
HW3 (4 problems, 1 of which is optional)
Jamie Morgenstern CSE515

1. [2 points] (Loopy belief propagation) Consider the Gaussian graphical model depicted below. More
precisely, if we let x denote the 4-dimensional vector of variables at the 4 nodes (ordered according
to the node numbering given), then x ∼ N−1(h, J), where J has diagonal values all equal to 1 and
non-zero off-diagonal entries as indicated in the figure (e.g., J12 = −ρ).

(a) Confirm (e.g., by checking Sylvester’s criterion to see if the determinants of all principal minors
are positive or by checking the smallest eigen value is positive) that J is a valid information
matrix–i.e., it is positive definite–if ρ = .39 or ρ = .4. Compute the variances for each of the
components (i.e., the diagonal elements of Λ = J−1)–you can use any software to do this if you’d
like.

(b) We now want to examine Loopy BP for this model, focusing on the recursions for the information
matrix parameters. Write out these recursions in detail for this model. Implement these recur-
sions and try for ρ = .39 and ρ = .4 with 5,000 iterations. Plot the computed marginals (just
the Ji’s and not hi’s) at the 4 nodes over the iterations. Describe the behavior that you observe.

(c) Construct the computation tree for this model with node three as the root node. Note that the
effective “J” – parameters for this model are copies of the corresponding ones for the original
model (so that every time the edge (1, 2) appears in the computation tree, the corresponding
J-component is −ρ). Use Matlab, Python or any other numerical tools to check the positive-
definiteness of these implied models on computation trees for different depths (use iterations 1,2,
and 3) and for two different values of ρ (ρ ∈ {0.3, 0.46}). What do you observe that would explain
the result in part (b)?

2. [2 points] (Gaussian graphical model and Gaussian BP)
Let x ∼ N−1(hx, Jx), and y = Cx+ v, where v ∼ N (0, R).

(a) Find the potential vector hy|x and the information matrix Jy|x of p(y|x).
(b) Find the potential vector hx,y and the information matrix Jx,y of p(x, y).

(c) Find the potential vector hx|y and the information matrix Jx|y of p(x|y).
(d) Consider the following Gaussian graphical model. We will use the type of BP where the messages

are distributions over the source, i.e. the message N−1(hi→j , Ji→j) represents a distribution over
xi (as opposed to xj).
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x1 x2 x3
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Let y1 = x1 + v1, y2 = x3 + v2, and R = I is the identity matrix. Find C. Represent messages
hx3→x2

and Jx3→x2
in terms of y2 and the elements of hx and Jx. [y1 and y2 are measurements,

which should be treated as given and deterministically known.]

(e) Now assume that we have an additional measurement y3 = x3 + v3, where v3 is a zero-mean
Gaussian variable with variance 1 and is independent from all other variables. Find the new C.
Represent messages hx3→x2

and Jx3→x2
in terms of y2, y3 and the elements of hx and Jx. [again

y2 should be considered as a measurement which is given, and deterministically known.]

(f) The BP message from x3 to x2 define a Gaussian distribution with meanmx3→x2
= J−1

x3→x2
hx3→x2

and variance σx3→x2 = J−1
x3→x2

. Compare the difference in the variance of this message when
computed using a single observation y2 versus when computed using multiple observations (y2, y3).
What is the mean and variance of the BP message when the number of observations grows to
infinity?

3. [2 points] (Free energy)
In this problem, we are going to compute free energies of simple graphical models and use BP-like fixed
point equations to find the stationary points. We shall consider Gℓ = (Vℓ, Eℓ), an ℓ×ℓ two-dimensional
torus. This has vertex set Vℓ = [ℓ] × [ℓ] and, for any two vertices i, j ∈ Vℓ, i = (i1, i2), j = (j1, j2),
i1, i2, j1, j2 ∈ [ℓ], we let (i, j) ∈ Eℓ if and only if either i1 = j1 and (i2 − j2) ∈ {+1,−1} modulo ℓ, or
i2 = j2 and (i1 − j1) ∈ {+1,−1} modulo ℓ.

We consider the homogeneous Ising model over x ∈ {+1,−1}Vℓ

µ(x) =
1

ZG
exp

{
θe

∑
(i,j)∈Eℓ

xixj + θv
∑
i∈Vℓ

xi

}
,

where θe, θv are parameters.
[It is rare to encounter such a symmetric model in applications. On the other hand, such toy examples
are very useful for developing intuition.]

In the following, fix ℓ = 10, θv = 0.05.

(a) Consider the naive mean field approximation, and write the naive mean field free energy for

FMF(b) = Eb[logψtot(x)]−
∑
i

∑
xi

bi(xi) log bi(xi) ,

where b = b1(·)× · · · × bn(·) and ψtot(x) =
∏

i∈V ψi(xi)
∏

(i,j)∈E ψij(xi, xj).

Assume then the further restriction bi(xi) = bv(xi) for all i ∈ Vℓ (i.e. the belief is independent of
the vertex). Write an expression FMF(bv) as a function of bv ∈ R2. This is the objective function
to be maximized. Plot the free energy FMF(bv) as a function of a scalar variable a = (bv(+1) −
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bv(−1)) ∈ R for θe ∈ {0.2, 0.4, 0.6, 0.8, 1.0}. This is equivalent to setting bv(+1) = (1 + a)/2 and
bv(−1) = (1− a)/2.

Maximize FMF(bv) (using numerical methods) with respect to bv and plot the optimal value b∗v(+1)
and FMF(b

∗
v) as a function of θe.

(b) Repeat the same exercise for the Bethe free energy : Write explicitly the Bethe free energy

F(b) =
∑

(i,j)∈E

Ebij [logψij(xi, xj)] +
∑
i∈V

Ebi [logψi(xi)]

−
∑

(i,j)∈E

∑
xi,xj

bij(xi, xj) log bij(xi, xj)−
∑
i∈V

(1− deg(i))
∑
xi

bi(xi) log bi(xi) .

Assume the further restriction bi(xi) = bv(xi) for all i ∈ Vℓ, bij(xi, xj) = be(xi, xj) (i.e. the belief
is independent of the vertex). Write an expression F(bv, be) as a function of bv, be.

Now, consider θe = 1.0, and we want to show that F(bv, be) has more than one stationary
point. The objective function is F(bv, be), and the constraint is that

∑
xi
be(xi, xj) = bv(xj)

and
∑

xj
be(xi, xj) = bv(xi). The Lagrangian can be written as

L(bv, be, λ1, λ2) = F(bv, be) +
∑
xi

λ1(xi)(
∑
xj

be(xi, xj)− bv(xi)) +
∑
xj

λ2(xj)(
∑
xi

be(xi, xj)− bv(xj)) .

Notice that we omitted the constraints
∑

xi
bv(xi) = 1 condition to save some notations and space.

It is without loss of generality as we will only specify the values up to a scaling in the following
derivations. In the end, we will uniquely identify the scaling such that

∑
xi
bv(xi) = 1 is satisfied.

The derivative gives

∂L

∂bv(xi)
=

∂F(bv, be)
∂bv(xi)

− λ1(xi)− λ2(xi) + C

∂L

∂be(xi, xj)
=

∂F(bv, be)
∂be(xi, xj)

+ λ1(xi) + λ2(xj) + C ′ ,

where C and C ′ are constants (that may differ for each xi, xj) that we ignore because we do not
care about normalization at this point. Write the explicit derivative of the Lagrangian in terms
of ℓ, θv, θe, bv(xi), be(xi, xj), and Lagrangian multipliers λ1(xi) and λ2(xj) which correspond to
the constraints

∑
xj
be(xi, xj) = bv(xi) and

∑
xi
be(xi, xj) = bv(xj).

By symmetry, λ1 and λ2 are the same. So we define λ(xi) = (1/2l2)λ1(xi) = (1/2l2)λ2(xi). Show
that bv(xi) and be(xi, xj) at the stationary point satisfy the below equations, by setting the above
derivative to zero.

bv(xi) ∝ e−(1/3)θvxie(4/3)λ(xi)

be(xi, xj) ∝ eθexixje(λ(xi)+λ(xj)) ,

By the condition that
∑

xi
be(xi, xj) = bv(xj), this gives

eθexi+λ(+) + e−θexi+λ(−) ∝ e−(1/3)θvxi+(1/3)λ(xi) ,

for xi ∈ {+1,−1}. substituting xi = +1 in the above equation, then dividing by the same function
evaluated at xi = −1, we get

eθe+λ(+) + e−θe+λ(−)

e−θe+λ(+) + e+θe+λ(−)
= e−(2/3)θv+(1/3)(λ(+)−λ(−)) ,
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Let w = (1/2)(λ(+)− λ(−)) and change variables to get

eθe+w + e−θe−w

e−θe+w + e+θe−w
= e−(2/3)θv+(2/3)w ,

Using the equality that atanh(tanh(a) tanh(b)) = (1/2) log
(

ea+b+e−a−b

ea−b+e−a+b

)
, show that

tanh(θe) tanh(w) = tanh
(1
3
(w − θv)

)
. (1)

Plot the left-hand side and the right-hand side of the above equations to finish the proof that
there are multiple stationary points of Bethe free energy when θv = 0.05 and θe = 1.0. This
means that plot two curves, y = tanh(θe) tanh(x) and y = tanh( 13 (x−θv)), and inspect how many
places they meet.

(c) We want to maximize F(p1, p2) for each value of θe ∈ {0.2, 0.4, 0.6, 0.8, 1.0}, where p1 = bv(+1) and
p2 = be. Using the above fixed point equations in (1), find all the fixed points of w (numerically
and/or approximately). For each fixed point w, find the corresponding value of bv(·), be(·), and
F(bv, be). Plot the optimal (i.e., maximum) value p∗1 = b∗v(+1) and the free energy F(p∗1, p∗2) as a
function of θe.

4. OPTIONAL, [2 points] (Application of minimum cut)
In this problem, we explore the connections between minimum cut of a graph and pairwise Markov
random fields in binary alphabets. Consider a graphical model defined on an undirected graph G(V,E),

µ(x) =
1

Z
exp{−

∑
i∈V

ϕi(xi)−
∑

(i,j)∈E

ϕij(xi, xj)} ,

for x = [x1, . . . , xn] ∈ {0, 1}n. We further assume for now that ϕij(0, 0) = ϕij(1, 1) = 0 for all (i, j) ∈ E
(meaning they are zero-diagonal when we consider the functions as 2× 2 matrices) such that

ϕi(·) =

[
ϕi(0)
ϕi(1)

]
, and ϕij(·, ·) =

[
0 ϕij(0, 1)

ϕij(1, 0) 0

]
.

Our goal is to find the maximum likelihood estimate, the one that maximizes the above joint distribu-
tion. In order to find the maximizer, we pose this question as a problem of finding the minimum cut
of a graph.

Given a pairwise MRF on G(V,E) and the compatibility functions ϕij(·, ·)’s, we first create a new
directed and weighted graph as follows.

– Add one node for the source s and one node for the sink t.

– Add an edge from source s to all nodes in V (red edges in the figure below).

– Add an edge from all nodes in V to the sink t (blue edges in the figure below).

– make all edges in E reciprocal (by taking the undirected edge E and making them in to two edges
in opposite directions; black edges in the figure below).

An example of a 2× 2 grid G, that is transformed is shown below. The colors do not have particular
meanings, it is there to help you understand the creation of the new graph. We will find the minimum
cut in this transformed graph, after putting appropriate non-negative weights on the edges. A cut
in a graph is partition of the nodes into two disjoint sets, one containing the source and the other
containing the sink. The value of a cut is the total weight of the edges that start from a node in
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the same partition as the source and end in a node in the sink side of the partition, i.e. those that
go from the source side of the partition to the other. Note that in the minimum cut, for each node
in V , EITHER the edge connecting to the sink will be cut, OR the edge connecting from the source
will be cut, but NOT BOTH (since the source and the sink are constrained to be on different sides of
the cut). Once we find the minimum cut in this graph, we will assign ZERO to the sink side of the
cut and ONE to the source side. This defines a one-to-one mapping between an assignment of binary
values in the MRF and a cut in the transformed graph H(V ∪ {s, t}, D).

s

t

x1

x4

x2

x3

x1

x4

x2

x3

Our goal is to minimize E(x) ≜
∑

i∈V ϕi(xi) +
∑

(i,j)∈E ϕij(xi, xj) (which is equivalent as finding the

most likely assignment). The following costs on the edges (also called capacities in max-flow min-cut
context) ensures that the min-cut of the transformed graph H corresponds to the minimizer of E(x).

– Assign ϕi(0) to the edge from the source (s, i).

– Assign ϕi(1) to the edge to the sink (i, t).

– Assign ϕ(1, 0) to the edge (i, j) and ϕij(0, 1) to the edge (j, i).

An example below shows that this assignment ensures that the value of the cut corresponds to the
energy E(x) of the corresponding assignment. In general, cut values are equal to the energy E(x) pf
the corresponding assignment x.

It is known that when the cost on the edges are non-negative, the minimum cut can be found efficiently.
Hence, when all ϕij(0, 0) = ϕij(1, 1) = 0 and ϕi(xi)’s, ϕij(0, 1)’s and ϕij(1, 0)’s are all non-negative,
then the costs on the edges are all non-negative and the minimizer of E(x) can be found efficiently by
running the off-the-shelf min-cut solvers on H.

(a) Suppose ϕ1(0) < 0, and the rest of the compatibility functions are all non-negative, and ϕij(0, 0) =
ϕij(1, 1) = 0 for all (i, j) ∈ E. Find a new ϕ′1(x1) such that

– ϕ′1(0) and ϕ
′
1(1) are non-negative; and

– the minimizer of E′(x) = ϕ′1(x1) +
∑

i∈V \{1} ϕi(xi) +
∑

(i,j)∈E ϕij(xi, xj) is the minimizer of

E(x).

Then, the corresponding transformed graph H with the new costs from ϕ′1(x1) can be solved for
min-cut, since all costs are non-negative.

(b) Now, consider a general case when ϕij(0, 0)’s and ϕij(1, 1)’s are not necessarily zero. Explain how
to assign costs to the directed edges of H (not just for the example given above, but for general
H(V ∪ {s, t}, D) defined from general G(V,E)), such that the value of a cut in this new
H is equal to the energy E(x) =

∑
i∈V ϕi(xi) +

∑
(i,j)∈E ϕij(xi, xj) for the correspond-

ing assignment x. Note that we do not worry about computational complexity of finding the
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s

t

x1

x4

x2

x3

cut s

t

x1

x4

x2

x3

cut s

t

x1

x4

x2

x3

cut

ϕ1(0)

ϕ4(1)

ϕ14(1, 0) ϕ14(0, 1)

assignment: x = [0, 0, 0, 0]
cut value: ϕ1(0) + ϕ2(0) + ϕ3(0) + ϕ4(0)

x = [1, 0, 0, 0]
ϕ1(1) + ϕ14(1, 0) + ϕ12(1, 0)
+ϕ2(0) + ϕ3(0) + ϕ4(0)

x = [1, 0, 0, 1]
ϕ1(1) + ϕ12(1, 0)
+ϕ2(0) + ϕ3(0) + ϕ4(1) + ϕ34(01)

minimum-cut in this part, and focus in posing the problem as a min-cut problem.
[hint: consider changing ϕi(xi)’s and ϕij(xi, xj)’s in order to get new ϕ′ij(xi, xj)’s such that the
diagonals are zero.]

(c) Suppose ϕi(xi)’s are all non-negative and ϕij(xi, xj)’s are also all non-negative. Assigning costs to
the edges of H as per the solution of part (b), it is possible that some edges are assigned negative
costs. This is problematic, since min-cut cannot be efficiently solved. However, when all pairwise
compatibility functions are sub-modular, then the minimizer of E(x) can be found efficiently.
We will prove that this is possible, by constructing a new graph H with non-negative costs under
sub-modularity assumption.

A function f(·) over two binary variables is said to be sub-modular if and only if

f(0, 0) + f(1, 1) ≤ f(0, 1) + f(1, 0) .

Suppose ϕi(xi)’s are non-negative and ϕij(xi, xj)’s are non-negative and sub-modular. Explain
how to assign costs to the directed edges of H (not just for the example given above, but for
general H(V ∪ {s, t}, D) defined from general G(V,E)), such that

– the value of a cut in this newH is equal to the energy E(x) =
∑

i∈V ϕi(xi)+
∑

(i,j)∈E ϕij(xi, xj)
for the corresponding assignment x; and

– all costs are non-negative.

[hint: consider changing ϕi(xi)’s and ϕij(xi, xj)’s in order to get new ϕ′ij(xi, xj)’s such that the
diagonals are zero and the off-diagonals are non-negative.]
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