Recall, using the info/cononical form of a Gussian $\chi \sim N \left(h_{\perp} \Lambda \right)$ $\chi \sim N(M_{\star}, 2)$ $1 - 2^{-1} h = 1$ R(x) d exp(-2x) + Tx5 = 1 M = 1-1 P(x) 2 exp(-1/2 (x-MT) 2 (x-M)) Marginal, 21 ng $\begin{bmatrix} x_1 \\ kz \end{bmatrix}$ $\sim N^{\frac{1}{2}} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} \begin{pmatrix} \Lambda_{11} & \Lambda_{12} \\ \Lambda_{21} & \Lambda_{22} \end{pmatrix}$ $\begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} \sim N \begin{pmatrix} M_1 \\ M_2 \end{pmatrix}, \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_2 \end{pmatrix}$ $X_1 \sim \mathcal{N}(\mathcal{M}_1, \mathcal{Z}_{ii})$ 1 1 N (hi - Jiz J 22 Jzi, Ji) Indep X1 4 ×2 (=> £12 =0 (uncorr => 11) Conditioning

 $P(x_1(x_2) \sim N(M_1 + \sum_{12} \sum_{2} \sum_{2} (x_2 - M_2), \sum_{11} - \sum_{12} \sum_{2} \sum_{2} \sum_{2})$ $P(x_1(x_2) \sim N^{-1}(h^1 - J_{12}x_2, J_{11})$ $\sum_{i=1}^{n} Conditional III$ $\sum_{i=1}^{n} (x_1 + x_2) = 0$

So, we have a gasessian GM:

$$P(x) = \prod_{i \in V} \exp(-\frac{1}{2}x_iJ_{ii}x_i + h_ix_i) \prod_{(i,j) \in E} \exp(-x_iJ_{ij}x_j)$$

$$G = (V, E) : (i,j) \in E \iff J_{ij} \neq 0$$

Generally, BP will be used to condition on info from other ports of the graph. Eq. $P(x_i \mid x_z = 7)$.

Let's start with a tree G . This!! look

like an elimination alg.

$$I(k_e) = \lim_{i \to \infty} \int_{e \ni i} \int_{e \ni i} \int_{e \mapsto i} \int_$$

 $m_{i\rightarrow j}(x_{j}) \sim N^{-1}(h_{i\rightarrow j}, \overline{J}_{i\rightarrow j})$ Parallel hi=j~N"(-J;(J; + & Je>i) - (h; + & h; + & Decision Marginal hi = hi + \int hearingis Ji = Jii + & Jbi $\hat{X}_{i} \sim N^{-1}(\hat{\lambda}_{i}, \mathcal{J}_{ii}) = N(\hat{\mathcal{J}}_{ii}, \hat{\mathcal{J}}_{ii})$

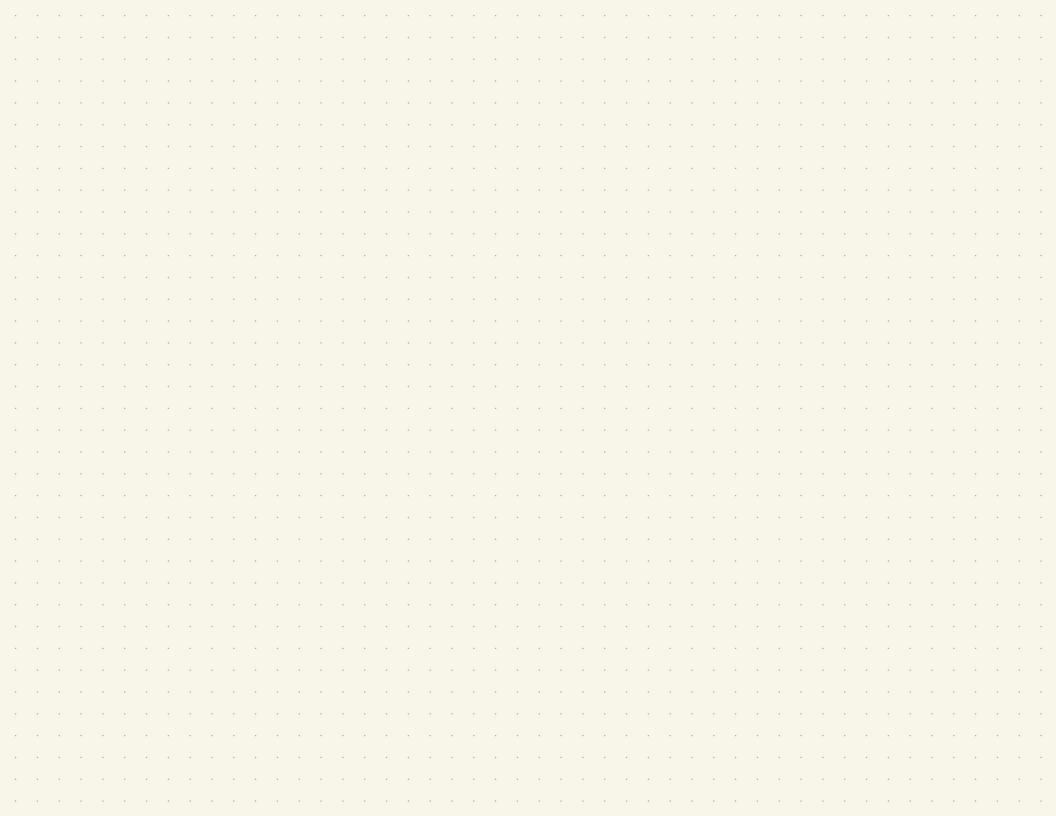
0(3)

T steps of BP takes $O(d^3 |E| \cdot T)$ inverting $J \in \mathbb{R}^{2n \times dn}$ takes $O(d^3 n^3)$

Alt version of GBP hi > j = hi - & Die Desi hesi Jisj = Jii - & Jie Jesi Jei Lesi Jie Dest Meri Ee di Jie Jei Jei Jei A Maximization is equivalent (M,,-Mn)=4 Dhow can we Check it J>0? $-\left(\frac{1}{2}\left(\frac{1}{2}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}$ GHilden Markov Models (Z)] suff conditions to => 0 < ? -> Linear Dynamical
Systems (Kalman
Fittering) Xt: state E Rd Xo~N(0, Zo)

Xt+1=Ax++By, noise win N(0, w) A E Rdxd state trans. Process noise [BERZAP At = (Xt + mt

 $X_0 \sim N(0, \Xi_0)$ 66 M X+11/X+~N(AX+,H=BVBT) Factorization. $N((x_t, W))$ Py(x) = $\frac{1}{2} \exp\left[-\frac{1}{2} x_{0}^{T} \frac{1}{2} x_{0}\right] \exp\left[-\frac{1}{2} (x_{0} + Ax_{0})^{T} H^{-1}\right]$ $\left(\begin{array}{ccc} \chi^{1} - \chi & \chi^{2} \\ \chi^{1} & - \chi & \chi^{2} \end{array}\right)$ exp(-1/2 yo - (x)) W (yo-(x)) Information form: = /2 Texp (-1/2 xi Di xi+hi



Gaussian graphical models

 belief propagation naturally extends to continuous distributions by replacing summations to integrals

$$\nu_{i \to j}(x_i) = \prod_{k \in \partial i \setminus j} \int \psi_{ik}(x_i, x_k) \nu_{k \to i}(x_k) \, dx_k$$

- integration can be intractable for general functions
- however, for Gaussian graphical models for jointly Gaussian random variables, we can avoid explicit integration by exploiting algebraic structure, which yields efficient inference algorithms

Multivariate jointly Gaussian random variables

four definitions of a Gaussian random vector $x \in \mathbb{R}^n$: x is Gaussian iff

- 1. x = Au + b for standard i.i.d. Gaussian random vector $u \sim \mathcal{N}(0, \mathbf{I})$
- 2. $y = a^T x$ is Gaussian for all $a \in \mathbb{R}^n$
- 3. covariance form: the probability density function is

$$\mu(x) = \frac{1}{(2\pi)^{n/2} |\Lambda|^{1/2}} \exp\left\{-\frac{1}{2}(x-m)^T \Lambda^{-1}(x-m)\right\}$$

denoted as $x \sim \mathcal{N}(m, \Lambda)$ with mean $m = \mathbb{E}[x]$ and covariance matrix $\Lambda = \mathbb{E}[(x-m)(x-m)^T]$ (for some positive definite Λ).

4. information form: the probability density function is

$$\mu(x) \propto \exp\left\{-\frac{1}{2}x^TJx + h^Tx\right\}$$

denoted as $x \sim \mathcal{N}^{-1}(h,J)$ with potential vector h and information (or precision) matrix J (for some positive definite J)

- note that $J=\Lambda^{-1}$ and $h=\Lambda^{-1}m=Jm$
- ullet x can be non-Gaussian and the marginals still Gaussian Gaussian graphical models

• consider two operations on the following Gaussian random vector

$$x = \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] \sim \mathcal{N} \left(\left[\begin{array}{c} m_1 \\ m_2 \end{array} \right], \left[\begin{array}{cc} \Lambda_{11} & \Lambda_{12} \\ \Lambda_{21} & \Lambda_{22} \end{array} \right] \right) = \mathcal{N}^{-1} \left(\left[\begin{array}{c} h_1 \\ h_2 \end{array} \right], \left[\begin{array}{cc} J_{11} & J_{12} \\ J_{21} & J_{22} \end{array} \right] \right)$$

• marginalization is easy to compute when x is in covariance form

$$x_1 \sim \mathcal{N}(m_1, \Lambda_{11})$$

 $x_1 \sim \mathcal{N}^{-1}(h', J')$

for $x_1 \in \mathbb{R}^{d_1}$, one only needs to read the corresponding entries of dimensions d_1 and d_1^2 but complicated when x is in information form

where
$$J'=\Lambda_{11}^{-1}=\left(egin{array}{cc} [\mathbb{I} & 0] \ J^{-1} \begin{bmatrix} \mathbb{I} \\ 0 \end{bmatrix}
ight)^{-1}$$
 and
$$h'=J'm_1=\left(egin{array}{cc} [\mathbb{I} & 0] \ J^{-1} \begin{bmatrix} \mathbb{I} \\ 0 \end{bmatrix}
ight)^{-1} [\mathbb{I} & 0] \ J^{-1}h$$

- we will prove that $h' = h_1 J_{12}J_{22}^{-1}h_2$ and $J' = J_{11} J_{12}J_{22}^{-1}J_{21}$
- what is wrong in computing the marginal with the above formula? for $x_1 \in \mathbb{R}^{d_1}$ and $x_2 \in \mathbb{R}^{d_2}$ and $d_1 \ll d_2$, inverting J_{22} requires runtime $O(d_2^{2.8074})$ (Strassen algorithm)

- Proof of $J' = \Lambda_{11}^{-1} = J_{11} J_{12}J_{22}^{-1}J_{21}$
 - ▶ J' is called **Schur complement** of the block J_{22} of the matrix J
 - useful matrix identity

$$\begin{bmatrix} \mathbf{I} & -BD^{-1} \\ 0 & \mathbf{I} \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} \mathbf{I} & 0 \\ -D^{-1}C & \mathbf{I} \end{bmatrix} = \begin{bmatrix} A-BD^{-1}C & 0 \\ 0 & D \end{bmatrix}$$

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}^{-1} & = & \begin{bmatrix} \mathbf{I} & 0 \\ -D^{-1}C & \mathbf{I} \end{bmatrix} \begin{bmatrix} (A-BD^{-1}C)^{-1} & 0 \\ 0 & D^{-1} \end{bmatrix} \begin{bmatrix} \mathbf{I} & -BD^{-1} \\ 0 & \mathbf{I} \end{bmatrix}$$

$$= & \begin{bmatrix} (A-BD^{-1}C)^{-1} & -S^{-1}BD^{-1} \\ -D^{-1}CS^{-1} & D^{-1} + D^{-1}CS^{-1}BD^{-1} \end{bmatrix}$$

where $S = A - BD^{-1}C$

• since $\Lambda = J^{-1}$,

$$\Lambda \quad = \quad \begin{bmatrix} J_{11} & J_{12} \\ J_{21} & J_{22} \end{bmatrix}^{-1} = \begin{bmatrix} (J_{11} - J_{12}J_{22}^{-1}J_{21})^{-1} & -S^{-1}J_{12}J_{22}^{-1} \\ -J_{22}^{-1}J_{21}S^{-1} & J_{22}^{-1} + J_{22}^{-1}J_{21}S^{-1}J_{12}J_{22}^{-1} \end{bmatrix}$$

where $S = J_{11} - J_{12}J_{22}^{-1}J_{21}$, which gives

$$\Lambda_{11} = (J_{11} - J_{12}J_{22}^{-1}J_{21})^{-1}$$

hence.

$$J' = \Lambda_{11}^{-1} = J_{11} - J_{12}J_{22}^{-1}J_{21}$$

- Proof of $h' = J'm_1 = h_1 J_{12}J_{22}^{-1}h_2$
 - notice that since

$$\Lambda \quad = \quad \begin{bmatrix} J_{11} & J_{12} \\ J_{21} & J_{22} \end{bmatrix}^{-1} = \begin{bmatrix} S^{-1} & -S^{-1}J_{12}J_{22}^{-1} \\ -J_{22}^{-1}J_{21}S^{-1} & J_{22}^{-1} + J_{22}^{-1}J_{21}S^{-1}J_{12}J_{22}^{-1} \end{bmatrix}$$

where $S = J_{11} - J_{12}J_{22}^{-1}J_{21}$, we know from $m = \Lambda h$ that

$$m_1 = \begin{bmatrix} S^{-1} & -S^{-1}J_{12}J_{22}^{-1} \end{bmatrix} \begin{bmatrix} h_1 \\ h_2 \end{bmatrix}$$

since J' = S, we have

$$h' = J'm_1 = \begin{bmatrix} \mathbb{I} & -J_{12}J_{22}^{-1} \end{bmatrix} \begin{bmatrix} h_1 \\ h_2 \end{bmatrix}$$

ullet conditioning is easy to compute when x is in information form

$$x_1|x_2 \sim \mathcal{N}^{-1}(h_1 - J_{12}x_2, J_{11})$$

proof: treat x_2 as a constant to get

$$\mu(x_1|x_2) \propto \mu(x_1, x_2)$$

$$\propto \exp\left\{-\frac{1}{2}[x_1^T \ x_2^T] \begin{bmatrix} J_{11} & J_{12} \\ J_{21} & J_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + [h_1^T \ h_2^T] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right\}$$

$$\propto \exp\left\{-\frac{1}{2}(x_1^T J_{11}x_1 + 2x_2^T J_{21}x_1) + h_1^T x_1\right\}$$

$$= \exp\left\{-\frac{1}{2}x_1^T J_{11}x_1 + (h_1 - J_{12}x_2)^T x_1\right\}$$

but complicated when x is in covariance form

$$x_1|x_2 \sim \mathcal{N}(m', \Lambda')$$

where
$$m'=m_1+\Lambda_{12}\Lambda_{22}^{-1}(x_2-m_2)$$
 and $\Lambda'=\Lambda_{11}-\Lambda_{12}\Lambda_{22}^{-1}\Lambda_{21}$

Gaussian graphical model

theorem 1. For $x \sim \mathcal{N}(m, \Lambda)$, x_i and x_j are independent if and only if $\Lambda_{ij} = 0$

- Q. for what other distribution does uncorrelation imply independence? **theorem 2.** For $x \sim \mathcal{N}^{-1}(h,J)$, $x_i x_{V \setminus \{i,j\}} x_j$ if and only if $J_{ij} = 0$
- Q. is it obvious?
 - graphical model representation of Gaussian random vectors
 - J encodes the pairwise Markov independencies
 - lacktriangle obtain Gaussian graphical model by adding an edge whenever $J_{ij}
 eq 0$

$$\mu(x) \propto \exp\left\{-\frac{1}{2}x^{T}Jx + h^{T}x\right\} = \prod_{i \in V} e^{-\frac{1}{2}x_{i}^{T}J_{ii}x_{i} + h_{i}^{T}x_{i}} \prod_{(i,j) \in E} e^{-\frac{1}{2}x_{i}^{T}J_{ij}x_{j}} \psi_{ij}(x_{i},x_{j})$$

- ▶ is pairwise Markov property enough?
- ▶ Is pairwise Markov Random Field enough?

problem: compute marginals $\mu(x_i)$ when G is a tree

- messages and marginals are Gaussian, completely specified by mean and variance
- simple algebra to compute integration

Gaussian belief propagation on trees

ullet initialize messages on the leaves as Gaussian (each node has x_i which can be either a scalar or a vector)

$$\nu_{i \to j}(x_i) = \psi_i(x_i) = e^{-\frac{1}{2}x_i^T J_{ii} x_i + h_i^T x_i} \sim \mathcal{N}^{-1}(h_{i \to j}, J_{i \to j})$$

- therefore, messages are also Gaussian $\nu_{i \to j}(x_i) \sim \mathcal{N}^{-1}(h_{i \to j}, J_{i \to j})$
- completely specified by two parameters: mean and variance

- $J_{i o j} = J_{ii} \sum_{k \in \partial i \setminus j} J_{ik} J_{k o i}^{-1} J_{ki}$ marginal can be computed as $x_i \sim \mathcal{N}^{-1}(\hat{h}_i,\hat{J}_i)$
- $\hat{h}_i = h_i \sum_i J_{ik} J_{k \rightarrow i}^{-1} h_{k \rightarrow i}$
 - $\hat{J}_i = J_{ii} \sum_{k \in n} J_{ik} J_{k \to i}^{-1} J_{ki}$
- for x_i ∈ R^d Gaussian BP requires O(n · d³) operations on a tree
 matrix inversion can be computed in O(d³) (e.g., Gaussian elimination of the property of the property of the computed in O(d³).
- ullet if we naively invert the information matrix J_{22} of the entire graph
 - requires $O((nd)^3)$ operations

- MAP configuration
 - ▶ for Gaussian random vectors, mean is the mode

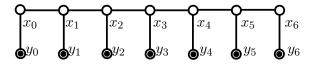
$$\max_{x} \exp \left\{ -\frac{1}{2}(x-m)^{T}\Lambda^{-1}(x-m) \right\}$$

taking the gradient of the exponent

$$\frac{\partial}{\partial x} \left\{ -\frac{1}{2} (x-m)^T \Lambda^{-1} (x-m) \right\} = -\Lambda^{-1} (x-m)$$

hence the mode $x^* = m$

Gaussian hidden Markov models



Gaussian HMM

- states $x_t \in \mathbb{R}^d$
- state transition matrix $A \in \mathbb{R}^{d \times d}$
- process noise $v_t \in \mathbb{R}^p$ and $\sim \mathcal{N}(0,V)$ for some $V \in \mathbb{R}^{p \times p}$, $B \in \mathbb{R}^{d \times p}$

$$x_{t+1} = Ax_t + Bv_t$$
$$x_0 \sim \mathcal{N}(0, \Lambda_0)$$

- observation $y_t \in \mathbb{R}^{d'}$, $C \in \mathbb{R}^{d' \times d}$
- observation noise $w_t \sim \mathcal{N}(0, W)$ for some $R \in \mathbb{R}^{d' \times d'}$

$$y_t = Cx_t + w_t$$

• in summary, for $H = BVB^T$

$$x_0 \sim \mathcal{N}(0, \Lambda_0)$$

$$x_{t+1}|x_t \sim \mathcal{N}(Ax_t, \mathbf{H})$$

$$y_t|x_t \sim \mathcal{N}(Cx_t, \mathbf{W})$$

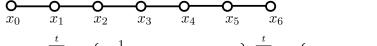
 $\mu(x,y) = \mu(x_0)\mu(y_0|x_0)\mu(x_1|x_0)\mu(y_1|x_1)\cdots$ $\propto \exp\left(-\frac{1}{2}x_0^T\Lambda_0^{-1}x_0\right)\exp\left(-\frac{1}{2}(y_0-Cx_0)^TW^{-1}(y_0-Cx_0)\right)$ $\exp\left(-\frac{1}{2}(x_1-Ax_0)^TH^{-1}(x_1-Ax_0)\right)\cdots$ $=\prod_{k=0}^t \psi_k(x_k)\prod_{k=1}^t \psi_{k-1,k}(x_{k-1},x_k)\prod_{k=0}^t \phi_k(y_k)\prod_{k=0}^t \phi_{k,k}(x_k,y_k)$

factorization

$$\mu(x,y) \propto \prod_{k=0}^t \psi_k(x_k) \prod_{k=1}^t \psi_{k-1,k}(x_{k-1},x_k) \prod_{k=0}^t \phi_k(y_k) \prod_{k=0}^t \phi_{k,k}(x_k,y_k)$$

Gaussian graphical mode

 \bullet problem: given observations y estimate hidden states x



$$\mu(x|y) \quad \propto \quad \prod_{k=0}^t \exp\Big\{-\frac{1}{2}x_k^T J_k x_k + x_k^T \underbrace{M_k y_k}_{h_k}\Big\} \ \prod_{k=1}^t \exp\Big\{-x_k^T \underbrace{(-L_k)}_{J_{k,k-1}} x_{k-1}\Big\}$$

 use Gaussian BP to compute marginals for this Gaussian graphical model on a line

▶ initialize

- $J_{0\to 1} = J_0, \qquad h_{0\to 1} = h_0$ $J_{6\to 5} = J_6, \qquad h_{6\to 5} = h_6$
- ► forward update
- $J_{i \to i+1} = J_i L_i J_{i-1 \to i} L_i^*$ $h_{i \to i+1} = h_i L_i J_{i-1 \to i}^{-1} h_{i-1 \to i}$
- backward update

 $J_{i \rightarrow i-1} = J_i - L_{i+1} J_{i+1 \rightarrow i} L_{i+1}^{-1}$ $h_{i \rightarrow i-1} = h_i - L_{i+1} J_{i-1}^{-1} ... h_{i+1}^{-1}$

compute marginals

 $\hat{J}_{i} = J_{i} - L_{i}J_{i-1 \to i}^{-1}L_{i}^{T} - L_{i+1}J_{i+1 \to i}^{-1}L_{i+1}^{T}$

 $h_i = h_i - L_i J_{i-1 \to i}^{-1} h_{i-1 \to i} - L_{i+1} J_{i+1 \to i}^{-1} h_{i+1 \to i}$

▶ the marginal is

 $x_i \sim \mathcal{N}(J_i^{-1}h_i, J_i^{-1})$

Correctness

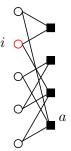
- there is little theoretical understanding of loopy belief propagation (except for graphs with a single loop)
- perhaps surprisingly, loopy belief propagation (if it converges) gives the correct mean of Gaussian graphical models even if the graph has loops (convergence of the variance is not guaranteed)
- Theorem [Weiss, Freeman 2001, Rusmevichientong, Van Roy 2001]
 If Gaussian belief propagation converges, then the expectations are computed correctly: let

$$\hat{m}_{i}^{(\ell)} \equiv (\hat{J}_{i}^{(\ell)})^{-1} \hat{h}_{i}^{(\ell)}$$

where $\hat{m}_i^{(\ell)} =$ belief propagation expectation after ℓ iterations $\hat{J}_i^{(\ell)} =$ belief propagation information matrix after ℓ iterations $\hat{h}_i^{(\ell)} =$ belief propagation precision after ℓ iterations and if $\hat{m}_i^{(\infty)} \triangleq \lim_{\ell \to \infty} \hat{m}_i^{\infty}$ exists, then

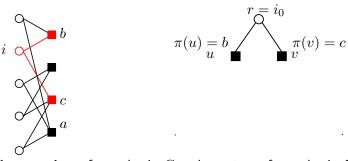
$$\hat{m}_i^{(\infty)} = m_i$$

- what is $\hat{m}_i^{(\ell)}$?
- computation tree $\mathsf{CT}_G(i;\ell)$ is the tree of ℓ -steps non-reversing walks on G starting at i.



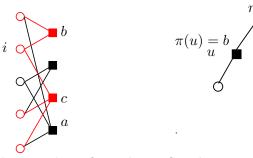
- ullet i,j,k,\ldots,a,b,\ldots for nodes in G and r,s,t,\ldots for nodes in $\mathsf{CT}_G(i;\ell)$
- potentials ψ_i and ψ_{ij} are copied to $\mathsf{CT}_G(i;\ell)$
- each node (edge) in G corresponds to multiple nodes (edges) in ${\rm CT}_G(i;\ell)$.
- natural projection $\pi: \mathsf{CT}_G(i;\ell) \to G$, e.g., $\pi(t) = \pi(s) = j$

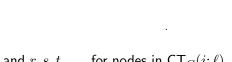
- what is $\hat{m}_i^{(\ell)}$?
- computation tree $\mathsf{CT}_G(i;\ell)$ is the tree of ℓ -steps non-reversing walks on G starting at i.



- ullet i,j,k,\ldots,a,b,\ldots for nodes in G and r,s,t,\ldots for nodes in $\mathsf{CT}_G(i;\ell)$
- potentials ψ_i and ψ_{ij} are copied to $\mathsf{CT}_G(i;\ell)$
- each node (edge) in G corresponds to multiple nodes (edges) in $\operatorname{CT}_G(i;\ell)$.
- natural projection $\pi: \mathsf{CT}_G(i;\ell) \to G$, e.g., $\pi(t) = \pi(s) = j$

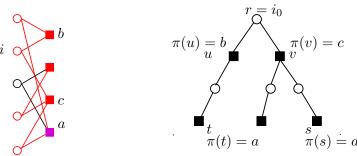
- what is $\hat{m}_i^{(\ell)}$?
- computation tree $\mathsf{CT}_G(i;\ell)$ is the tree of ℓ -steps non-reversing walks on G starting at i.





- $i, j, k, \ldots, a, b, \ldots$ for nodes in G and r, s, t, \ldots for nodes in $\mathsf{CT}_G(i; \ell)$
- potentials ψ_i and ψ_{ij} are copied to $\mathsf{CT}_G(i;\ell)$
- each node (edge) in G corresponds to multiple nodes (edges) in $\operatorname{CT}_G(i;\ell)$.
- natural projection $\pi: \mathsf{CT}_G(i;\ell) \to G$, e.g., $\pi(t) = \pi(s) = j$

- what is $\hat{m}_i^{(\ell)}$?
- computation tree $\mathsf{CT}_G(i;\ell)$ is the tree of ℓ -steps non-reversing walks on G starting at i.



- ullet i,j,k,\ldots,a,b,\ldots for nodes in G and r,s,t,\ldots for nodes in $\mathsf{CT}_G(i;\ell)$
- potentials ψ_i and ψ_{ij} are copied to $\mathsf{CT}_G(i;\ell)$
- each node (edge) in G corresponds to multiple nodes (edges) in $\operatorname{CT}_G(i;\ell)$.
- natural projection $\pi:\mathsf{CT}_G(i;\ell)\to G$, e.g., $\pi(t)=\pi(s)=j$

What is $\hat{m}_i^{(\ell)}$?

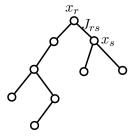
- Claim 1. $\hat{m}_i^{(\ell)}$ is $\hat{m}_r^{(\ell)}$, which is the expectation of x_r w.r.t. Gaussian model on $\mathsf{CT}_G(i;\ell)$
 - **proof of claim 1.** by induction over ℓ .
 - lacksquare idea: BP 'does not know' whether it is operating on G or on $\mathsf{CT}_G(i;\ell)$
- recall that for Gaussians, mode of $-\frac{1}{2}x^TJx + h^Tx$ is the mean m, hence

$$Jm = h$$

- and since J is invertible (due to positive definiteness), $m = J^{-1}h$.
- \bullet locally, m is the unique solution that satisfies all of the following series of equations for all $i \in V$

$$J_{ii}m_i + \sum_{j \in \partial i} J_{ij}m_j = h_i$$

• similarly, for a Gaussian graphical model on $\mathsf{CT}_G(i;\ell)$



the estimated mean $\hat{m}^{(\ell)}$ is exact on a tree. Precisely, since the width of the tree is at most 2ℓ , the BP updates on $\mathsf{CT}_G(i;\ell)$ converge to the correct marginals for $t \geq 2\ell$ and satisfy

$$J_{rr}\hat{m}_r^{(t)} + \sum_{s,s} J_{rs}\hat{m}_s^{(t)} = h_r$$

where r is the root of the computation tree. In terms of the original information matrix J and potential h

$$J_{\pi(r),\pi(r)}\hat{m}_r^{(t)} + \sum_{s \in \partial r} J_{\pi(r),\pi(s)}\hat{m}_s^{(t)} = h_{\pi(r)}$$

since we copy J and h for each edge and node in $\mathsf{CT}_G(i;\ell)$.

- ▶ note that on the computation tree $\mathsf{CT}_G(i,;\ell)$, $\hat{m}_r^{(t)} = \hat{m}_r^{(\ell)}$ for $t \ge \ell$ since the root r is at most distance ℓ away from any node.
- ▶ similarly, for a neighbor s of the root r, $\hat{m}_s^{(t)} = \hat{m}_s^{(\ell+1)}$ for $t \ge \ell + 1$ since s is at most distance $\ell + 1$ away from any node.
- hence we can write the above equation as

$$J_{\pi(r),\pi(r)}\hat{m}_r^{(\ell)} + \sum_{s \in \partial r} J_{\pi(r),\pi(s)}\hat{m}_s^{(\ell+1)} = h_{\pi(r)}$$
 (1)

if the BP fixed point converges then

$$\lim_{\ell \to \infty} \hat{m}_i^{(\ell)} = \hat{m}_i^{(\infty)}$$

we claim that $\lim_{\ell\to\infty}\hat{m}_r^{(\ell)}=\hat{m}_{\pi(r)}^{(\infty)}$, since

$$\begin{array}{lll} \lim_{\ell \to \infty} \hat{m}_r^{(\ell)} & = & \lim_{\ell \to \infty} \hat{m}_{\pi(r)}^{(\ell)} & \qquad & \text{by Claim 1.} \\ & = & \hat{m}_{\pi(r)}^{(\infty)} & \qquad & \text{by the convergence assumption} \end{array}$$

we can generalize this argument (without explicitly proving it in this lecture) to claim that in the computation tree $\mathsf{CT}_G(i;\ell)$ if we consider a neighbor s of the root r,

$$\lim_{\ell \to \infty} \hat{m}_s^{(\ell+1)} = \hat{m}_{\pi(s)}^{(\infty)}$$

Convergence

from Eq. (1), we have

$$J_{\pi(r),\pi(r)}\hat{m}_r^{(\ell)} + \sum_{s \in \partial r} J_{\pi(r),\pi(s)}\hat{m}_s^{(\ell+1)} = h_{\pi(r)}$$

taking the limit $\ell \to \infty$,

$$J_{\pi(r),\pi(r)}\hat{m}_{\pi(r)}^{(\infty)} + \sum_{s \in \partial r} J_{\pi(r),\pi(s)}\hat{m}_{\pi(s)}^{(\infty)} = h_{\pi(r)}$$

hence, BP is exact on the original graph with loops assuming convergence, i.e. BP is correct:

$$J_{i,i}\hat{m}_i^{(\infty)} + \sum_{j \in \partial i} J_{i,j}\hat{m}_j^{(\infty)} = h_i$$
$$J\hat{m}^{(\infty)} = h$$

What have we achieved?

- complexity?
- convergence?
- **correlation decay**: the influence of leaf nodes on the computation tree decreases as iterations increase
- understanding BP in a broader class of graphical models (loopy belief propagation)
- help clarify the empirical performance results (e.g. Turbo codes)

Gaussian Belief Propagation (GBP)

- Sufficient conditions for convergence and correctness of GBP
 - ▶ Rusmevichientong and Van Roy (2001), Wainwright, Jaakkola, Willsky (2003): if means converge, then they are correct
 - Weiss and Freeman (2001): if the information matrix is diagonally dominant, then GBP converges
 - convergence known for trees, attractive, non-frustrated, and diagonally dominant Gaussian graphical models
 - ▶ Malioutov, Johnson, Willsky (2006): walk-summable graphical models converge (this includes all of the known cases above)
 - ► Moallemi and Van roy (2006): if **pairwise normalizable** then consensus propagation converges