
HW2
Jamie Morgenstern CSE515

Pick 4 problems you want to solve and only solve those 4 problems.

1. [2 points] This is a continuation of hw 1 problem 1. In this exercise, you will construct an undirected
graphical model for the problem of segmenting foreground and background in an image, and use
loopy belief propagation to solve it. Load the image flower.bmp into MATLAB using imread. (The
command imshow may also come in handy.) Partial labeling of the foreground and background pixels
are given in the mask images foreground.bmp and background.bmp, respectively. In each mask,
the white pixels indicate positions of representative samples of foreground or background pixels in the
image. Let y = {yi} be an observed color image, so each yi is a 3-vector (of RGB values between 0 and 1)
representing the pixel indexed by i. Let x = {xi}, where xi ∈ {0, 1} 2 is a foreground(1)/background(0)
labeling of the image at pixel i. Let us say the probabilistic model for x and y given by their joint
distribution can be factored in the form

µ(x, y) =
1

Z

∏
i

ϕ(xi, yi)
∏

(j,k)∈E

ψ(xj , xk) (1)

where E is the set of all pairs of adjacent pixels in the same row or column as in 2-dimensional grid.
Suppose that we choose

ψ(xj , xk) =

{
0.9 if xj = xk
0.1 if xj ̸= xk

This encourages neighboring pixels to have the same label–a reasonable assumption. Suppose further
that we use a simple model for the conditional distribution ϕ(xi, yi) = PYi|Xi

(yi|xi):

P(yi|xi = α) ∝ 1

(2π)3/2
√
detΛα

exp
{
− 1

2
(yi − µα)

TΛ−1
α (yi − µα)

}
+ ϵ

for yi ∈ [0, 1]3. That is, the distribution of color pixel values over the same type of image region is a
modified Gaussian distribution, where ϵ accounts for outliers. Set ϵ = 0.01 in this problem.

Recall your sketch of an undirected graphical model that represents µ(x, y).

We will use your computed µα ∈ R3 and Λα ∈ R3×3 for each α ∈ {0, 1}, that you got from the
labeled masks by finding the sample mean and covariance of the RGB values of those pixels for
which the label xi = α is known from foreground.bmp and background.bmp. The sample mean

of samples {y1, . . . , yN} is ȳ = 1
N

∑N
i=1 yi and the sample covariance is Cy = 1

N−1

∑N
i=1(yi −

ȳ)(yi − ȳ)T .

(a) We want to run the sum-product algorithm on the graph iteratively to find (approximately) the
marginal distribution µ(xi|y) at every i. For a joint distribution of the form (1) with pairwise
compatibility functions and singleton compatibility functions, the local message update rule for
passing the message νj→k(xj) from xj to xk, is represented in terms of the messages from the
other neighbors of xj , the potential functions.

νj→k(xj) ∝ ϕ(xj , yj)
∏

u∈∂j\k

∑
xu

ψ(xj , xu)νu→j(xu)

1

Then the final belief on xj is computed as

νj(xj) ∝ ϕ(xj , yj)
∏
u∈∂j

∑
xu

ψ(xj , xu)νu→j(xu)

Feel free to use gridbpsol.m or gridbpsol.py from the website for running the BP algorithm.
There are four directional messages: down, up, left, and right, coming into and out of each xi
(except at the boundaries). Use a parallel update schedule, so all messages at all xi are updated at
once. Run for 30 iterations (or you can state and use some other reasonable termination criterion).
Since we are working with binary random variables, perhaps it is easier to pass messages in log-
likelihood.
After the marginal distributions at the pixels are estimated, visualize their expectation. Where
are the beliefs “weak”?

(b) Visualize the expectation after 1, 2, 3, and 4 iterations. Qualitatively, discuss where the loopy
belief propagation converges first and where it converges last.

(c) Choose a different value of ϵ, run BP with that different value of ϵ ̸= 0, and comment on the
result.

(d) Run BP with the following pairwise potential and comment on the result.

ψ(xj , xk) =

{
0.6 if xj = xk
0.4 if xj ̸= xk

2. [2 points] (Belief propagation convergence on a tree)
Consider the (parallel) sum-product algorithm on an undirected tree T = (V,E) with compatibility
functions ψij such that µ(x) =

∏
(i,j)∈E ψij(xi, xj). Consider any initialization of messages, which is

denoted by ν
(0)
i→j(xi) for all directions i → j and all states xi. Messages at step t ≥ 1 are denoted

by ν
(t)
i→j(xi). In this problem, we will prove by induction that the sum-product algorithm, with the

parallel schedule, converges in at most diamater of the graph iterations. (Diameter of the graph is the
length of the longest path.)

(a) ForD = 1, the result is immediate. Consider a graph of diameterD. At each time step the message
that each of the leaf nodes sends out to its neighbors is constant because it does not depend on
messages from any other nodes. Construct a new undirected graphical model T ′ = (V ′, E′) by
stripping each of the leaf nodes from the original graph T . Let ψ′

ij(xi, xj) be the compatibility

functions for the new graphical model, and ν
′(t)
i→j(xi) be the messages of (parallel) sum-product

algorithm on the new graphical model. Let L be the set of leaves in T and L′ be the set of nodes
that is adjacent to a node in L. For the new graphical model, we add, for all i ∈ L′,

ψ′
i(xi) = ψi(xi)

∏
k∈∂i∩L

∑
xk

ν
(0)
k→i(xk)ψki(xk, xi)

where ψi(xi) = 1 if ψi(xi) is not defined for the original graph G and for all other edges we keep
the original compatibility functions

ψ′
ij(xi, xj) = ψij(xi, xj) .

Also we initialize the messages as

ν
′(0)
i→j(xi) = ν

(1)
i→j(xi) .

Show that ν
′(t)
i→j(xi) = ν

(t+1)
i→j (xi) for all (i, j) ∈ E′ and all t ≥ 0.

2

(b) Argue that T ′ has diameter strictly less than D − 1.

(c) By the induction assumption that the parallel sum-product algorithm converges to a fixed point
after at most d time steps when the diameter is d ≤ D − 1, the sum-product algorithm on T ′

converges after at most D−2 time steps. Show that if we add back the leaf nodes into T ′ and run
(parallel) sum-product algorithm for one more time step, then all messages will have converged
to a fixed point.

3. [2 points] (Hidden Markov models; implementation)
In this problem, you will implement the sum-product algorithm on a line graph and analyze the
behavior of S&P 500 index over a period of time. The following figure shows the price of S&P 500
index from January 2, 2009 to September 30, 2009 (http://finance.yahoo.com).

For each week, we measure the price movement relative to the previous week and denote it using a
binary variable (+1 indicates up and −1 indicates down). The price movements from week 1 (the week
of January 5) to week 39 (the week of September 28) are plotted below:

Consider a hidden Markov model in which xt denotes the economic state (good or bad) of week t and
yt denotes the price movement (up or down) of the S&P 500 index. We assume that xt+1 = xt with
probability 0.8, and PYt|Xt

(yt = +1|xt = ‘good’) = PYt|Xt
(yt = −1|xt = ‘bad’) = q. In addition,

assume that PX1(x1 = ‘bad’) = 0.8. Download the file sp500.mat (Matlab file) or sp500.csv (csv
file) from course website, and load it into MATLAB or whichever programming language you feel

3

comfortable with. The variable price move contains the binary data above. Implement the (sequential)
sum-product algorithm and submit the code with the homework solutions.

(a) Assume that q = 0.7. Plot PXt|Y (xt = ‘good’|y) for t = 1, 2, . . . , 39. What is the probability that
the economy is in a good state in the week of September 28, 2009 (week 39)?

(b) Repeat (a) for q = 0.9. Compare the results of (a) and (b).

4. [2 points] (Application of LDPC codes)
In this problem we consider using Low-Density Parity Check (LDPC) codes to encode bits to be sent
over a noisy channel.

Encoding. LDPC codes are defined by a factor graph model over a bipartite graph G(V, F,E), where
V is the set of variable nodes, each representing the bit to be transmitted, and F is a set of factor
nodes describing the code and E is a west of edges between a bit-node and a factor node. The total
number of variable nodes in the graph define the length of the code (also known as the block length),
which we denote by n ≜ |V |.
We consider binary variables xi ∈ {−1,+1} for i ∈ V , and all codewords that are transmitted satisfy∏

i∈∂a

xi = +1 ,

which means that there are even number of −1’s in the neighborhood of any factor node.

Channel. We consider a Binary Symmetric Channel, known as BSC(ε), where one bit is transmitted
over the channel at each discrete time step, and each transmitted bit is independently flipped with
probability ε. Precisely, let xi ∈ {+1,−1} be a transmitted bit and yi ∈ {+1,−1} be the received bit
(at time i), then

P(yi = +1|xi = +1) = 1− ε ,

P(yi = −1|xi = +1) = ε ,

P(yi = −1|xi = −1) = 1− ε ,

P(yi = +1|xi = −1) = ε .

The conditional probability distribution over xn1 = [x1, . . . , xn] given the observed received bits yn1 =
[y1, . . . , yn] is

µ(xn1 | yn1) =
1

Z

∏
i∈V

ψi(xi, yi)
∏
a∈F

I(⊗x∂a = +1) ,

where ψi(xi, yi) = P(yi|xi) and ⊗ indicates product of binary numbers such that if x∂a = {x1, x2, x3}
then ⊗x∂a = x1×x2×x3 (to be precise we need to take ψi(xi|yi) = P(xi|yi), but this gives the exactly
same conditional distribution as above since any normalization with respect to yi’s are absorbed in the
partition function Z). This is naturally a graphical model on a factor graph G(V, F,E) defined by the
LDPC code.

(a) Write down the belief propagation updates (also known as the (parallel) sum-product algorithm)

for this factor graph model for the messages {ν(t)i→a(·)}(i,a)∈E and {ν̃(t)a→i(·)}(i,a)∈E .

(b) What is the computational complexity (how many operations are required in terms of the degrees
of the variable and factor nodes) for updating one message νi→a(·) and one message ν̃a→i(·)
respectively? Explain how one can improve the computational complexity, to compute the message

ν̃
(t)
a→i(·) exactly in runtime O(da), where da is the degree of the factor node a.

4

(c) Now, we consider a different message passing algorithm introduced by Robert Gallager in 1963.
The following update rule is a message passing algorithm known as the Gallager A algorithm.
Similar to the belief propagation for BEC channels we studied in class, this algorithm also sends

discrete messages (as opposed to real-valued messages in part (a)). Both ν
(t)
i→a’s and ν̃

(t)
a→i’s are

binary, i.e. in {+1,−1}.

ν
(t+1)
i→a =

+1 if ν̃

(t)
b→i = +1 for all b ∈ ∂i \ a ,

−1 if ν̃
(t)
b→i = −1 for all b ∈ ∂i \ a ,

yi otherwise ,

ν̃
(t)
a→i =

∏
j∈∂a\i

ν
(t)
j→a .

The interpretation of this update rule is that νi→a messages trust the received bit yi unless all of
the incoming messages disagree with yi, and ν̃a→i messages make sure that the consistency with
respect to I(⊗x∂a) is satisfied. In this algorithm, the messages take values in {+1,−1} and are the
estimated values of xi’s, as opposed to the distribution over those values as in belief propagation.

We assume that random (ℓ, r)-regular bipartite graph is used to generate the LDPC code. In
the resulting random graph, all variable nodes have degree ℓ and all factor nodes have degree r.
Among all such graphs, a random graph is selected uniformly at random.

Define W (t) to be the (empirical) distribution of the messages {ν(t)i→a}(i,a)∈E and Z(t) to be the

(empirical) distribution of the messages {ν̃(t)a→i}(i,a)∈E . We assume the messages are initialized in

such way that ν
(0)
i→a = yi for all i ∈ V . We also assume, without loss of generality, that all +1

messages were sent, i.e. xi = +1 for all i. Then, let w(t) = P(W (t) = −1) be the probability

that a message ν
(t)
i→a is −1 for a randomly chosen edge (i, a), and let z(t) = P(Z(t) = −1) be the

probability that a message ν̃
(t)
a→i is −1 for a randomly chosen edge (i, a).

Write the density evolution equations for w(t) and z(t), describing how the random distribution
of the messages w(t) and z(t) evolve. [We are looking for a clean answer. Specifically, the number
of operations required to compute z(t) from w(t) should be O(1). The same technique that reduced
computation in part (b) should be helpful.]

(d) Write the density evolution equation for a single scalar variable w(t), by substituting z(t). This
gives a fixed point equation in the form of w(t) = F (w(t−1)) for some F . Plot (using your favorite
numerical analysis tool) the function y = F (x) and the identity function y = x, for ℓ = 3 and
r = 4, and for two values of ε = 0.05 and ε = 0.1. Explain the error probability achieved by
this algorithm for the (3,4)-code on those two BSC(ε) channels. Use the fixed point equation to
calculate (numerically) the probability of error for this (3,4)-code on those two values of ϵ.

5

5. [2 points] (Max-product algorithm)

x1 x2 x3 x4

Consider an MRF on a line graph with 4 nodes: x = [x1, x2, x3, x4]. Each node has a ternary alphabet,
i.e. xi ∈ {a, b, c}. Suppose that the joint probability for all 81 possible state sequences are distinct, i.e.
no two realizations have the same probability mass.

Recall that max-marginal is, for example,

µ̃(x2) ≜ max
x{1,3,4}∈{a,b,c}3

µ(x1, x2, x3, x4)

We ran the max-product algorithm and recorded the resulting max-marginals for each node i ∈
{1, 2, 3, 4} and each value in the table below.

i µ̃(xi = a) µ̃(xi = b) µ̃(xi = c)

1 0.2447 0.0753 0.0234
2 0.2447 0.0118 0.1199
3 0.2447 0.1199 0.0169
4 0.2447 0.0346 0.0141

In this problem, we want to find the k-th most likely instance x(k) ∈ {a, b, c}4 for k ∈ {1, 2, 3}. Here, the

k-th most likely instance means a specific joint state x(k) = [x
(k)
1 , x

(k)
2 , x

(k)
3 , x

(k)
4] whose joint probability

is the k-th largest among all 81 instances.

(a) Find the most likely instance x(1) and the corresponding probability µ(x(1)) using the information
in the given max-marginals in the above table. Explain your answer.

(b) Find the second most likely instance x(2) and the corresponding probability µ(x(2)) using the given
max-marginals above. Explain your answer. Is it uniquely determined? Can x(2) be uniquely
determined from max-marginals (like the table above) assuming joint probability masses are all
distinct, in the general case, for any alphabet size, graph, and number of nodes?

(c) (For this problem ignore the constraints imposed by the structure of the graph.) Given the max-
marginals in the above table, list all sequences that can be the third most likely instance x(3).
Explain your answer. Can the corresponding probability µ(x(3)) be uniquely determined? For
which instances of x(3) in the list you provided, can µ(x(3)) be uniquely determined?

(d) Using the structure of the graph (and the corresponding factorization), and the fact that µ(x(1)) >
µ(x) for all x ̸= x(1), find which instances in the list you provided in the previous step cannot be
x(3). Meaning, eliminate as many instances in the previous list by considering the graph structure.
Explain your answer.

(e) We consider the same (unknown) true distribution as above subproblems. Suppose that instead
of computing the node max-marginal data above, we ran a different algorithm and computed edge
max-marginals, for example µ̃(x2, x3) ≜ maxx1,x4

µ(x1, x2, x3, x4), for every edge (i, j) ∈ E. For
example, we know that µ̃(x1 = a, x2 = a) = µ̃(x2 = a, x3 = a) = µ̃(x3 = a, x4 = a) = 0.2447. We
also know that µ̃(x1 = a, x2 = c) = µ̃(x2 = c, x3 = b) = µ̃(x3 = b, x4 = a) = 0.1199. We know
all such pairwise max-marginals. With this edge-max-marginals, can we uniquely determine the
third likely instance x(3)? Explain your answer. Can x(4) be uniquely determined?

6

6. [2 points] (Convergence of belief propagation)
Although belief propagation on graphs with loops is challenging to analyze, we consider a particular
example in this problem with highly symmetric structure.

An Ising model on a vector of binary variable x, with xi ∈ {−1,+1} is represented by a set of parameter
vector θ = [{θi}i∈[n], {θij}(i,j)∈E] as

µθ(x) =
1

Zθ
exp

{∑
i∈V

θixi +
∑

(i,j)∈E

θijxixj

}
for some given graph G = (V,E). In this problem, we focus on a simple case where θi = 0 for all
i ∈ V , θij = γ for all (i, j) ∈ E for some positive γ > 0, and the graph is a toroidal grid, as shown
below. Each node is connected to its four neighbors in the grid, and the grid is wrapped around at the
boundaries. We will consider general toroidal grid with more than 3× 3 nodes.

(a) Show, by explicitly analyzing the marginal and also by symmetry, that the single node marginal
distributions are uniform for all values of γ, i.e. µ(xi = 1) = µ(xi = −1) = 0.5 for all i. [hint:
start with smaller examples]

(b) Write down the sum-product algorithm update rules for the messages ν
(t)
i→j(xi).

(c) Write down the sum-product update rules again, but with a change of variables. Let

q
(t)
i→j =

ν
(t)
i→j(x1 = −1)

ν
(t)
i→j(x1 = +1)

and rewrite the sum-product update rules in terms of q
(t)
i→j ’s.

(d) Suppose we initialize the messages q
(0)
i→j ’s with the same value (which might not necessarily be

one) such that q
(0)
i→j = q(0) ∈ R for all (i, j) ∈ E. Then, by the symmetry of the graph and

the update rules, all subsequent messages will be the same for all edges, i.e. q
(t)
i→j = q(t) for all

(i, j) ∈ E. Now, write a single sum-product update rule (that does not depend on the particular
edge), by substituting all the messages by q(t) and simplifying the formula you got in the previous

7

step. Define a function f : R → R such that q(t+1) = f(q(t)) denote this update rule. Plot the
function y = x and y = f(x) for x ∈ [0, 2] and y ∈ [0, 2] for two choices of γ ∈ {0.3, 0.45}. How
many fixed points are there in each plot (a fixed point of q(t+1) = f(q(t)) is where y = x and
y = f(x) cross)?

(e) Notice that we start sum-product algorithm with the usual initialization of ν
(0)
i→j(xi = +1) =

ν
(0)
i→j(xi = −1) = 0.5 (or equivalently q(0) = 1), then the messages stay at this uniform distribution
and do not change. The reason is that the set of all-uniform messages is a fixed point in the sum-
product update equation (or BP equation). This means that all-uniform messages are not changed
after sum-product update.

However, depending on the value of γ this fixed point is either stable or unstable. If it is a
stable fixed point, the BP will still converge to the same fixed point, even if we start at slightly

perturbed initialization. For example let us initialize each message as ν
(0)
i→j(xi = +1) = 0.5 + ε

and ν
(0)
i→j(xi = −1) = 0.5 − ε for some small ε. This is equivalent to initializing q(0) = 0.5−ε

0.5+ε . If
the fixed point is stable, sum-product algorithm will still converge to the all-uniform messages.
Otherwise, the messages will converge to another fixed point (or diverge). Using the two plots
you draw in the previous step, identify whether q(0) = 1 is a stable fixed point or not for γ = 0.3
and also for γ = 0.45. Explain your answer.

(f) The necessary and sufficient condition for a function f to be stable at a point q(0) is that f ′(q(0)) <
1. Analytically find the threshold γ∗ below which the all-ones initialization is stable, and above
which it is not.

8

