteed to converge to our target distribution  as its stationary 
distribution. How long do we have to wait for convergence?

Txy

π

The -mixing time of chain T is the smallest time such that for all    

.

ϵ t > Tmin(ϵ)
∥π(0)Tt − π∥TV ≤ ϵ

Theorem:  where  is the second largest eigenvalue of .Tmix(ϵ) = O( 1
1 − λ2

) λ2 < 1 T

Proof sketch: consider special case where  is diagonalizable so that  

Fact: The largest eigenvalue of  is  with  and . 

 

T T = Udiag(λ)U−1

T λ1 = 1 π⊤T = π⊤ T1 = 1

∥π⊤
0 Tt − π∥TV = ∥(π⊤

0 − π⊤)Tt∥TV ≤ n∥(π⊤
0 − π⊤)Tt∥2 = n∥(π⊤

0 − π⊤)
n

∑
i=2

uiv⊤
i λt

i∥2 ≤ 2nλ t
2

Tmix(ϵ) ≤
log( 2n /ϵ)
log(1/λ2) ≤

log( 2n /ϵ)
1 − λ2



Deterministic methods



Core sets

We wish to estimate .  

If mass is concentrated on just a small number of heavy hitters s.t.  
Then we just need to cover these elements to answer many queries. 

Identifying these heavy hitters is an inference task in itself, but may dwarf the computation 
of sampling. Very heuristic-y but could be effective

𝔼P[1{X ∈ A}] = ∑
i

P(xi)1{xi ∈ A}

ℙ(X ∈ {xi}k
i=1) ≥ .99



Quasi Monte Carlo

At the end of the day we wish to estimate . 

Suppose we knew . Why are we sampling instead of approximating the integral?

𝔼P[1{X ∈ A}] = ∫x
P(x)1{x ∈ A}dx

P

Example: Let  and , set P = uniform([0,1]) A ⊂ [0,1] μ = 𝔼P[1{X ∈ A}]

10

A

x

Draw , set x1, …, xn ∼ P ̂μ =
1
n

n

∑
i=1

1{xi ∈ A} Set μ̃ =
1
n

n

∑
i=1

1{ i − 1/2
n ∈ A}

𝔼[ | ̂μ − μ | ] ≈
1

n
𝔼[ | μ̃ − μ | ] ≤

1
n



Quasi Monte Carlo

At the end of the day we wish to estimate . 

Suppose we knew . Why are we sampling instead of approximating the integral?

𝔼P[1{X ∈ A}] = ∫x
P(x)1{x ∈ A}dx

P

Sobol SequenceRandom Uniform

𝔼[ | ̂μ − μ | ] ≈
1

n 𝔼[ | μ̃ − μ | ] ≤
log(n)d−1

n


