
Sampling for graphical 
models



Inference in Bayesian Networks
Goal: compute queries like  or in words “the probability 
of high intelligence given medium grade and low SAT?” 

P(I = i1 |G = g2, S = s0)

P(L, G, S, D, I ) = P(L |G)P(G |D, I )P(S | I )P(D)P(I )



Inference in Bayesian Networks
Goal: compute queries like  or in words “the probability 
of high intelligence given medium grade and low SAT?” 

P(I = i1 |G = g2, S = s0)

Approaches: 
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P(L = l, G = g2, S = s0, D = d, I = i1)
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Inference in Bayesian Networks
Goal: compute queries like  or in words “the probability 
of high intelligence given medium grade and low SAT?” 

P(I = i1 |G = g2, S = s0)

Approaches: 
• Exact inference by variable elimination:
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Inference in Bayesian Networks
Goal: compute queries like  or in words “the probability 
of high intelligence given medium grade and low SAT?” 

P(I = i1 |G = g2, S = s0)

P(I = i1 |G = g2, S = s0) =
P(I = i1, G = g2, S = s0)

P(G = g2, S = s0)Approaches: 
• Exact inference by variable elimination 

- Straightforward, but can be computationally prohibitive  
• Variational inference  

- Approximate, biased 
• Sampling strategies 

- Rejection sampling 
- Importance weighted sampling 
- MCMC 



Rejection sampling
Goal: compute queries like  or in words “the probability 
of high intelligence given medium grade and low SAT?” 

P(I = i1 |G = g2, S = s0)

P(I = i1 |G = g2, S = s0) =
P(I = i1, G = g2, S = s0)

P(G = g2, S = s0)



Rejection sampling
Goal: compute queries like  or in words “the probability 
of high intelligence given medium grade and low SAT?” 

P(I = i1 |G = g2, S = s0)

P(I = i1 |G = g2, S = s0) =
P(I = i1, G = g2, S = s0)

P(G = g2, S = s0)

All outcomes

(G = g2, S = s0)(I = i1, G = g2, S = s0)

Draw  samples  using forward sampling and 

Set  and output   

M {(Lk, Gk, Sk, Dk, Ik)}M
k=1

χ = {k : Gk = g2, Sk = s0}

̂P (I = i1 |G = g2, S = s0) =
1

| χ | ∑
k∈χ

1{Ik = i1, Gk = g2, Sk = s0}



Rejection sampling
Goal: compute queries like  or in words “the probability 
of high intelligence given medium grade and low SAT?” 

P(I = i1 |G = g2, S = s0)

P(I = i1 |G = g2, S = s0) =
P(I = i1, G = g2, S = s0)

P(G = g2, S = s0)

𝔼[ ̂P (I = i1 |G = g2, S = s0)] = 𝔼[ 1
| χ | ∑

k∈χ

1{Ik = i1, Gk = g2, Sk = s0}]
=

∞

∑
n=1

𝔼[ 1
n ∑

k∈χ

1{Ik = i1, Gk = g2, Sk = s0} | χ | = n]ℙ( | χ | = n)

=
∞

∑
n=1

nP(I = i1 |G = g2, S = s0)
n

ℙ( | χ | = n)

Draw  samples  using forward sampling and 

Set  and output   

M {(Lk, Gk, Sk, Dk, Ik)}M
k=1

χ = {k : Gk = g2, Sk = s0}

̂P (I = i1 |G = g2, S = s0) =
1

| χ | ∑
k∈χ

1{Ik = i1, Gk = g2, Sk = s0}

Unbiased estimator of !P(I = i1 |G = g2, S = s0)



Rejection sampling
Goal: compute queries like  or in words “the probability 
of high intelligence given medium grade and low SAT?” 

P(I = i1 |G = g2, S = s0)

P(I = i1 |G = g2, S = s0) =
P(I = i1, G = g2, S = s0)

P(G = g2, S = s0)

How big goes M need to be to get an accurate estimate?

Draw  samples  using forward sampling and 

Set  and output   

M {(Lk, Gk, Sk, Dk, Ik)}M
k=1

χ = {k : Gk = g2, Sk = s0}

̂P (I = i1 |G = g2, S = s0) =
1

| χ | ∑
k∈χ

1{Ik = i1, Gk = g2, Sk = s0}

All outcomes

(G = g2, S = s0)(I = i1, G = g2, S = s0)



Rejection sampling
Goal: compute queries like  or in words “the probability 
of high intelligence given medium grade and low SAT?” 

P(I = i1 |G = g2, S = s0)

P(I = i1 |G = g2, S = s0) =
P(I = i1, G = g2, S = s0)

P(G = g2, S = s0)

Draw  samples  using forward sampling and 

Set  and output   

M {(Lk, Gk, Sk, Dk, Ik)}M
k=1

χ = {k : Gk = g2, Sk = s0}

̂P (I = i1 |G = g2, S = s0) =
1

| χ | ∑
k∈χ

1{Ik = i1, Gk = g2, Sk = s0}

Rejection sampling takeaways: 
- Very simple to implement 
- May require an enormous amount of samples if the conditional statement is rare.  

- Consider P( disease | symptoms ). Any precise set of symptoms is going to be rare. 
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Importance sampling

Fix any function  and suppose we wish to estimate f : 𝒳 → [0,1] μ = 𝔼P[ f (X )]

If I draw    and define  then  X1, …, XM ∼ P ̂μP :=
1
M

M

∑
i=1

f (Xi) 𝔼P[ ̂μP] = 𝔼P[ f (X )]



Importance sampling

𝔼Q[ 1
M

M

∑
i=1

f (Yi)
P(Yi)
Q(Yi) ] =

Fix any function  and suppose we wish to estimate f : 𝒳 → [0,1] μ = 𝔼P[ f (X )]

If I draw   and define  then   Y1, …, YM ∼ Q ̂μQ :=
1
M

M

∑
i=1

f (Yi)
P(Yi)
Q(Yi)

𝔼Q[ ̂μQ] = 𝔼P[ f (X )]

Importance sampling with candidate distribution Q:

If I draw    and define  then  X1, …, XM ∼ P ̂μP :=
1
M

M

∑
i=1

f (Xi) 𝔼P[ ̂μP] = 𝔼P[ f (X )]



Importance sampling

𝔼Q[ 1
M

M

∑
i=1

f (Yi)
P(Yi)
Q(Yi) ] = 𝔼Q[f (Y1)

P(Y1)
Q(Y1) ]

= ∑
x

Q(x) ⋅ f (x)
P(x)
Q(x)

= ∑
x

P(x) ⋅ f (x)

= 𝔼P[ f (X )]

Fix any function  and suppose we wish to estimate f : 𝒳 → [0,1] μ = 𝔼P[ f (X )]

If I draw   and define  then   Y1, …, YM ∼ Q ̂μQ :=
1
M

M

∑
i=1

f (Yi)
P(Yi)
Q(Yi)

𝔼Q[ ̂μQ] = 𝔼P[ f (X )]

Importance sampling with candidate distribution Q:

If I draw    and define  then  X1, …, XM ∼ P ̂μP :=
1
M

M

∑
i=1

f (Xi) 𝔼P[ ̂μP] = 𝔼P[ f (X )]



Importance sampling

Moreover,  as  we have     whereM → ∞
1
M

M

∑
i=1

f (Yi)
P(Yi)
Q(Yi)

∼ 𝒩(𝔼P[ f (X )], σ2
Q /M)

σ2
Q = 𝔼Q[(f (Y )

P(Y )
Q(Y ) )2] − 𝔼Q[ f (Y )

P(Y )
Q(Y )

]2
 is minimizes when  σ2

Q

Q(x) ∝ | f (x) |P(x)= 𝔼P[ f(X )2 P(X )
Q(X )

] − 𝔼P[ f(X )]2

Fix any function  and suppose we wish to estimate f : 𝒳 → [0,1] μ = 𝔼P[ f (X )]

If I draw   and define  then   Y1, …, YM ∼ Q ̂μQ :=
1
M

M

∑
i=1

f (Yi)
P(Yi)
Q(Yi)

𝔼Q[ ̂μQ] = 𝔼P[ f (X )]

Importance sampling with candidate distribution Q:

If I draw    and define  then  X1, …, XM ∼ P ̂μP :=
1
M

M

∑
i=1

f (Xi) 𝔼P[ ̂μP] = 𝔼P[ f (X )]



Importance sampling

Example: rare event sampling  

x

P(X ) f (x) = 1{ |x − a | ≤ 1/2}
Q(X )

a

If I draw   and define  then   Y1, …, YM ∼ Q ̂μQ :=
1
M

M

∑
i=1

f (Yi)
P(Yi)
Q(Yi)

𝔼Q[ ̂μQ] = 𝔼P[ f (X )]

Importance sampling with candidate distribution Q:



Importance sampling

Example: rare event sampling  

x

P(X ) f (x) = 1{ |x − a | ≤ 1/2}
Q(X )

a

𝔼P[ f (X )] = ∫x
P(x)1{ |x − a | ≤ 1/2}dx ≈ P(a)

σ2
Q ≈ P(a)2

σ2
P ≈ P(a)

 sampling from  requires  for relative error ⟹ Q M ≥ ϵ−2
̂μQ − μ
μ

≤ ϵ

 sampling from  requires  for relative error ⟹ P M ≥
ϵ−2

P(a)
̂μP − μ
μ

≤ ϵ

If I draw   and define  then   Y1, …, YM ∼ Q ̂μQ :=
1
M

M

∑
i=1

f (Yi)
P(Yi)
Q(Yi)

𝔼Q[ ̂μQ] = 𝔼P[ f (X )]

Importance sampling with candidate distribution Q:



Self-normalized Importance sampling

Self-normalized Importance sampling with candidate distribution Q:

Fix any function  and suppose we wish to estimate f : 𝒳 → [0,1] μ = 𝔼P[ f (X )]

If I draw   and define  then   Y1, …, YM ∼ Q ̂μQ :=
1
M

M

∑
i=1

f (Yi)
P(Yi)
Q(Yi)

𝔼Q[ ̂μQ] = 𝔼P[ f (X )]

Importance sampling with candidate distribution Q:

If I draw    and define  then  X1, …, XM ∼ P ̂μP :=
1
M

M

∑
i=1

f (Xi) 𝔼P[ ̂μP] = 𝔼P[ f (X )]

If I draw   and define  then   Y1, …, YM ∼ Q ̂μ sn
Q :=

∑M
i=1 f (Yi)

P(Yi)
Q(Yi)

∑M
i=1

P(Yi)
Q(Yi)

𝔼Q[ ̂μQ] = 𝔼P[ f (X )]

Biased  but is asymptotically consistent since  𝔼Q[ ̂μ sn
Q ] ≠ μ 𝔼Q[

P(Yi)
Q(Yi)

] = 1



Self-normalized Importance sampling

Self-normalized Importance sampling with candidate distribution Q:

Fix any function  and suppose we wish to estimate f : 𝒳 → [0,1] μ = 𝔼P[ f (X )]

If I draw   and define  then   Y1, …, YM ∼ Q ̂μQ :=
1
M

M

∑
i=1

f (Yi)
P(Yi)
Q(Yi)

𝔼Q[ ̂μQ] = 𝔼P[ f (X )]

Importance sampling with candidate distribution Q:

If I draw    and define  then  X1, …, XM ∼ P ̂μP :=
1
M

M

∑
i=1

f (Xi) 𝔼P[ ̂μP] = 𝔼P[ f (X )]

If I draw   and define  then   Y1, …, YM ∼ Q ̂μ sn
Q :=

∑M
i=1 f (Yi)

P(Yi)
Q(Yi)

∑M
i=1

P(Yi)
Q(Yi)

𝔼Q[ ̂μQ] = 𝔼P[ f (X )]

If we only know  up to a normalizing 

constant such that we have , 

we can use  to obtain the same estimator:

P
P̃ (x) = ZP(x)

P̃
̂μ sn
Q =

∑M
i=1 f (Yi)

P̃ (Yi)
Q(Yi)

∑M
i=1

P̃ (Yi)
Q(Yi)

=
∑M

i=1 f (Yi)
P(Yi)
Q(Yi)

∑M
i=1

P(Yi)
Q(Yi)



Bayesian Network Inference with Importance Sampling

P(X ) := P(L, G, S, D, I )

If  and  denotes a Bayesian network then as we 
saw earlier, sampling from conditionals of  directly is awkward and 
inefficient. Can we define a convenient Q and use important sampling?

X := (L, G, S, D, I ) P(X )
P

= P(L |G)P(G |D, I )P(S | I )P(D)P(I )



Bayesian Network Inference with Importance Sampling

P(X ) := P(L, G, S, D, I )
= P(L |G)P(G |D, I )P(S | I )P(D)P(I )

QI=i1,G=g2(Y ) = P(L |G = g2)P(S | I = i1)P(D)

If  and  denotes a Bayesian network then as we 
saw earlier, sampling from conditionals of  directly is awkward and 
inefficient. Can we define a convenient Q and use important sampling?

X := (L, G, S, D, I ) P(X )
P

“Mutilated” network ℬI=i1,G=g2Original network ℬ



Bayesian Network Inference with Importance Sampling

P(X ) := P(L, G, S, D, I )
= P(L |G)P(G |D, I )P(S | I )P(D)P(I )

QI=i1,G=g2(Y ) = P(L |G = g2)P(S | I = i1)P(D)

“Mutilated” network ℬI=i1,G=g2Original network ℬ

Note that P(I = i1, G = g2) = 𝔼P[1{I = i1, G = g2}]

= 𝔼Q[
1
M

M

∑
k=1

1{Ik = i1, Gk = g2}
P(Yk)
Q(Yk) ]

If  is a rare event, this could require substantial fewer samples!{I = i1, G = g2}



Bayesian Network Inference with Importance Sampling

P(X ) := P(L, G, S, D, I )
= P(L |G)P(G |D, I )P(S | I )P(D)P(I )

QI=i1,G=g2(Y ) = P(L |G = g2)P(S | I = i1)P(D)

Note that P(I = i1, G = g2) = 𝔼P[1{I = i1, G = g2}]

= 𝔼Q[
1
M

M

∑
k=1

1{Ik = i1, Gk = g2}
P(Yk)
Q(Yk) ]

If  is a rare event, this could require substantial fewer samples!{I = i1, G = g2}

How do we compute ?           Let 
P(Y )
Q(Y )

Y = (L = l, g = g2, S = s, D = d, I = i1)

Then 
P(Y )
Q(Y )

=
P(L = l, g = g2, S = s, D = d, I = i1)

QI=i1,G=g2(L = l, g = g2, S = s, D = d, I = i1)



Bayesian Network Inference with Importance Sampling

P(X ) := P(L, G, S, D, I )
= P(L |G)P(G |D, I )P(S | I )P(D)P(I )

QI=i1,G=g2(Y ) = P(L |G = g2)P(S | I = i1)P(D)

Note that P(I = i1, G = g2) = 𝔼P[1{I = i1, G = g2}]

= 𝔼Q[
1
M

M

∑
k=1

1{Ik = i1, Gk = g2}
P(Yk)
Q(Yk) ]

If  is a rare event, this could require substantial fewer samples!{I = i1, G = g2}

How do we compute ?           Let 
P(Y )
Q(Y )

Y = (L = l, g = g2, S = s, D = d, I = i1)

Then 
P(Y )
Q(Y )

=
P(L = l, g = g2, S = s, D = d, I = i1)

QI=i1,G=g2(L = l, g = g2, S = s, D = d, I = i1)

=
P(G = g2 |D = d, I = i1)P(I = i1)

1

Note: all but the 
“mutilated” terms 
cancel.



Bayesian Network Inference with Importance Sampling

Theorem: If the above algorithm is run on the mutilated network wrt to a set of 

set variables z and  represents its probability, then . Q(Y ) w =
P(Y )
Q(Y )



Bayesian Network Inference with Importance Sampling

Theorem: If the above algorithm is run on the mutilated network wrt to a set of 

set variables z and  represents its probability, then . Q(Y ) w =
P(Y )
Q(Y )

Algorithm to estimate : 
1. Execute algorithm on previous slide  times with event   
2. Get  back 

3. Set 

P(χ(X ) = z)
M {χ(X ) = z}

(Y1, w1), …, (YM, wM)

̂P (χ(X ) = z) =
1
M

M

∑
k=1

1{χ(Yk) = z}wk

Takeaway:  is an unbiased estimator of . 
By the properties of importance sampling estimators of the previous slides, if Q is 
close to P, the critical size of  may not even depend on , even if it is 
very rare. But if Q is very far, this could be worse than rejection sampling.

̂P (χ(X ) = z) P(χ(X ) = z)

M P(χ(X ) = z)



Bayesian Network Inference with Importance Sampling

How do we use estimators like  to compute 

conditional queries like ?

̂P (χ(X ) = z) =
1
M

M

∑
k=1

1{χ(Yk) = z}wk

P(I = i1 |G = g2, S = s0)

P(I = i1 |G = g2, S = s0) =
P(I = i1, G = g2, S = s0)

P(G = g2, S = s0)

Ratio method

Use M samples to compute
̂P (I = i1, G = g2, S = s0)

̂P (G = g2, S = s0)

and take the ratio!

Self-normalized method

Collect data  

using event  

(Y1, w1), …, (YM, wM)
{G = g2, S = s0}

Use M’ samples to compute

Output 

 
∑M

k=1 1{Ik = i1, Gk = g2, Sk = s0}wk

∑M
k=1 wk

Numerator and denominator unbiased: 
  

      

𝔼Q[wk] = 𝔼Q[wk1{Gk = g2, Sk = s0}]
= P(G = g2, S = s0)Numerator and denominator unbiased.



Inference in Bayesian Networks
Goal: compute queries like  or in words “the probability 
of high intelligence given medium grade and low SAT?” 

P(I = i1 |G = g2, S = s0)

P(I = i1 |G = g2, S = s0) =
P(I = i1, G = g2, S = s0)

P(G = g2, S = s0)Approaches: 
• Exact inference by variable elimination 

- Straightforward, but can be computationally prohibitive  
• Variational inference  

- Approximate, biased 
• Sampling strategies 

- Rejection sampling 
- Importance weighted sampling 
- MCMC 



Markov Chain Monte Carlo (MCMC)
Goal: compute queries like  or in words “the probability 
of high intelligence given medium grade and low SAT?” 

P(I = i1 |G = g2, S = s0)

P(I = i1 |G = g2, S = s0) =
P(I = i1, G = g2, S = s0)

P(G = g2, S = s0)

Sampling from the “mutilated” network will give you sample such that 
. The problem is that this sample is drawn from  

and not . Importance sampling tries to “correct” the 
misalignment by weighting the sample appropriately.  

MCMC starts with the candidate distribution  and then evolves the 
distribution  slowly over time until it converges . Sampling 
from this distribution results in a sample from 

{G = g2, s = s0} QI=i1,G=g2(Y )

P(I = i1 |G = g2, S = s0)

π(0) := Q
π(t) π(t) → π* := P

P



Gibbs sampling

P(Xi |x−i) = P(Xi |MarkovBlanket(i))

= P(Xi |parents(i)) ∏
j∈child(i)

P(xj |parents( j))

Figure credit: Pedro Domingos



Gibbs sampling

Figure credit: https://jessicastringham.net/2018/05/09/gibbs-sampling/



Markov Chain Monte Carlo (MCMC)

Gibb’s sampling is just one example of a MCMC algorithm. 

In general, the approach: 

- Construct a Markov chain transition kernel  whose 
stationary distribution is equal to  

- Start with a realization  drawn from an arbitrary 
starting distribution  

- Run Markov chain to evolve   (equiv. ) 
and return sample once convergence 

q : 𝒳 → 𝒳
P

x(0) ∼ π(0)

π(0)

x(t) ↦ x(t+1) π(t) → π(t+1)

π(t) ≈ P

Easy to see Gives sampling defines a Markov chain with stationary distribution . 
Is it guaranteed to converge? How fast does it converge? What are other chains?

P


