
HW1 (6 problems)
Jamie Morgenstern CSE515

1. [2 points] In this exercise, you will construct an undirected graphical model for the problem of seg-
menting foreground and background in an image. Load the image flower.bmp. Partial labeling of the
foreground and background pixels are given in the mask images foreground.bmp and background.bmp,
respectively. In each mask, the white pixels indicate positions of representative samples of foreground
or background pixels in the image.

image y in flower.bmp foreground.bmp background.bmp

Figure 1: Given observations for this problem.

Let y = {yi} be an observed color image, so each yi is a 3-vector (of RGB values between 0 and
1) representing the pixel indexed by i. Let x = {xi}, where the unknown variable xi ∈ {0, 1} is a
foreground(1)/background(0) labeling of the image at pixel i. Let us say the probabilistic model for x
and y given by their joint distribution can be factored in the form

µ(x, y) =
1

Z

∏
i

ϕ(xi, yi)
∏

(j,k)∈E

ψ(xj , xk) (1)

where E is the set of all pairs of adjacent pixels in the same row or column as in 2-dimensional grid.
Suppose that we choose

ψ(xj , xk) =

{
0.9 if xj = xk
0.1 if xj ̸= xk

This encourages neighboring pixels to have the same label–a reasonable assumption. Suppose further
that we use a simple model for the conditional distribution ϕ(xi, yi) = PYi|Xi

(yi|xi):

P(yi|xi = α) ∝ 1

(2π)3/2
√
detΛα

exp
{
− 1

2
(yi − µα)

TΛ−1
α (yi − µα)

}
+ ϵ

for yi ∈ [0, 1]3. That is, the distribution of color pixel values over the same type of image region is a
modified Gaussian distribution, where ϵ accounts for outliers. Set ϵ = 0.01 in this problem.

(a) Sketch an undirected graphical model that represents µ(x, y) for a smaller example of an image
with 5× 5 pixels.

(b) Compute µα ∈ R3 and Λα ∈ R3×3 for each α ∈ {0, 1} from the labeled masks by finding the
sample mean and covariance of the RGB values of those pixels for which the label xi = α is
known from foreground.bmp and background.bmp. The sample mean of samples {y1, . . . , yN} is

ȳ = 1
N

∑N
i=1 yi and the sample covariance is Cy = 1

N−1

∑N
i=1(yi − ȳ)(yi − ȳ)T . Write the means

µ0 and µ1 and covariances Λ0 and Λ1. You don’t have to submit the code you used to compute
these values, but save the code as we will use the model in future homework.
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2. [2 points] (Exercise 2.5 in Koller/Friedman)

Let X, Y , Z be three disjoint subsets of random variables. We say X and Y are conditionally inde-
pendent given Z if and only if

PX,Y |Z(x, y|z) = PX|Z(x|z)PY |Z(y|z) .

Show that X and Y are conditionally independent given Z if and only if the joint distribution for the
three subsets of random variables factors in the following form:

PX,Y,Z(x, y, z) = h(x, z) g(y, z) .

3. [2 points] (Exercise 4.1 in Koller/Friedman)

In this problem, we will show by example that the distribution of a graphical model need not have a
factorization of the form in the Hammersley-Clifford Theorem if the distribution is not strictly positive.
In particular, we will consider a distribution on the following simple 4-cycle where each node is a binary

4

1 2

3

random variable, Xi, for i ∈ {1, 2, 3, 4}. Consider a probability distribution that assigns a probability
1/8 uniformly to each of the following set of values (X1, X2, X3, X4):

(0, 0, 0, 0) (1, 0, 0, 0) (1, 1, 0, 0) (1, 1, 1, 0)

(0, 0, 0, 1) (0, 0, 1, 1) (0, 1, 1, 1) (1, 1, 1, 1)

and assigns zero to all other configurations of (X1, X2, X3, X4).

(a) We first need to show that this distribution is Markov on our graph. To do this, it should not be
difficult to see that what we need to show are the following conditions:

∗ The pair of variables X1 and X3 are conditionally independent given (X2, X4).

∗ The pair of variables X2 and X4 are conditionally independent given (X1, X3).

First, show that if we interchange X1 and X4 and interchange X2 and X3, we obtain the same
distribution, i.e.., P(x1, x2, x3, x4) = P(x4, x3, x2, x1). This implies that if we can show the first
condition, then the other is also true.

(b) Show that whatever pair of values you choose for (X2, X4), we then know either X1 or X3 with
certainty. For example, (X2 = 0, X4 = 0) implies that X3 = 0. Since we know either X1 or
X3 with certainty, then conditioning on the other one of these obviously provides no additional
information, trivially proving conditional independence.
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(c) What we now need to show is that the distribution cannot be factorized in the way stated in
the Hammersley-Clifford Theorem. We will do this by contradiction. Noting that the maximal
cliques in our graph are just the edges and absorbing the normalization 1/Z into any of the
pairwise compatibility functions, we know that if our distribution has the factorization implied
by the Hammersley-Clifford Theorem, we can write it in the following form:

P(x1, x2, x3, x4) = ψ12(x1, x2)ψ23(x2, x3)ψ34(x3, x4)ψ41(x4, x1) .

Show that assuming that our distribution has such a factorization leads to a contradiction by
examining the values of P(0, 0, 0, 0), P(0, 0, 1, 0), P(0, 0, 1, 1), and P(1, 1, 1, 0).

4. [2 points] Given a graph G = (V,E), an independent set of G is a subset S ⊆ V of the vertices, such
that no two vertices in S is connected by an edge in E. Precisely, if i, j ∈ S then (i, j) /∈ E. We let
IS(G) denote the set of all independent sets of G, and let Z(G) = |IS(G)| denote its size, i.e. the total
number of independent sets in G. The number of independent sets Z(G) is at least 1 + |V |, since the
empty set and all subsets with single vertex are always independent sets. We are interested in the
uniform probability measure over S:

PIS(G)(S) =
1

Z(G)
I(S ∈ IS(G)) ,

where I(A) is an indicator function which is one if event A is true and zero if false.

The set S can be naturally encoded by a binary vector x ∈ {0, 1}|V | by letting xi = 1 if and only if
i ∈ S. Denote by PG(x) the probability distribution induced on this vector x according to PIS(G)(S).
This PG(x) is a pairwise Markov random field on G as it can be written as

PG(x) =
1

Z(G)

∏
(i,j)∈E

I(xi × xj = 0)︸ ︷︷ ︸
ψi,j(xi,xj)

, (2)

where Z(G) =
∑
x∈{0,1}|V |

∏
(i,j)∈E ψi,j(xi, xj).

Let G = Tk,ℓ denote the rooted tree with branching factor k and ℓ generations, that is the root has k
descendants and each other node has one ancestor and k descendants except for the leaves. The total
number of vertices is (kℓ+1 − 1)/(k − 1), and Tk,ℓ=0 is the graph consisting only of the root. We let ϕ
denote the root of Tk,ℓ.

(a) Let Zℓ = Z(Tk,ℓ) denote the total number of independent sets of G = Tk,ℓ. Let Zℓ(0) be the
number of independent sets in Tk,ℓ such that the root is xϕ = 0, and Zℓ(1) be the number of
independent sets such that xϕ = 1. It is immediate that Z0(0) = Z0(1) = 1. Derive a recursion
expressing (Zℓ+1(0), Zℓ+1(1)) as a function of (Zℓ(0), Zℓ(1)).

(b) Using the above recursion, derive a recursion for the probability that the root belongs to a uni-
formly random independent set. Explicitly, derive a recursion for

pℓ = PTk,ℓ
({xϕ = 1}) .

(c) Program this recursion and plot pℓ as a function of ℓ ∈ {0, 1, . . . , 50} for four values of k, e.g.
k ∈ {1, 2, 3, 10}. Comment on the qualitative behavior of these plots. Print the code you used in
your solution pdf file as a part your answer.

3



(d) (optional) Prove that, for k ≤ 3, the recursion converges to a unique value using Banach’s fixed
point theorem.

5. [2 points] (I-map)
In this problem, we will show that when the distribution µ(x) is not strictly positive (i.e. µ(x) = 0 for
some x), then the I-map for this distribution is not unique. Consider a distribution of 4 binary random
variables x1, x2, x3, and x4 such that µ(x1 = x2 = x3 = x4 = 1) = 0.5 and µ(x1 = x2 = x3 = x4 =
0) = 0.5. The following two undirected graphical models are both minimal I-maps for this distribution,
hence it is not unique.

2

3 4

1 2

3 4

1

(a) Prove that the two undirected graphical models above are minimal I-maps for the distribution
µ(x). You need to show that both graphs are I-maps for the given distribution µ(x) and that
removing any edge results in introducing independencies that are not implied by the distribution
µ(x).

(b) Now, we show that starting with a complete graph and eliminating edges that are pairwise condi-
tionally independent does not always give you an I-map (minimal or not). Start with a complete
graph K4 (K4 is an undirected graph with 4 nodes and edges between all pairs of nodes). For each
pair of nodes, eliminate the edge between this pair if they are conditionally independent given the
rest of the nodes in the graph. Continue this procedure for all pairs of nodes and examine the
resulting graph. Is this an I-map of the distribution µ(x1, x2, x3, x4)?

Recall from class, that a distribution over x is (globally) Markov with respect to G = (V,E) if,
for any disjoint subsets of nodes A, B, C such that B separates A from C, xA–xB–xC is satisfied.
Recall two other notions of Markovity. A distribution is pairwise Markov with respect to G if, for
any two nodes i and j not directly linked by an edge in G, the corresponding variables xi and xj
are independent conditioned on all of the remaining variables, i.e. for all (i, j) /∈ E,

xi–xV \{i,j}–xj

A distribution is locally Markov with respect to G if any node i, when conditioned on the variables
on the neighbors of i, is independent of the remaining variables, i.e. for all i ∈ V ,

xi–x∂i–xV \{i,∂i}

(c) Using the example of distribution on 4 random variables as a counter example, prove that a
distribution is pairwise Markov w.r.t. G does not always imply that it is locally Markov w.r.t.
the same graph G. (However, if the distribution is positive, pairwise Markovity implies local and
global Markovity.)
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6. [2 points] Consider a stochastic process that transitions among a finite set of states s1, . . . , sk over time
steps i = 1, . . . , N . The random variables X1, . . . , XN representing the state of the system at each
time step are generated as follows:

– Sample the initial state X1 = s from an initial distribution p1, and set i := 1.

– Repeat the following:

∗ Sample a duration d from a duration distribution pD over the integers {1, . . . ,M}, where M
is the maximum duration.

∗ Remain in the current state s for the next d time steps, i.e., set

Xi := Xi+1 := . . . := Xi+d−1 := s

∗ Sample a successor state s′ from a transition distribution pT (·|s) over the other states s′ ̸= s
(so there are no self-transitions).

∗ Assign i := i+ d and s := s′.

This process continues indefinitely, but we only observe the first N time steps. You need not worry
about the end of the sequence to do any of the problems. As an example calculation with this model,
the probability of the sample state sequence (s1, s1, s1, s2, s3, s3) is

P((X1, X2, X3, X4, X5, X6) = (s1, s1, s1, s2, s3, s3)) = p1(s1)pD(3)pT (s2|s1)pD(1)pT (s3|s2)
∑

2≥d≤M

pD(d) .

Finally, we do not directly observe the Xi’s, but instead observe emissions yi at each step sampled
from a distribution pYi|Xi

(yi|xi).

(a) For this part only, suppose M = 2, and pD(d) =

{
0.6 for d = 1
0.4 for d = 2

, and each Xi takes on a

value from an alphabet {a, b}. Draw a minimal directed I-map for the first five time steps using
the variables (X1, . . . , X5, Y1, . . . , Y5). Explain why the edges you added cannot be removed.
[Note: you do not need to solve part (a) in order to solve part (b) and (c).]

(b) This process can be converted to an HMM using an augmented state representation. In particular,
the states of this HMM will correspond to pairs (x, t), where x is a state in the original system,
and t represents the time elapsed in that state. For instance, the state sequence s1, s1, s1, s2, s3, s3
would be represented as (s1, 1), (s1, 2), (s1, 3), (s2, 1), (s3, 1), (s3, 2). the transition and emission
distribution for the HMM take the forms

p̃Xi+1,Ti+1|Xi,Ti
(xi+1, ti+1|xi, ti) =

 ϕ(xi, xi+1, ti) if ti+1 = 1 and xi+1 ̸= xi
ξ(xi, ti) if ti+1 = ti + 1 and xi+1 = xi
0 otherwise

and p̃Yi|Xi,Ti
(yi|xi, ti), respectively. Express ϕ(xi, xi+1, ti), ξ(xi, ti), and p̃Yi|Xi,Ti

(yi|xi, ti) in
terms of parameters p1, pD, pT , pYi|Xi

, k, N , and M of the original model.

(c) We wish to compute the marginal probability for the final state XN given the observations
Y1, . . . , YN . If we naively apply the sum-product algorithm to the construction in part (b),
the computational complexity is O(Nk2M2). Show that by exploiting additional structure in
the model, it is possible to reduce the complexity to O(N(k2 + kM)). In particular, give the
corresponding rules for computing the forward messages νi+1→i+2(xi+1, ti+1) from the previous
message νi→i+1(xi, ti). Do not worry about the beginning or the end of the sequence and restrict
your attention to 2 ≤ i ≤ N − 1.
[Hint: substitute your solution from part (b) into the standard update rule for HMM messages
and simplify as much as possible.]
[Note: If you cannot fully solve this part of the problem, you can receive substantial partial credit
by constructing an algorithm with complexity O(Nk2M).]
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