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Gaussian graphical models

belief propagation naturally extends to continuous distributions by

replacing summations to integrals

⌫i!j(xi) =
Y

k2@i\j

Z
 ik(xi, xk)⌫k!i(xk) dxk

integration can be intractable for general functions

however, for Gaussian graphical models for jointly Gaussian random

variables, we can avoid explicit integration by exploiting algebraic

structure, which yields e�cient inference algorithms
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Multivariate jointly Gaussian random variables
four definitions of a Gaussian random vector x 2 Rn

: x is Gaussian i↵

1. x = Au+ b for standard i.i.d. Gaussian random vector u ⇠ N (0, I)

2. y = aTx is Gaussian for all a 2 Rn

3. covariance form: the probability density function is

µ(x) =
1

(2⇡)n/2|⇤|1/2
exp

n
� 1

2
(x�m)T⇤�1(x�m)

o

denoted as x ⇠ N (m,⇤) with mean m = E[x] and covariance matrix

⇤ = E[(x�m)(x�m)T ] (for some positive definite ⇤).

4. information form: the probability density function is

µ(x) / exp
n
� 1

2
xTJx+ hTx

o

denoted as x ⇠ N�1(h, J) with potential vector h and information
(or precision) matrix J (for some positive definite J)

note that J = ⇤�1
and h = ⇤�1m = Jm

x can be non-Gaussian and the marginals still Gaussian
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consider two operations on the following Gaussian random vector

x =


x1

x2

�
⇠ N

✓
m1

m2

�
,


⇤11 ⇤12

⇤21 ⇤22

�◆
= N�1

✓
h1

h2

�
,


J11 J12

J21 J22

�◆

marginalization is easy to compute when x is in covariance form

x1 ⇠ N (m1,⇤11)

for x1 2 Rd1 , one only needs to read the corresponding entries of

dimensions d1 and d21
but complicated when x is in information form

x1 ⇠ N�1(h0
, J

0)

where J
0 = ⇤�1

11 =
⇣ ⇥

I 0
⇤
J
�1


I
0

�⌘�1
and

h
0 = J

0
m1 =

⇣ ⇥
I 0

⇤
J
�1


I
0

�⌘�1 ⇥
I 0

⇤
J
�1

h

we will prove that h0 = h1 � J12J
�1
22 h2 and J 0 = J11 � J12J

�1
22 J21

what is wrong in computing the marginal with the above formula?

for x1 2 Rd1 and x2 2 Rd2 and d1 ⌧ d2, inverting J22 requires

runtime O(d2.80742 ) (Strassen algorithm)
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Proof of J 0 = ⇤�1
11 = J11 � J12J

�1
22 J21

I J 0
is called Schur complement of the block J22 of the matrix J

I useful matrix identity


I �BD

�1

0 I

� 
A B

C D

� 
I 0

�D
�1

C I

�
=


A�BD

�1
C 0

0 D

�


A B

C D

��1

=


I 0

�D
�1

C I

� 
(A�BD

�1
C)�1 0

0 D
�1

� 
I �BD

�1

0 I

�

=


(A�BD

�1
C)�1 �S

�1
BD

�1

�D
�1

CS
�1

D
�1 +D

�1
CS

�1
BD

�1

�

where S = A�BD
�1

C

I since ⇤ = J
�1,

⇤ =


J11 J12

J21 J22

��1

=


(J11 � J12J

�1
22 J21)�1 �S

�1
J12J

�1
22

�J
�1
22 J21S

�1
J
�1
22 + J

�1
22 J21S

�1
J12J

�1
22

�

where S = J11 � J12J
�1
22 J21, which gives

⇤11 = (J11 � J12J
�1
22 J21)

�1

hence,

J
0 = ⇤�1

11 = J11 � J12J
�1
22 J21
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Proof of h0 = J 0m1 = h1 � J12J
�1
22 h2

I notice that since

⇤ =


J11 J12

J21 J22

��1

=


S
�1 �S

�1
J12J

�1
22

�J
�1
22 J21S

�1
J
�1
22 + J

�1
22 J21S

�1
J12J

�1
22

�

where S = J11 � J12J
�1
22 J21, we know from m = ⇤h that

m1 =
⇥
S
�1 �S

�1
J12J

�1
22

⇤ h1

h2

�

since J
0 = S, we have

h
0 = J

0
m1 =

⇥
I �J12J

�1
22

⇤ h1

h2

�
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conditioning is easy to compute when x is in information form

x1|x2 ⇠ N�1
⇣
h1 � J12x2 , J11

⌘

proof: treat x2 as a constant to get

µ(x1|x2) / µ(x1, x2)

/ exp
n
�

1

2
[xT

1 x
T
2 ]


J11 J12

J21 J22

� 
x1

x2

�
+ [hT

1 h
T
2 ]


x1

x2

�o

/ exp
n
�

1

2

�
x
T
1 J11x1 + 2xT

2 J21x1
�
+ h

T
1 x1

o

= exp
n
�

1

2
x
T
1 J11x1 + (h1 � J12x2)

T
x1

o

but complicated when x is in covariance form

x1|x2 ⇠ N (m0
,⇤0)

where m
0 = m1 + ⇤12⇤

�1
22 (x2 �m2) and ⇤0 = ⇤11 � ⇤12⇤

�1
22 ⇤21
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Gaussian graphical model
theorem 1. For x ⇠ N (m,⇤), xi and xj are independent if and only

if ⇤ij = 0
Q. for what other distribution does uncorrelation imply independence?

theorem 2. For x ⇠ N�1(h, J), xi–xV \{i,j}–xj if and only if Jij = 0
Q. is it obvious?

graphical model representation of Gaussian random vectors

I J encodes the pairwise Markov independencies

I obtain Gaussian graphical model by adding an edge whenever Jij 6= 0

µ(x) / exp
n
� 1

2
xTJx + hTx

o

=
Y

i2V

e�
1
2xT

i Jiixi+hT
i xi

| {z }
 i(xi)

Y

(i,j)2E

e�
1
2xT

i Jijxj

| {z }
 ij(xi,xj)

I is pairwise Markov property enough?

I Is pairwise Markov Random Field enough?

problem: compute marginals µ(xi) when G is a tree

I messages and marginals are Gaussian, completely specified by mean

and variance

I simple algebra to compute integration
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Gaussian belief propagation on trees
initialize messages on the leaves as Gaussian (each node has xi which
can be either a scalar or a vector)

⌫i!j(xi) =  i(xi) = e
� 1

2xT
i Jiixi+hT

i xi ⇠ N�1(hi!j , Ji!j)

where hi!j = hi and Ji!j = Jii

update messages assuming ⌫k!i(xk) ⇠ N�1(hk!i, Jk!i)

⌫i!j(xi) =  i(xi)
Y

k2@i\j

Z
 ik(xi, xk)⌫k!i(xk) dxk

evaluating the integration (= marginalizing Gaussian)

Z
 ik(xi, xk)⌫k!i(xk) dxk =

Z
e
�xT

i Jkixk� 1
2xT

k Jk!ixk+hT
k!ixk dxk

=

Z
exp

n
�

1

2
[xT

i x
T
k ]


0 Jik

Jik Jk!i

� 
xi

xk

�
+ [0 h

T
k!i]


xi

xk

�o
dxk

⇠ N�1�� JikJ
�1
k!ihk!i,�JikJ

�1
k!iJki

�

since this is evaluating the marginal of xi for (xi, xk) ⇠ N�1
⇣

0
hk!i

�
,


0 Jik

Jik Jk!i

�⌘
.
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therefore, messages are also Gaussian ⌫i!j(xi) ⇠ N�1(hi!j , Ji!j)
completely specified by two parameters: mean and variance

Gaussian belief propagation

hi!j = hi �
X

k2@i\j

JikJ
�1
k!ihk!i

Ji!j = Jii �
X

k2@i\j

JikJ
�1
k!iJki

marginal can be computed as xi ⇠ N�1(ĥi, Ĵi)

ĥi = hi �
X

k2@i

JikJ
�1
k!ihk!i

Ĵi = Jii �
X

k2@i

JikJ
�1
k!iJki

for xi 2 Rd
Gaussian BP requires O(n · d3) operations on a tree

I matrix inversion can be computed in O(d3) (e.g., Gaussian elimination)

if we naively invert the information matrix J22 of the entire graph

x1 ⇠ N�1(h1 � J12J
�1
22 h2, J11 � J12J

�1
22 J21)

requires O
�
(nd)3

�
operations
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MAP configuration

I for Gaussian random vectors, mean is the mode

max
x

exp
�
� 1

2
(x�m)T⇤�1(x�m)

 

taking the gradient of the exponent

@

@x

�
� 1

2
(x�m)T⇤�1(x�m)

 
= �⇤�1(x�m)

hence the mode x⇤ = m
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Gaussian hidden Markov models

x0 x1 x2 x3 x4 x5 x6

y0 y1 y2 y3 y4 y5 y6

Gaussian HMM

I states xt 2 Rd

I state transition matrix A 2 Rd⇥d

I process noise vt 2 Rp
and ⇠ N (0, V ) for some V 2 Rp⇥p

, B 2 Rd⇥p

xt+1 = Axt +Bvt

x0 ⇠ N (0,⇤0)

I observation yt 2 Rd0
, C 2 Rd0⇥d

I observation noise wt ⇠ N (0,W ) for some R 2 Rd0⇥d0

yt = Cxt + wt
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in summary, for H = BV BT

x0 ⇠ N (0,⇤0)

xt+1|xt ⇠ N (Axt, H)

yt|xt ⇠ N (Cxt,W )

factorization

µ(x, y) = µ(x0)µ(y0|x0)µ(x1|x0)µ(y1|x1) · · ·

/ exp
⇣
�

1

2
x
T
0 ⇤�1

0 x0

⌘
exp

⇣
�

1

2
(y0 � Cx0)

T
W

�1(y0 � Cx0)
⌘

exp
⇣
�

1

2
(x1 �Ax0)

T
H

�1(x1 �Ax0)
⌘
· · ·

=
tY

k=0

 k(xk)
tY

k=1

 k�1,k(xk�1, xk)
tY

k=0

�k(yk)
tY

k=0

�k,k(xk, yk)
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factorization

µ(x, y) /
tY

k=0

 k(xk)
tY

k=1

 k�1,k(xk�1, xk)
tY

k=0

�k(yk)
tY

k=0

�k,k(xk, yk)

log k(xk) =

8
>>>>>>>><

>>>>>>>>:

� 1
2x

T
0 (⇤�1

0 + C
T
W

�1
C +A

T
H

�1
A

| {z }
⌘ J0

)x0 k = 0

� 1
2x

T
k (H�1 + C

T
W

�1
C +A

T
H

�1
A| {z }

⌘ Jk

)xk 0 < k < t

� 1
2x

T
t (H�1 + C

T
W

�1
C| {z }

⌘ Jt

)xt k = t

log k�1,k(xk�1, xk) = x
T
k H

�1
A| {z }

⌘ Lk

xk�1

log �k(yk) = �
1

2
y
T
k W

�1
yk

log �k,k(xk, yk) = x
T
k C

T
W

�1
| {z }
⌘ Mk

yk
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problem: given observations y estimate hidden states x

x0 x1 x2 x3 x4 x5 x6

µ(x|y) /
tY

k=0

exp
n
� 1

2
xT
k Jkxk + xT

k Mkyk| {z }
hk

o tY

k=1

exp
n
� xT

k (�Lk)| {z }
Jk,k�1

xk�1

o

use Gaussian BP to compute marginals for this Gaussian graphical

model on a line

I initialize
J0!1 = J0, h0!1 = h0

J6!5 = J6, h6!5 = h6

I forward update
Ji!i+1 = Ji � LiJ

�1
i�1!iL

T
i

hi!i+1 = hi � LiJ
�1
i�1!ihi�1!i

I backward update
Ji!i�1 = Ji � Li+1J

�1
i+1!iL

T
i+1

hi!i�1 = hi � Li+1J
�1
i+1!ihi+1!i
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I compute marginals

Ĵi = Ji � LiJ
�1
i�1!iL

T
i � Li+1J

�1
i+1!iL

T
i+1

ĥi = hi � LiJ
�1
i�1!ihi�1!i � Li+1J

�1
i+1!ihi+1!i

I the marginal is

xi ⇠ N (Ĵ�1
i ĥi, Ĵ

�1
i )
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Correctness
there is little theoretical understanding of loopy belief propagation

(except for graphs with a single loop)

perhaps surprisingly, loopy belief propagation (if it converges) gives

the correct mean of Gaussian graphical models even if the graph has

loops (convergence of the variance is not guaranteed)

Theorem [Weiss, Freeman 2001, Rusmevichientong, Van Roy 2001]

If Gaussian belief propagation converges, then the expectations are

computed correctly: let

m̂(`)
i

⌘ (Ĵ (`)
i

)�1ĥ(`)
i

where m̂(`)
i

= belief propagation expectation after ` iterations

Ĵ (`)
i

= belief propagation information matrix after ` iterations

ĥ(`)
i

= belief propagation precision after ` iterations and if

m̂(1)
i

, lim`!1 m̂1
i

exists, then

m̂(1)
i

= mi
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A detour: Computation tree
what is m̂(`)

i
?

computation tree CTG(i; `) is the tree of `-steps non-reversing
walks on G starting at i.

i

a

r = i0

i, j, k, . . . , a, b, . . . for nodes in G and r, s, t, . . . for nodes in CTG(i; `)
potentials  i and  ij are copied to CTG(i; `)
each node (edge) in G corresponds to multiple nodes (edges) in

CTG(i; `).
natural projection ⇡ : CTG(i; `) ! G, e.g., ⇡(t) = ⇡(s) = j
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what is m̂(`)

i
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a

r = i0

s
⇡(s) = a

t
⇡(t) = a

b

c

u
⇡(u) = b

v
⇡(v) = c
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What is m̂(`)
i ?

Claim 1. m̂(`)
i

is m̂(`)
r , which is the expectation of xr w.r.t. Gaussian

model on CTG(i; `)
I proof of claim 1. by induction over `.
I idea: BP ‘does not know’ whether it is operating on G or on CTG(i; `)

recall that for Gaussians, mode of �1
2x

TJx+ hTx is the mean m,

hence

Jm = h

and since J is invertible (due to positive definiteness), m = J�1h.

locally, m is the unique solution that satisfies all of the following

series of equations for all i 2 V

Jiimi +
X

j2@i
Jijmj = hi
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similarly, for a Gaussian graphical model on CTG(i; `)
xr

xs
Jrs

the estimated mean m̂(`)
is exact on a tree. Precisely, since the width

of the tree is at most 2`, the BP updates on CTG(i; `) converge to the

correct marginals for t � 2` and satisfy

Jrrm̂
(t)
r +

X

s2@r

Jrsm̂
(t)
s = hr

where r is the root of the computation tree. In terms of the original

information matrix J and potential h

J⇡(r),⇡(r)m̂
(t)
r +

X

s2@r

J⇡(r),⇡(s)m̂
(t)
s = h⇡(r)

since we copy J and h for each edge and node in CTG(i; `).
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I note that on the computation tree CTG(i, ; `), m̂
(t)
r = m̂(`)

r for t � `
since the root r is at most distance ` away from any node.

I similarly, for a neighbor s of the root r, m̂(t)
s = m̂(`+1)

s for t � `+ 1
since s is at most distance `+ 1 away from any node.

I hence we can write the above equation as

J⇡(r),⇡(r)m̂
(`)
r +

X

s2@r

J⇡(r),⇡(s)m̂
(`+1)
s = h⇡(r) (1)
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if the BP fixed point converges then

lim
`!1

m̂(`)
i

= m̂(1)
i

we claim that lim`!1 m̂(`)
r = m̂(1)

⇡(r), since

lim
`!1

m̂(`)
r = lim

`!1
m̂(`)
⇡(r) by Claim 1.

= m̂(1)
⇡(r) by the convergence assumption

we can generalize this argument (without explicitly proving it in this

lecture) to claim that in the computation tree CTG(i; `) if we
consider a neighbor s of the root r,

lim
`!1

m̂(`+1)
s = m̂(1)

⇡(s)
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Convergence

from Eq. (1), we have

J⇡(r),⇡(r)m̂
(`)
r +

X

s2@r
J⇡(r),⇡(s)m̂

(`+1)
s = h⇡(r)

taking the limit `! 1,

J⇡(r),⇡(r)m̂
(1)
⇡(r) +

X

s2@r
J⇡(r),⇡(s)m̂

(1)
⇡(s) = h⇡(r)

hence, BP is exact on the original graph with loops assuming

convergence, i.e. BP is correct:

Ji,im̂
(1)
i

+
X

j2@i
Ji,jm̂

(1)
j

= hi

Jm̂(1) = h
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What have we achieved?

complexity?

convergence?

correlation decay: the influence of leaf nodes on the computation

tree decreases as iterations increase

understanding BP in a broader class of graphical models (loopy belief

propagation)

help clarify the empirical performance results (e.g. Turbo codes)
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Gaussian Belief Propagation (GBP)

Su�cient conditions for convergence and correctness of GBP

I Rusmevichientong and Van Roy (2001), Wainwright, Jaakkola, Willsky

(2003) : if means converge, then they are correct

I Weiss and Freeman (2001): if the information matrix is diagonally

dominant, then GBP converges

I convergence known for trees, attractive, non-frustrated, and diagonally

dominant Gaussian graphical models

I Malioutov, Johnson, Willsky (2006): walk-summable graphical models

converge (this includes all of the known cases above)

I Moallemi and Van roy (2006): if pairwise normalizable then

consensus propagation converges
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