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Gaussian graphical models

@ belief propagation naturally extends to continuous distributions by
replacing summations to integrals

Visj(zs) = H /wik(xiaxk)l/k—)i(xk) dxy
kedi\j
@ integration can be intractable for general functions

@ however, for Gaussian graphical models for jointly Gaussian random
variables, we can avoid explicit integration by exploiting algebraic
structure, which yields efficient inference algorithms
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Multivariate jointly Gaussian random variables
four definitions of a Gaussian random vector z € R": z is Gaussian iff
1. © = Au+ b for standard i.i.d. Gaussian random vector u ~ N(0,1)

T

2. y =a' x is Gaussian for all ¢ € R"”

3. covariance form: the probability density function is

1 1 _
niz) = mwwex"{ —5@—mTAT (@ —m)}

denoted as z ~ N (m, A) with mean m = E[z] and covariance matrix
A =E[(z — m)(xz —m)T] (for some positive definite A).
4. information form: the probability density function is

1
wu(x) o< exp { — §£CTJ$ + th}

denoted as z ~ N ~1(h, J) with potential vector h and information
(or precision) matrix J (for some positive definite .J)

e notethat J=A"ltand h=A"1m=Jm

@ x can be non-Gaussian and the marginals still Gaussian

Gaussian graphical models 7-3



@ consider two operations on the following Gaussian random vector

3 m1 A1 Ar2 a1 h1 Jin Ji2
S R (R Pl Rl (P A g )
@ marginalization is easy to compute when x is in covariance form

z1 ~ N(mi,A11)

for z1 € R%, one only needs to read the corresponding entries of

dimensions d; and d?
but complicated when x is in information form

z1 ~ NTYNR,J)
_ e
where J' = A111 = ( I o]J! 0} ) and

Wo=Jmi=([1 0] m )71 1 0] J-'A

o we will prove that b/ = hy — J12J2_21h2 and J' = Ji1 — J12J2_21J21
@ what is wrong in computing the marginal with the above formula?
for z1 € R% and 25 € R% and d; < da, inverting Jao requires

runtime O(d3397*) (Strassen algorithm)

Gaussian graphical models



o Proof of J' = Ay = Ji1 — JiaJoy Jon

» J' is called Schur complement of the block Jy5 of the matrix J
» useful matrix identity

A B

0 1 C D||-Dlc 1 0 D
A B]T' I 0] [(A—BD-'c)~* o0 ][1 -BD-!
C D - |-Dl¢ 1 0 D-1| |0 I

_ [tA-BD"tC)! —-S—1Bpp~1
- —-D-lcs-1! D'+ D-1cs-'BD!

where S = A— BD~1C
> since A =J 1,

A = I T2 T [ = Ji2dgy Jan) —S 125"
Ja1 J22

where S = J11 — J12J2_21J21, which gives
An = (Ji1n — Jiadyy o)t
hence,
J! AL = Ji1 = Jiadyyt Jn

Gaussian graphical models
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—Joyt 21871 Jogt + J2_21J215—1J12J2_21}
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@ Proof of ' = J'mq = hy — J12J231h2

» notice that since

A = Jin Jio] 7! _ S—1 —S*1J12J2*21
a1 Ja2 —JotJa1 ST It + Jyt J21 ST e oyt
where S = J11 — J12J521J21, we know from m = Ah that
mi = [571 —S—lapag] |
12J99 h2

since J' = S, we have
K =Jm = []I —J12J_1] h
22 1 1hy
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@ conditioning is easy to compute when z is in information form
zi|lTe  ~ N71<h1 — Ji2z2, J11 )

proof: treat x2 as a constant to get

?

p(z1, z2)
1or | Jin Ji2 z1 T ,7| 1
o eXP{‘g[% 372]{ Jor Jog o +[hi R3] o }

1
o< exp{ — 5(1{Jl111 +2$g]211‘1) + h?xl}

p(z1|z2)

1
= exp{ - 51‘{‘7111‘1 + (h1 - J12.772)T:D1}

but complicated when x is in covariance form
zilre ~ N(@m',A)

where m/ = mj + A12A2_21($2 — mg) and A’ = Ay — A12A2_21A21

Gaussian graphical models
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Gaussian graphical model

theorem 1. For z ~ N (m,A), x; and x; are independent if and only
if Ajj =0
Q. for what other distribution does uncorrelation imply independence?
theorem 2. For 2 ~ N7 (h, J), zi—xy\f; jy—; if and only if J;; = 0
Q. is it obvious?
@ graphical model representation of Gaussian random vectors

» J encodes the pairwise Markov independencies
» obtain Gaussian graphical model by adding an edge whenever J;; # 0

u(xr) o exp{ — %CETJI + hTac}

1. T T 1. T
- He—izi Jigzithi @ H e~ 2% Jii%j

i€V () (i,J)€EE Pij(wi,2;5)

> is pairwise Markov property enough?
> Is pairwise Markov Random Field enough?
problem: compute marginals p(z;) when G is a tree
» messages and marginals are Gaussian, completely specified by mean
and variance
» simple algebra to compute integration
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Gaussian belief propagation on trees

@ initialize messages on the leaves as Gaussian (each node has x; which
can be either a scalar or a vector)

_ 1. Ty o T _
vii(zi) = i(w) = e 2% Jusithiei o NTUh o Ji0)



o therefore, messages are also Gaussian v;_,j(z;) ~ N~ (hisj, Jis;)
@ completely specified by two parameters: mean and variance



@ MAP configuration
» for Gaussian random vectors, mean is the mode

1 T -1
max exp{—i(x—m) Az —m)}
taking the gradient of the exponent

0 1 T A —1 _ —1
%{—i(x—m)A (z—m)} =—-A""(z—m)

hence the mode z* =m

Gaussian graphical models
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Gaussian hidden Markov models

e\ e\ e\ e\ )
Zo X1 €2 €3 T4 €5 Te
Yo 1 2 Y3 Ya Ys Ye
@ Gaussian HMM

> states z; € R?
> state transition matrix A € R*¢
> process noise v; € RP and ~ N(0,V) for some V € RPXP, B € R4*P

Tt41 = A:rt + th
o ~ N(O,Ao)

v

observation y; € RY, ' € R% x4
observation noise w; ~ N (0, W) for some R € R% x4

v

Yy = Cy +wy
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e in summary, for H = BV BT

Zo
$t+1|$t

Ye|me

~

~

N(0, Ag)
N(A:Et, H)
/\f((jl&,ldf)
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@ factorization

t
(z,y) o H Vi (k) Hwk 1k (@k—1, k) H ¢k (yk) H¢>k ke (k) Yk)

k=0 k=1 k=0



@ problem: given observations y estimate hidden states x

o, O O O O O O
Zo x1 x2 x3 T4 Ts5 Ze

pulzly) o H eXp{ - *931@ k Ik + a Myyy } H eXP{ —ai (—Ly) xkq}
k=0 hk Tk, k—1



Gaus

» compute marginals
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Correctness

@ there is little theoretical understanding of loopy belief propagation
(except for graphs with a single loop)

e perhaps surprisingly, loopy belief propagation (if it converges) gives
the correct mean of Gaussian graphical models even if the graph has
loops (convergence of the variance is not guaranteed)

e Theorem [Weiss, Freeman 2001, Rusmevichientong, Van Roy 2001]
If Gaussian belief propagation converges, then the expectations are
computed correctly: let

) = (JO)y~1RO

2

where 'fnl(-z) = belief propagation expectation after ¢ iterations

ji(e) = belief propagation information matrix after ¢ iterations

BZ@ = belief propagation precision after ¢ iterations and if
() & limy_, oo 5° exists, then

7
~ (00)
m; = m;
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A detour: Computation tree
-

D
e computation tree CT(;¢) is the tree of {-steps non-reversing
walks on G starting at 4.

@ what is m

T‘:io

® i,j,k,...,a,b,... for nodes in G and r,s,t,... for nodes in CT(i; /)

@ potentials ; and v;; are copied to CT(i;¥)

@ each node (edge) in G corresponds to multiple nodes (edges) in
CTe(is ).

@ natural projection 7 : CTg(i;¢) — G, e.g., w(t) =7(s) =j
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D
e computation tree CT(;¢) is the tree of {-steps non-reversing
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T‘:io
b
i w(u):bf\ (v) =c
U v
c
a

® i,j,k,...,a,b,... for nodes in G and r,s,t,... for nodes in CT(i; /)

@ potentials ; and v;; are copied to CT(i;¥)
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A detour: Computation tree
-

D
e computation tree CT(;¢) is the tree of {-steps non-reversing
walks on G starting at 4.

@ what is m

w(t) =a (s)=a
® i,j,k,...,a,b,... for nodes in G and r,s,t,... for nodes in CT(i; /)
@ potentials ; and v;; are copied to CT(i;¥)
@ each node (edge) in G corresponds to multiple nodes (edges) in
CTe(is ).
@ natural projection 7 : CTg(i;¢) — G, e.g., w(t) =7(s) =j

Gaussian graphical models 7-41



What is m!"?

e Claim 1. mgﬁ) is m?), which is the expectation of z,. w.r.t. Gaussian
model on CT¢(i;¢)

» proof of claim 1. by induction over /.
> idea: BP ‘does not know' whether it is operating on G or on CT¢(4;¢)

@ recall that for Gaussians, mode of —%$TJ$ + ATz is the mean m,

hence
Jm=nh

and since J is invertible (due to positive definiteness), m = J~1h.

@ locally, m is the unique solution that satisfies all of the following
series of equations for all z € V'

Jiim; + Z Jijm; = h;
JEOI
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@ similarly, for a Gaussian graphical model on CT(i;¢)
Ty

rSs

the estimated mean 719 is exact on a tree. Precisely, since the width
of the tree is at most 2/, the BP updates on CT(7; ) converge to the
correct marginals for t > 2¢ and satisfy

S t
rrnq( + j{: J;sﬂl = r
seor

where r is the root of the computation tree. In terms of the original
information matrix J and potential h

J%(r%ﬂ(ﬂ7ﬁ£w'+ j{: J%(r ),m(s)1 A(O __h
sEOr
since we copy J and h for each edge and node in CT¢(4;£).
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» note that on the computation tree CT (i, ;¢), m&” = m&‘) fort > ¢
since the root 7 is at most distance £ away from any node.

» similarly, for a neighbor s of the root r, ) = ml for ¢ >/0+1
since s is at most distance ¢ + 1 away from any node.

» hence we can write the above equation as

J‘n’(r 7 ( r)m )+ Z J (r 7r(s 7 (£+1) = h (1)
seor

Gaussian graphical models 7-44



if the BP fixed point converges then

Jim f? =
we claim that limy_, m&f) = mf(j)) since
lim m® = lim mY by Claim 1.
S (—oo  m(T)

by the convergence assumption

we can generalize this argument (without explicitly proving it in this
lecture) to claim that in the computation tree CT(7;¢) if we
consider a neighbor s of the root 7,

lim Mt = )
(oo ° 7(s)
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Convergence

from Eq. (1), we have
z 1
J7r 7r(r + Z J 7r(s D = h‘ﬂ'(’!’)
seor
taking the limit ¢ — oo,
e T D Jn(e)n(e)gy) = )
seor

hence, BP is exact on the original graph with loops assuming
convergence, i.e. BP is correct:

”m —|— Z me = h
JEDL

Jn>®) = p
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What have we achieved?

@ complexity?
@ convergence?

o correlation decay: the influence of leaf nodes on the computation
tree decreases as iterations increase

@ understanding BP in a broader class of graphical models (loopy belief
propagation)

e help clarify the empirical performance results (e.g. Turbo codes)
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Gaussian Belief Propagation (GBP)

o Sufficient conditions for convergence and correctness of GBP

>

Rusmevichientong and Van Roy (2001), Wainwright, Jaakkola, Willsky
(2003) : if means converge, then they are correct

Weiss and Freeman (2001): if the information matrix is diagonally
dominant, then GBP converges

convergence known for trees, attractive, non-frustrated, and diagonally
dominant Gaussian graphical models

Malioutov, Johnson, Willsky (2006): walk-summable graphical models
converge (this includes all of the known cases above)

Moallemi and Van roy (2006): if pairwise normalizable then
consensus propagation converges
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