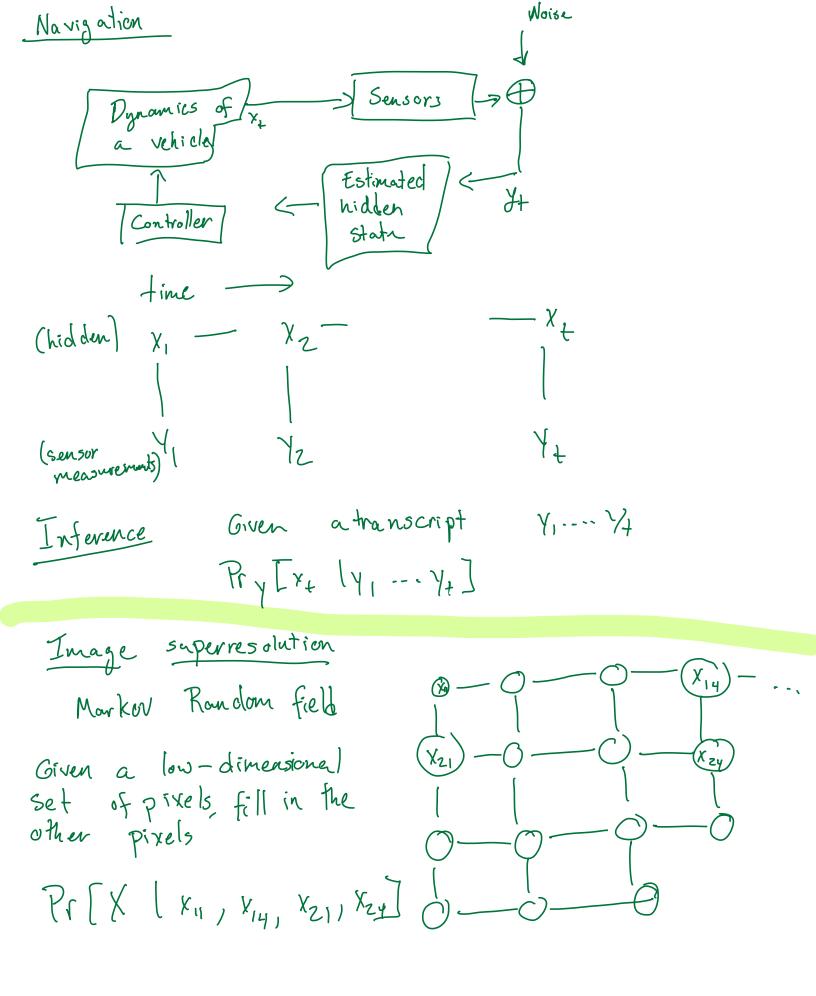
Probabilistic Grephical Models
Provides us with a framework for inference on probability distribute
Graphical madel: Nodes represent RUS
(informally) edges represent influence
Less dance graphs will correspond to probability distributions
with stacture that can allow for efficient inference.
Inference tasks
Drow conclusions about distribution
Example I:
Diseases
Cuastioned for Caugh Rost
Symptoms (S) at (S) (S)
A patient can be represented as
$$d \in \frac{50}{3}$$

A patient can be represented as $d \in \frac{50}{3}$
Noo as fie $\frac{30}{52}$, $\frac{15}{52}$
Stacture of this Bayesian metwork will allow
efficient in ference of, e.g. $Pr(ds=||s=(0|)600]$



General Hune
[We know] Probability distribution over
$$X = [X_1, ..., X_n]$$

We observe $Y = [Y_1, ..., Y_n]$ $[X] < \infty$
[We wont] inference
Examples the most probable realization
arguman $Pry(x)$
· Morginals
 $Pry[X_1]$
· Somple $X \sim Py(x)$
Hard? $\frac{N>7}{K^{22}1}$ $\mathfrak{S}(|X|^{nxk})$
If, for example $x_1 \perp x_j \mid Y \quad V_{i,j}$
Hen $Py(x)$, representable using $O(|X| \cdot n)$
PGMS Graph Separations
 T
 $Graph \longrightarrow Factorizations \rightarrow (Conditional) Independence
 $(X) \longrightarrow P(x_1, y_2]$
 $(Y) (X) = Pr(X_1)Pr(Y_2) = X_1 \perp Y_2$$

★ Directed Graphical Models
Def: Directed , acyclic graph
$$G^{\pm}(V, E)$$

• Parent set of ieV $TT(i) = \frac{2}{3} \frac{1}{3} eV | O = 0$
(j,i) $\in E^{3}$
A directed graphical model on $G^{\pm}(V, E) = a DAG$
is a family of distributions that factorizes as
 $Rr[X_{1,...,}Y_{n}] \stackrel{\pm}{=} \prod_{i=1}^{n} fi(X_{i}, X_{TT(i)})$ (If fi)
Claim $fi(Y_{i}, X_{TT(i)}) = P(X_{i} | X_{TC(i)})$