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Inference in Bayesian Networks

Goal: compute queries like P(I = i' |G = g2, S = sY) or in words “the probability
of high intelligence given medium grade and low SAT?”
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P(L,G,S,D,I)=P(L|G)P(G|D,DHP(S|I)P(D)P)



Inference in Bayesian Networks

Goal: compute queries like P(I = i' |G = g2, S = sY) or in words “the probability
of high intelligence given medium grade and low SAT?”

PI=i,G=g%S=s"
PU=i"1G =g 5 =50 =" d )
Approaches: P(G = g2, 8 =sY)
e Exact inference by variable elimination:

P(L,G,S,D,I)=P(L|G)P(G|D,P(S|I)P(D)P)

p(]:il,G=g2,S=S0)=ZP(L=1,G=g2,S=SO,D=d,I=i1)
l,d
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Inference in Bayesian Networks

Goal: compute queries like P(I = i' |G = g2, S = sY) or in words “the probability
of high intelligence given medium grade and low SAT?”

| — 2 — <0
PUI=i'|G = g% 8 = 5% = Pl=i,G=g*S5S=s")
Approaches: P(G = g2, 8 =sY)
¢ Exact inference by variable elimination
- Straightforward, but can be computationally prohibitive
¢ Variational inference
- Approximate, biased
e Sampling strategies
- Rejection sampling
- Importance weighted sampling
- MCMC




Rejection sampling

Goal: compute queries like P(I = i' |G = g2, S = sY) or in words “the probability
of high intelligence given medium grade and low SAT?”
PI=i',G=g%S5=s"

PI=i'|G=¢%285=sY=
( | g ) PG = 2.5 = s0)

Algorithm 12.1 Forward Sampling in a Bayesian network
Procedure Forward-Sample (

B I/ Bayesian network over X
)

1 Let X1,...,X, be a topological ordering of X

2 fori=1,...,n

3 u; < x(Pax,) I/ Assignment to Pax, in z1,...,%i—1
|

d

Sample z; from P(X; | u;)
return (z1,...,Z,)




Rejection sampling

Goal: compute queries like P(I = il |G = gz, S = SO) or in words “the probability
of high intelligence given medium grade and low SAT?”
PI=i',G=g%S5=s"

PI=i'|G=g%85=s"=
( | g ) PG = 225 = 5

Draw M samples {(L;, G, Sy, Dy, Ik)}flz1 using forward sampling and
Sety = {k: G, = g%, 5, = 5"} and output

s 1
PU=i'|G=g%S=s)=— 1{],=i'.G, =g 5, ="}
X key

All outcomes




Rejection sampling

Goal: compute queries like P(I = i! |G = gz, S = SO) or in words “the probability

of high intelligence given medium grade and low SAT?”

PI=i',G=g%S5=s"
P(G =g%5=19

PUl=i'|G=g%S=5")=

Draw M samples {(L;, G, Sy, Dy, Ik)}flz1 using forward sampling and
Sety = {k : G, = g%, 5, = 5"} and output

PU=i'1G=g%L85=s"= —Zl{lk—z G, =g2S, =s°)
X key

Zl{lk—l G, = g%, =s"}
key

E[ﬁ(1=i1|G=g2,S=s0)] _ [le

_i[gl Sl =G =% 5, =5 | x| = n| Lyl =
n=1

key

°°nP(I—z|G g%, S =59
Z P(lxI=n)  Unbiased estimator of P(I = i'|G = g2, § = s°)!
n=1



Rejection sampling

Goal: compute queries like P(I = il |G = gz, S = SO) or in words “the probability

of high intelligence given medium grade and low SAT?”

PI=i',G=g%S5=s"
P(G =g%5=19

PUl=i'|G=g%S=5")=

Draw M samples {(L;, G, Sy, Dy, Ik)}flz1 using forward sampling and
Sety = {k: G, = g%, 5, = 5"} and output

s 1
PU=i'|G=g%S=s)=— 1{],=i'.G, =g 5, ="}
X key

How big goes M need to be to get an accurate estimate?

All outcomes




Rejection sampling

Goal: compute queries like P(I = i! |G = gz, S = SO) or in words “the probability

of high intelligence given medium grade and low SAT?”

PI=i',G=g%S5=s"
P(G =g%5=19

PUl=i'|G=g%S=5")=

Draw M samples {(L;, G, Sy, Dy, Ik)}flz1 using forward sampling and
Sety = {k : G, = g%, 5, = 5"} and output

s 1
P(I=i1|G=g2,S=SO)=—21{Ik=i1,Gk=g2,Sk=s0}
X key

Rejection sampling takeaways:
- Very simple to implement
- May require an enormous amount of samples if the conditional statement is rare.
- Consider P( disease | symptoms ). Any precise set of symptoms is going to be rare.



Inference in Bayesian Networks

Goal: compute queries like P(I = i' |G = g2, S = sY) or in words “the probability
of high intelligence given medium grade and low SAT?”

| — 2 — 0
PUI=i'|G = g% 8 = 5% = Pl=i,G=g*S5S=s")
Approaches: P(G = g% 5 =59
¢ Exact inference by variable elimination
- Straightforward, but can be computationally prohibitive
¢ Variational inference
- Approximate, biased
e Sampling strategies
- Rejection sampling V
- Importance weighted sampling
- MCMC




Importance sampling

Fix any function f : & — [0,1] and suppose we wish to estimate 4 = Ep[ f(X)]

. _ 13 A
If ldraw X, ..., X;; ~ P and define up := sz(xi) then [EP[,MP] = Ep[ f(X)]
i=1



Importance sampling

Fix any function f : & — [0,1] and suppose we wish to estimate 4 = Ep[ f(X)]

.13 R
If I draw X, ..., X, ~ P and define up:=— ) f(X)then Ep|up| = Ep[f(X)]
1 M P i plHP P
i=1

Importance sampling with candidate distribution Q:

N -
If Idraw Y, ..., Y, ~ O and define u, :=— ) f(Y)
1 M 0] M i

i=1

P(Y))
oY)

then Eg|fio| = ELf(X)]



Importance sampling

Fix any function f : & — [0,1] and suppose we wish to estimate 4 = Ep[ f(X)]
M

1 A
If ldraw X, ..., X,; ~ P anddefine jip:=— ) f(X)then Ep|up| = Ep[f(X)]
1 M PI= 7 i plHPp P
i=1

Importance sampling with candidate distribution Q

If Idraw Y;, ..., Yy, ~ Qanddefme/,tQ =—2f( f)

P )the [EQ[,u

o o| = ELr00N

[ Zf( )Q(Y)]_ o 1)Q(an;]

=Y 0w - f)
- 0()

=) P()-f()
= Eplf(X)]



Importance sampling

Fix any function f : & — [0,1] and suppose we wish to estimate 4 = Ep[ f(X)]

L1 "
If I draw X, ..., X, ~ P and define up:=— ) f(X)then Ep|up| = Ep[f(X)]
1 M P i plHP P
i=1

Importance sampling with candidate distribution Q:

LS, PO
If Idraw Y, ..., Y, ~ O and define u, :=— ) f(Y)
1 M 0] M i
i=1

oY)

then Eg|fio| = ELf(X)]

1 P(Y)) ,
Moreover, as M — oo we have — Zf(Yi)— ~ /V([EP[f(X)], GQ/M) where
M= o)

P(Y) P(Y)

2 _ 27 _ 72
% = [EQ[<f(Y) Q(Y)) 1= Eolf(¥) Q(Y)] 64, is minimizes when

P(X) O(x) « | f(x)| P(x)
= E, [ A(X)>——=1 = E, [ f(X))?
s f(X) Q(X)] HLf(X)]



Importance sampling

Importance sampling with candidate distribution Q:

1K, PO "
IfIdraw Y, ..., Y, ~ Q and define ji, := sz(yi) o) then [EQ[uQ] = Ep[f(X)]
i=1 ‘

Example: rare event sampling

Q(X)
| PX) \ fx)=1{|x—al| <1/2}

i




Importance sampling

Importance sampling with candidate distribution Q:

. 1 & P(Y)
If Idraw Y}, ..., ¥}, ~ Q and define y, := 7 Zf(Yi)
i=1

o) en Eo| o] = B /001

Example: rare event sampling

Q(X)
| PX) \ fx)=1{|x—al| <1/2}

i

X a

Eplf(X)] = [ P)1{|x—a| <1/2}dx ~ P(a)

X A

05 R Pa)y = sampling from Q requires M > e~ for relative error

€2 [0
for relative error
P(a) I

01% ~ P(a) = sampling from P requires M >



Self-normalized Importance sampling

Fix any function f : & — [0,1] and suppose we wish to estimate 4 = Ep[ f(X)]
M

N\ 1 P
If I draw X, ..., X, ~ P and define up:=— ) f(X)then Ep|up| = Ep[f(X)]
1 M P i plHP P
i=1

Importance sampling with candidate distribution Q

If Idraw Y, ..., Y}, ~ O and define [[Q: —Zf( )

the [EQ[ ]_[EP[f(X)]

Self-normalized Importance sampling with candidate distribution Q:

P(Y)

zl lf( )Q(Y)
ZM P(Y))
=1 O(Y)

If I draw Yy, ..., ¥, ~ Q and define ji) := then [EQ[[[Q] = Ep[f(X)]

P(Y))
Biased [EQ[,u "] # u but is asymptotically consistent since [EQ[%] =1



Self-normalized Importance sampling

Fix any function f : & — [0,1] and suppose we wish to estimate 4 = Ep[ f(X)]

L1 "
If I draw X, ..., X, ~ P and define up:=— ) f(X)then Ep|up| = Ep[f(X)]
1 M P i plHP P
i=1

Importance sampling with candidate distribution Q:

.1
If Idraw Y|, ..., Y;; ~ O and define Ko = sz(Yi)
i=1

Y)
Y,

then Eo| To| = E LX)

P(
o

Self-normalized Importance sampling with candidate distribution Q:

M P(Y))
Ifldraw Yy, ..., Yy, ~ Q and define i) := ) — then [EQ[,uQ] = Ep[f(X)]
Zi=1 oY)
If we only know P up to a noinalizing ZM 1) ) ZM 1) P(Y)
constant such that we have P (x) = ZP(x), fn — =1 o) ~iElT o)
~ Q Py P(Y))
: : _ M PX) M i
we can use P to obtain the same estimator: Zi:l o Zizl oY)



Bayesian Network Inference with Importance Sampling
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P(X):=P(L,G,S,D,I)
= P(L|G)P(G|D,)P(S|P(D)P()

fX = (,G,S,D,I)and P(X) denotes a Bayesian network then as we
saw earlier, sampling from conditionals of P directly is awkward and
inefficient. Can we define a convenient Q and use important sampling?



Bayesian Network Inference with Importance Sampling
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P(X):=P(L,G,S,D,I) Qi g=(Y) = P(L|G = g*)P(S|I = i")P(D)

= P(L|G)P(G|D,)P(S|P(D)P()

fX = (,G,S,D,I)and P(X) denotes a Bayesian network then as we
saw earlier, sampling from conditionals of P directly is awkward and
inefficient. Can we define a convenient Q and use important sampling?



Bayesian Network Inference with Importance Sampling
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P(X):=P(L,G,S,D,I) Qi g=(Y) = P(L|G = g*)P(S|I = i")P(D)

= P(L|G)P(G|D,)P(S|I)P(D)P(I)
Note that P(I = i!,G = g°) = Ep[1{I = i!,G = g°}]
P(Y)

| M
_ . z: _ 1 _ .2
If {I = i',G = gz} is a rare event, this could require substantial fewer samples!




Bayesian Network Inference with Importance Sampling

P(Y) [ R
Y)? letY=(L=Lg=g°,S=s,D=d,[=1i")

How do we compute

P(Y) PL=1Lg=g*S=s,D=d I=i)
N =
OY) OQOrigpL=1g=g%S=s5D=dI=il)

The

P(X):=P(L,G,S,D,I) Qi g=(Y) = P(L|G = g*)P(S|I = i")P(D)
= P(L|G)P(G|D,)P(S|I)P(D)P(I)

Note that P(I = i!,G = g°) = Ep[1{I = i',G = g°}]
1 ¥ P(Y,)
— _ I | 2 k
= EQ[MEI{Ik—z .Gy =8V 505
If {I = i',G = gz} is a rare event, this could require substantial fewer samples!




Bayesian Network Inference with Importance Sampling
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OY) OQOrigpL=1g=g%S=s5D=dI=il)

The

_ P(G=g*|D=dI=i"PU=i"
a 1

P(X):=P(L,G,S,D,I) Qi g=(Y) = P(L|G = g*)P(S|I = i")P(D)
= P(L|G)P(G|D,)P(S|I)P(D)P(I)

Note that P(I = i!,G = g°) = Ep[1{I = i',G = g°}]
1 ¥ P(Y,)
— _ I | 2 k
= EQ[MEI{Ik—z .Gy =8V 505
If {I = i',G = gz} is a rare event, this could require substantial fewer samples!




Bayesian Network Inference with Importance Sampling

Algorithm 12.2 Likelihood-weighted particle generation

Procedure LW-Sample (
B, Il Bayesian network over X
Z = z |/ Event in the network

1 Let X1,...,X, be a topological ordering of X

2 w1

3 fori=1,...,n

4 u; — x(Payx,) I/ Assignment to Pax, in z1,...,Z;—1

5 if X; & Z then

6 Sample z; from P(X; | u;)

7 else

8 x; < 2z(X;) Il Assignment to X; in z

9 w < w- P(z; | w;) /] Multiply weight by probability of desired value
10 return (21,...,ZT,),w

Theorem: If the above algorithm is run on the mutilated network wrt to a set of
P(Y)

set variables zand Q(Y) represents its probability, then w = %




Bayesian Network Inference with Importance Sampling

Algorithm to estimate P(y(X) = 2):

1. Execute algorithm on previous slide M times with event {y(X) = z}
2.Get (Y, w)), ..., (Yy, wy,) back

~ 1 &
3.5et P(y(X) =) =— 3 1{y(¥) =z}w,
k=1

Takeaway: ﬁ(;((X) = z) is an unbiased estimator of P(y(X) = z).

By the properties of importance sampling estimators of the previous slides, if Q is
close to P, the critical size of M may not even depend on P(y(X) = z), even if it is
very rare. But if Q is very far, this could be worse than rejection sampling.

Theorem: If the above algorithm is run on the mutilated network wrt to a set of
P(Y)

set variables zand Q(Y) represents its probability, then w = %




Bayesian Network Inference wit

h Importance Sampling

—~ 1 &
How do we use estimators like P (y(X) =2) = v 2 1{y(Y,) = z}w, to compute

conditional queries like P(I = i'|G = gz, S =592

Ratio method

PU=i,G=g%85=5"

PI=i'1G=g%S=s"=
=i g s°) PG =5 =)

Use M samples to compute
PU=i,G=g%8=s%

Use M’ samples to compute

P(G=g%S=sY

and take the ratio!

Numerator and denominator unbiased.

k=1

Self-normalized method

Collect data (Y, wy), ..., (Y3, wyy)
using event {G = g2, S = 5"}

Output
M .
Zkzl 1{[, =i',G, = g* S, = s"}w,

224:1 Wi
Numerator and denominator unbiased:
Eplwi] = Eglwd{G; = g° S, = 5°}]
=P(G=g>S=s"




Inference in Bayesian Networks

Goal: compute queries like P(I = i' |G = g2, S = sY) or in words “the probability
of high intelligence given medium grade and low SAT?”

| — 2 — 0
PUI=i'|G = g% 8 = 5% = Pl=i,G=g*S5S=s")
Approaches: P(G = g% 5 =59
¢ Exact inference by variable elimination
- Straightforward, but can be computationally prohibitive
¢ Variational inference
- Approximate, biased
e Sampling strategies
- Rejection sampling V
- Importance weighted sampling «
- MCMC




Markov Chain Monte Carlo (MCMC)

Goal: compute queries like P(I = i! |G = g2, S = SO) or in words “the probability

of high intelligence given medium grade and low SAT?”

PI=i',G=g%S5=s"
P(G =g%5=19

PUl=i'|G=g%S=5")=

Sampling from the “mutilated” network will give you sample such that

{G = g2, 5 = s"}. The problem is that this sample is drawn from Qi1 g=g2(¥)

andnot Pl =i'|G = gz, S = sY). Importance sampling tries to “correct” the
misalignment by weighting the sample appropriately.

MCMC starts with the candidate distribution 7 := 0O and then evolves the

distribution 7 slowly over time until it converges 7 — 7. := P. Sampling
from this distribution results in a sample from P



Gibbs sampling

Algorithm 12.4 Generating a Gibbs chain trajectory

Procedure Gibbs-Sample (

X /I Set of variables to be sampled
® // Set of factors defining Ps
PO)(X), /I Initial state distribution
T /] Number of time steps

) . :
1 Sample 2 from PO (X)) P(X;|x_;,) = P(X;| MarkovBlanket(i))
2 fort=1,...,T = P(X;| parents(i)) H P(x;| parents(j))
3 (") 2= echild)
4 for each X; € X /
5 Sample :L'gt) from Py(X; | _;)
6 /| Change X; in «®
7  return z(© ... ()
Markov blanket of C'loudy is Gou)

Sprinkler and Rain
Markov blanket of Rain is '@
Cloudy, Sprinkler, and WetGrass

Figure credit: Pedro Domingos



Gibbs sampling

original p(a, b)

gibbs sampling path

gibbs samples

Figure credit: https://jessicastringham.net/2018/05/09/gibbs-sampling/
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Markov Chain Monte Carlo (MCMC)

Gibb’s sampling is just one example of a MCMC algorithm.

In general, the approach:

- Construct a Markov chain transition kernel g : & — 2 whose

stationary distribution is equal to P

- Start with a realization x) ~ 79 drawn from an arbitrary
starting distribution ¥

- Run Markov chain to evolve x® i x™*D (equiv. 7 — 7z(+1)

and return sample once convergence 70~ P

Easy to see Gives sampling defines a Markov chain with stationary distribution P.
Is it guaranteed to converge? How fast does it converge? What are other chains?



