
Assignment 4 (3 problems)
Jamie Morgenstern CSE515

1. [2 points] Consider the uniform measure over proper q-colorings of a graph with q ≥ 3. Namely,
given a simple graph G = (V,E), we define a probability distribution over x = (x1, . . . , xn) where
xi ∈ {1, . . . , q} as follows

µG(x) =
1

Z(G, q)

∏
(i,j)∈E

I(xi ̸= xj) , (1)

where I( · ) is the indicator function. Notice that Z(G, q) is the number of ways of coloring the vertices
of G so that no edge has both endpoints of the same color. Throughout this problem, |V | = n and we
will assume without loss of generality V = {1, 2, . . . , n}.

(a) Gibbs sampling for proper colorings proceeds as follows. Initialize with x = (xi)i∈V which is a
proper coloring of G. At each step draw a uniformly random vertex i in V . Change its color xi to
a new value xnew which is uniformly random among all the colors that are not taken by neighbors
of i.

For n = 1000, let G be the three dimensional torus of side length 10. In other words V =
[10] × [10] × [10] and (i, j) ∈ E with i = (i1, i2, i3), j = (j1, j2, j3) if and only if either i1 = j1,
i2 = j2, and (i3 − j3) ∈ {+1,−1} modulo 10, or i1 = j1, i3 = j3, and (i2 − j2) ∈ {+1,−1} modulo
10, or i2 = j2, i3 = j3, and (i1 − j1) ∈ {+1,−1} modulo 10.

Write a program that implements Gibbs sampling on G. Consider q ∈ {3, 5, 7, 9, 11} and notice
that in this case G is obviously q-colorable, and that the initial coloring can be found efficiently
(e.g., alternating two colors). Compute in a simulation the empirical fraction of unchanged
colors

C(t) =
1

|V |
∑
i∈V

I
(
xi(0) = xi(t)

)
,

where t is the number of iterations. Plot C(t) as a function of t up to t = 100, 000 for each of
the above cases (you need to run Gibbs sampling once for each value of q).

For what values of q does x(t) approximately converge to the stationary distribution (i,e. x(t)
independent of x(0)), exponentially fast?

Provide your program by appending it to the end of your solution pdf file.

(b) In this problem, we use path coupling to bound the mixing time of the above Markov chain, for
q colors and graphs of maximum degree k. Specifically, provide an upper bound on

E[D(X(t+1), Y (t+1))|D(X(t), Y (t)) = 1] , (2)

for Hamming distance D(·, ·) and two coupled Markov chains X(t) and Y (t). Let X(t) and Y (t)

differ in one index i. Similarly as in the path coupling example from the lectures, when the
randomly chosen index I(t) = i, then D(X(t+1), Y (t+1)) = 0.
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Otherwise, if I(t) is not in the neighborhood of i, then D(X(t+1), Y (t+1)) = 1.

We are only left to analyze the process when I(t) is in the neighborhood of i. First, show

that for some integer m, if X
(t+1)

I(t) (conditioned on its neighbors’ colors) is uniformly distributed

in {1, 2, . . . ,m} and Y
(t+1)

I(t) (conditioned on its neighbors’ colors) is uniformly distributed in
{1, 2, . . . ,m+ 1}, then under the optimal coupling we have

E[D(X
(t+1)

I(t) , Y
(t+1)

I(t) )] = P(X(t+1)

I(t) ̸= Y
(t+1)

I(t) ) =
1

m+ 1
.

Now, similarly, ifX
(t+1)

I(t) (conditioned on its neighbors’ colors) is uniformly distributed in {1, 2, . . . ,m}
and Y

(t+1)

I(t) (conditioned on its neighbors’ colors) is uniformly distributed in {2, . . . ,m+ 1}, then
under the optimal coupling we have

E[D(X
(t+1)

I(t) , Y
(t+1)

I(t) )] = P(X(t+1)

I(t) ̸= Y
(t+1)

I(t) ) =
1

m
.

Use this optimal coupling to provide an upper bound on (2), and use the worst case choice of
m for the given problem instance q and k. You can assume q > k, to simplify the calculation.

According to your analysis, how big does q need to be for a given k if we want fast mixing?
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2. [2 points] (Cheeger’s inequality)
In this problem, we use the Cheeger’s inequality from class to upper bound the mixing time of a Markov
chain by lower bounding the conductance of the Markov chain. Consider a distribution over matchings
in a graph. A matching in a graph G = (V,E) is a subsets of edges such that no two edges share a
vertex. Here we focus on the special case of a complete bipartite graph G with vertices v1, . . . , vN on
the left and u1, . . . , uN on the right, as shown:

v1

v2

v3

vN

u1

u2

u3

uN

In such a graph, a perfect matching is a matching which includes N edges. We are interested in
sampling from a distribution over perfect matchings. We can denote a perfect matching using the
variables σ = [σij ] ∈ {0, 1}N×N , where σij = 1 is vi and uj are matched and σij = 0 otherwise.
Observe that σ is a perfect matching if and only if

N∑
k=1

σik = 1 for all 1 ≤ i ≤ N

N∑
k=1

σkj = 1 for all 1 ≤ j ≤ N

A perfect matching σ can also be thought of as a permutation σ : {1, . . . , N} → {1, . . . , N}. For
example, if σ12 = σ21 = σ33 = 1, this would correspond to the permutation σ(1) = 2, σ(2) = 1, and
σ(3) = 3.

Consider the distribution defined by a set of weights on the edges wij ≥ 0 for all i and j such that

µ(σ) ∝ exp
{∑

i,j

wijσij

}
I(σ is a perfect matching)

= exp
{∑

i

wiσ(i)

}
I(σ is a perfect matching) .

(a) First, in this part, consider the uniform distribution over perfect matchings, i.e., wij = 0 for all
i, j. Describe a simple procedure to sample σ from this uniform distribution.

(b) Now for the weighted distribution, show that for any perfect matching σ,

µ(σ) ≥ 1

N ! exp(Nw∗)
,

where w∗ = maxi,j wij .

(c) Consider the Metropolis-Hastings rule defined by: choose i, i′ ∈ {1, . . . , N} uniformly at random.
If i = i′, do nothing, otherwise with probability

R = min
{
1 , exp(wiσ(i′) + wi′σ(i) − wiσ(i) − wi′σ(i′))

}
swap σ(i) and σ(i′), i.e. define a new permutation σ′ such that σ′(j) = σ(j) for j ̸= i, i′ and
σ′(i) = σ(i′) and σ′(i′) = σ(i).
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Show that, under this Markov chain, for any valid transition σ → σ′,

Pσ,σ′ = P( next state is σ′ | currect state is σ )

≥ 1

N2 exp(2w∗)
.

(d) For the conductance of this Markov chain, argue using (b) and (c) that

Φ = min
S

∑
σ∈S,σ′∈Sc µ(σ)Pσ,σ′

µ(S)µ(Sc)

≥ 1

N !N2 exp((N + 2)w∗)
,

where S is a set states (or matchings), Sc is the complement of S, and µ(S) =
∑

σ∈S µ(σ).

(e) Using (d), obtain a bound on the mixing time of the Markov chain.
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3. [2 points] (Block Gibbs sampling; implementation)
In this problem, we develop an efficient algorithm for sampling from a two-dimensional Ising model
building on the naive Gibbs sampling. In particular, suppose all variables xij take values in {+1,−1}.
Using the graph structure G shown below, define the distribution

µθ(x) =
1

Zθ
exp

{ ∑
(ij,kl)∈E

θxijxkl

}
.

(a) Derive the update rules for a node-by-node Gibbs sampler for this model. Implement the sampler
in Matlab and run it for 3,600,000 iterations on an Ising model of size 60 × 60 with coupling
parameter θ = 0.45. Use uniformly random initialization of xij = +1 with probability 0.5 and
xij = −1 otherwise. Show one instance of the state of the variables after every 360,000 iterations.
For a 60×60 matrix x ∈ {−1,+1}60×60, you can use MATLAB commands imagesc(x);colormap
gray;axis off; to display the state x.

(b) Suppose we are given a tree-structured undirected graphical model T with variables y = (y1, . . . , yN ).
Give an efficient procedure for sampling from the joint µ(y).

(c) In block Gibbs sampling, we partition a graph into r subsets A1, . . . , Ar. In each iteration, for
each Ai, we sample xAi

from the conditional distribution µ(xAi
|xV \Ai

). For the Ising model G
described above, consider the two comb-shaped subsets A and B shown below. Describe how to
use your sampler from part (b) to perform the block Gibbs updates. (For this part, you may
assume a black-box implementation of your sampling procedure from part (b).) .

(d) We provide an implementation of the block Gibbs sampler from part (c) in comb gibbs step.m,

comb sum product.m, ising gibbs comb.m. As in part (a), we set θ = 0.45 and run the sampler
for 1000 iterations updating A and then B at every iteration. Run the block Gibbs sampler in
ising gibbs comb.m and analyze the state of the variables after every 100 iterations. Which of
the two samplers appears to mix faster?
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