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Gibbs free energy

Naive mean field

Bethe free energy
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Tree-based convexification
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Understanding Loopy belief propagation
directed edges on G : ~E
messages: �(t) � f�i!j (�)g(i ;j )2~E
loopy belief propagation: �(t+1) = F(�(t))

�
(t+1)
i!j /

Y
k2@inj

n X
xk2X

 ik (xi ; xk )�
(t)
k!i (xk )

o

F : M(X )
~E ! M(X )

~E

� 7! F(�)

where M(X ) is the set of probability measures on X
if loopy BP converges, it eventually conerges to a fixed point of F

�� = F(��)

Q1. does F have a fixed point?
Q2. if F has one or more fixed points, what are they?
Q3. does BP converge to a fixed point?
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Q1. Existence of a fixed point

Theorem. (Hadamard 1910, Brouwer 1912) Any continuous function
mapping from a convex compact set to the same convex compact set
has a fixed point.
existence of at least one fixed point of F follows from

I F is continuous
I the set of normalized messages is convex and compact

but what do these fixed points correspond to?
and how do they relate to BP?
variational approach tries to answer these questions by formulating
the inference problem as an optimization problem
Choice of an optimization:

Gibbs free energy — Bethe free energy — Naive mean field
accurate, but complex — Belief Propagation — simple, not accurate
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Gibbs variational principle
I start with a hard optimization problem
I approximate the solution by imposing constraints and searching in a

smaller feasible set
I relate the solutions of the relaxation to BP

‘actual’ probability

�(x ) =
1
Z

Y
(i ;j )2E

 ij (xi ; xj ) =
1
Z
 tot(x )

we know  tot but not Z
‘trial’ probability (‘belief’) b(x ) 2 M(X jV j)

we focus on characterizing log partition function

Φ � log Z = log
n X

x2X jV j

Y
(i ;j )2E

 ij (xi ; xj )
o

variational characterization of the log partition function

Φ = sup
b2M(X jV j)

G(b)
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define Gibbs free energy G (b)

G (b) =
X

x2X jV j

�
b(x ) log tot(x )

�
�

X
x2X jV j

�
b(x ) log b(x )

�
= �Eb

�
� log tot(X )

�| {z }
expected energy w.r.t. b

+Eb
�
� log b(X )

�| {z }
entropy of b

such that
I strictly concave
I sup

b2M(X jV j)

G (b) = Φ

I � = arg max
b

G (b)

interpretation
I the optimal solution b�(x ) = �(x ) minimizes average energy while

maximizing entropy

Variational inference 10-5



Proof of Φ = supb G (b)

rearranging terms,

G (b) =
X

x2X jV j

�
b(x ) log tot(x )

�
�

X
x2X jV j

�
b(x ) log b(x )

�
=

X
x2X jV j

b(x )
�

log Z + log
1
Z
 tot(x )

�
�

X
x2X jV j

�
b(x ) log b(x )

�
= log Z �

X
x2X jV j

b(x )
�

log b(x )� log�(x )
�

= Φ�DKL(bjj�)

where DKL(�jj�) is the Kullback-Leibler divergence
from information theory, it is known that

I DKL(bjj�) � 0
I DKL(bjj�) = 0 if and only if b = �
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good news: we can compute partition function Z by solving a convex
optimization
bad news: M(X jV j) is jX jjV j � 1 dimensional

next strategy: solve the optimization over a low-dimensional subset S

S

�
b�

this give a lower bound on the log partition function, because we are
maximizing over a smaller set

Φ � sup
b2S

G (b)
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Naive mean field
define a subset of distributions that can be factorized according to
naive mean field factorization

SMF =
�
b 2 M(X n) : b(x ) = b1(x1)� b2(x2)� � � � � bn(xn)

	
slight abuse of notation: b = fbigi2V
let FMF : SMF ! R

b 7! G (b)

we can compute it explicitly, after some algebra

FMF(b) =
X

(i ;j )2E

X
xi ;xj

bi (xi )bj (xj ) log ij (xi ; xj )�
X

i2V ;xi

bi (xi ) log bi (xi )

mean field variational inference problem

max
b2SMF

FMF(b)

subject to bi (xi ) � 0 for all i 2 V , xi 2 XX
xi2X

bi (xi ) = 1 for all i 2 V
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consider bi ’s as approximate node marginals
although FMF(�) is not concave, we can search for local maxima
characterizing the local maxima

I the stationary points of a constrained optimization satisfy that the
derivatives of the Lagrangian are zero

L(b; �) = FMF(b)�
X
i2V

�i

nX
xi2X

bi (xi )� 1
o

=
1
2

X
i2V ;xi2X

bi (xi )
n X

j2@i;xj2X

bj (xj ) log ij (xi ; xj )
o
�
X

i2V ;xi

bi (xi ) log bi (xi )

�
X
i2V

�i

nX
xi2X

bi (xi )� 1
o

I define a Lagrangian multiplier �i for each constraint
P

bi (xi ) = 1
I non-negativity constraints are implicit from the log

@L(b; �)

@bi (xi )
=

X
j2@i

X
xj2X

bj (xj ) log ij (xi ; xj )� 1� log bi (xi )� �i

= 0
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solving for bi (xi ) we get naive mean field equations:

bi (xi ) / exp
n X

j2@i

X
xj2X

log ij (xi ; xj )bj (xj )
o

b = FMF(b)

a fixed point can be searched by iteration:

b(t+1) = FMF(b(t))

Variational inference 10-10



Bethe free energy

one dimensional marginals give a very poor approximation
example: x1; x2 2 f0; 1g

�(x ) =
1
2
I(x1 � x2 = 0) and

�(x ) =
1
2
I(x1 � x2 = 1)

would like to define a parameterization of b(x ) such that
I account exactly for the pairwise correlations induced by edges
I exact on distribution � defined over a tree
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Locally consistent marginals
consider a parametrization

I bi (xi ): an approximation of the marginal �(xi )
I bij (xi ; xj ): as an approximation of the marginal �(xi ; xj )

let b = fbi ; bij g

b is a set of globally consistent marginals of a distribution on X n

if there exists a P(�) 2 M(X jV j) such that

bi (xi ) =
X

xV nfig

P(x ) , for all i

bij (xi ; xj ) =
X

xV nfi;jg

P(x ) , for all i ; j

denote the set of all valid marginals by

MARG(G) =
n
b = fbi ; bij g : marginals of a distribution on X jV j

o
in general, checking b 2 MARG(G) is NP-hard
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b = fbi ; bij g is a set of locally consistent marginals ifX
xi

bi (xi ) = 1 , for all i

X
xj

bij (xi ; xj ) = bi (xi ) , for all i ; j

I not all locally consistent marginals correspond to a valid joint
probability distribution

I example. three nodes with X = f0; 1g

b1 = b2 = b3 = (0:5; 0:5)

b12 = b23 =

�
0:49 0:01
0:01 0:49

�

b31 =

�
0:01 0:49
0:49 0:01

�
denote the set of all locally consistent marginals by

LOC(G) =
n
b = fbi ; bij g : locally consistent marginals

o
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LOC(G)

MARG(G)

Polytopes

when G is not a tree
I locally consistent fbi ; bij g might not be marginals of any distribution

when G is a tree
I for any locally consistent fbi ; bij g, there exists a unique measure

p 2 M(X jV j) whose marginals are given by fbi ; bij g
I the measure p(x ) is given by

p(x ) =
Y
i2V

bi (xi )
Y

(i ;j )2E

bij (xi ; xj )

bi (xi )bj (xj )

I (we did not define Bethe free energy F(fbi ; bij g) yet, but) the Gibbs
free energy is equal to the Bethe free energy, i.e. G(p) = F(fbi ; bij g),
and hence

log Z = max
fbi ;bij g2LOC(G)

F(fbi ; bij g)
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Locally consistent marginals on a tree
given a tree G = (V ;E) with n nodes and fbi ; bij g 2 LOC(G)
prove (by induction) that

p(x ) =
Y
i2V

bi (xi )
Y

(i ;j )2E

bij (xi ; xj )

bi (xi )bj (xj )

is a unique measure on X n with marginals p(xi ) = bi (xi ) for all i
and p(xi ; xj ) = bij (xi ; xj ) for all (i ; j ) 2 E
for n = 1, it is trivial
assume it is true for n and add a new vertex i = n + 1, connected to
j = n

p(xV ; xn+1) = p(xV ) p(xn+1jxV )

= p(xV ) p(xn+1jxn) [Markov property]

= p(xV )
p(xn ; xn+1)

p(xn)p(xn+1)
p(xn+1) [Bayes rule]

=
n Y

(i;j ) 6=(n;n+1)

bij (xi ; xj )

bi (xi )bj (xj )

Y
i2V

bi (xi )
o p(xn ; xn+1)

p(xn)p(xn+1)
p(xn+1)

QED
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Bethe free energy
variational inference on locally consistent marginals b = fbi ; bij g

I want to define an objective function

F : LOC(G) ! R
b = fbij ; b`g(i;j )2E ;`2V 7! F(b)

such that

arg max
b

F(b) � � ;

max
b

F(b) � Φ ;

recall that for a valid distribution b, Gibbs free energy is defined as

G (b) = �Eb [� log tot(X )]| {z }
energy

+ Eb [� log b(X )]| {z }
entropy

when G is a tree, the first and second order marginals fully describe
the joint distribution:

b(x ) =
Y
i2V

bi (xi )
Y

(i ;j )2E

bij (xi ; xj )

bi (xi )bj (xj )
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Bethe free energy on a tree
I energy

Eb [� log tot(X )] = �
X

(i;j )2E

Eb [log ij (xi ; xj )]

= �
X

(i;j )2E

Ebij [log ij (xi ; xj )]

= �
X

(i;j )2E

X
xi ;xj

bij (xi ; xj ) log ij (xi ; xj )

I entropy

H (b) � Eb [� log b(X )]

=
X
i2V

�Ebi [log bi (Xi )]| {z }
� H (bi )

�
X

(i;j )2E

�Ebij [log bij (Xi ;Xj )� log bi (Xi )� log bj (Xj )| {z }
� I (bij )

]
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in general, define Bethe free energy of b = fbi ; bij g 2 LOC(G) as

F(b) = � energy + entropy

=
X

(i;j )2E

X
xi ;xj

bij (xi ; xj ) log ij (xi ; xj )

�
X

(i;j )2E

X
xi ;xj

bij (xi ; xj ) log
bij (xi ; xj )

bi (xi )bj (xj )
�
X
i2V

X
xi

bi (xi ) log bi (xi )

=
X

(i;j )2E

X
xi ;xj

bij (xi ; xj ) log ij (xi ; xj )

�
X

(i;j )2E

X
xi ;xj

bij (xi ; xj ) log bij (xi ; xj )�
X
i2V

(1� deg(i))
X
xi

bi (xi ) log bi (xi )

one justification of using F(�) is that if G is a tree then

sup
fbi ;bij g

F(fbi ; bij g) = sup
b2M(G)

G(b) = Φ

where M(G) is the set of distributions that decompose according to G
the above optimization problem is called Bethe variational problem
for general graphs, the solution to the above maximization approximates the log
partition function, and it is known as Bethe approximation
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Connections between Bethe free energy and belief
propagation

maximizing Bethe free energy

max
b2LOC(G)

F(b)

Theorem. (Yedidia, Freeman, Weiss 2003) Fixed points of BP are in
one-to-one correspondence with stationary points of Bethe free energy.
Also, fixed point BP messages �� are (exponentials of) the dual
parameters �� at the fixed points
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Fixed point condition for BP messages
BP fixed point messages �� satisfy

��i!j (xi ) /
Y

k2@inj

nX
xk

 ik (xi ; xk )��k!i (xk )
o

define a set of marginals (which are exact on a tree)

b�i (xi ) /
Y
k2@i

n X
xk2X

 ik (xi ; xk ) ��k!i (xk )
o

/
Y
k2@i

n�
��i!k (xi )

� 1
deg(i)�1

o
b�ij (xi ; xj ) / ��i!j (xi ) ij (xi ; xj ) ��j!i (xj )

exercise. show fbi ; bij g is locally consistent
claim. b� corresponds to a stationary point of Bethe free energy
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Stationarity condition for Bethe free energy
Lagrangian with �i for condition

P
xi

bi (xi ) = 1, and �i!j (xi ) for
condition

P
xj

bij (xi ; xj ) = bi (xi )

L(b; �) = F(b)�
X
i2V

�i

nX
xi

bi (xi )� 1
o

�
X

(i;j )2~E

X
xi

�i!j (xi )
nX

xj

bij (xi ; xj )� bi (xi )
o

taking the derivative
rbij (xi ;xj )L(b; �) = �1� log bij (xi ; xj ) + log ij (xi ; xj )� �i!j (xi )� �j!i (xj )

rbi (xi )L(b; �) = �(1� deg(i)) log[bi (xi ) e]� �i +
X
j2@i

�i!j (xi )

setting the derivatives to zero
b�ij (xi ; xj ) =  ij (xi ; xj ) exp

�
� 1� �i!j (xi )� �j!i (xj )

	
;

bi (xi )
� / exp

n
�

1
deg(i)� 1

X
j2@i

�i!j (xi )
o

X
xj

b�ij (xi ; xj ) = b�i (xi )
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changing variables: �i!j (xi ) / e��i!j (xi )

b�ij (xi ; xj ) / �i!j (xi ) ij (xi ; xj ) �j!i (xj )

b�i (xi ) /
Y
j2@i

n�
�i!j (xi )

� 1
deg(i)�1

o

imposing locally consistency constraints
P

xj
b�ij (xi ; xj ) = b�i (xi ), we

can show that the �i!j ’s are at BP fixed point. Start with the identityY
k2@inj

nX
xk

b�ik (xi ; xk )

| {z }
=b�i (xi )

o
= b�i (xi )

deg(i)�1 , substitute �’s

Y
k2@inj

n
�i!k (xi )

X
xk

�k!i (xk ) ik (xi ; xk )
o

/
Y
k2@i

n
�i!k (xi )

o
, after a division

Y
k2@inj

nX
xk

�k!i (xk ) ik (xi ; xk )
o

/ �i!j (xi )

we have established that each of the BP fixed points correspond to a
stationary point of the Bethe free energy
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Alternative algorithms to find fixed points (e.g. gradient ascent)
[e.g. Heskes 2002]

Include higher order marginals
[Yedidia, Freeman, Weiss 2003]

Convexify Bethe free energy
[Wainwright, Jaakkola, Willsky 2005]

Asymptotically tight estimates on log Z for graph sequences
[e.g. Dembo, Montanari 2010]

Variational inference 10-23



Historically, statistical physics study systems in thermal equilibrium,
whose state is given by Boltzmann’s law

�(x ) =
1

Z (T )
e�E(x )=T

where T is the temperature, E(x ) is the energy at a state x , and
Z (T ) is the partition function given by

Z (T ) =
X
x2S

e�E(x )=T

Helmholtz free energy (log partition function) is an important quantity
for understanding how the system and statistical physicists have
devoted significant energy to find good approximations to it:

FH = � ln Z (T )

An important technique is based on variational approaches, where the
maximum of Gibbs free energy is studied

G(b) =
X
x2S

b(x )E(x ) +
X
x2S

b(x ) log b(x )
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Region-based approximation

Consistency on Vertices ! Edges ! Regions

Naive Mean Field ! Bethe Free Energy ! Region-Based Free Energy

MF Equations ! Belief Propagation ! Generalized BP

[Cluster variational method, Kikuchi 1951]

Idea: decompose the system into sub-systems (regions) and
approximate the free energy by combining the free energies of the
sub-systems
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Region

Definitions.
I a region R = (VR;ER) is a subgraph such that if (i ; j ) 2 ER then

i ; j 2 VR
I region free energy FR : M(XVR ) ! R

FR(bR) = EbR log tot;R(xR) + H (bR)

= �
X
xR

X
(i ;j )2ER

�bR(xR) log ij (xi ; xj )

| {z }
region energy

+
X
xR

�bR(xR) log bR(xR)

| {z }
region entropy

I can be evaluated for small regions (complexity jX jjRj)
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Region-based approximation

collection of regions

R =
�
R1;R2; : : : ;Rm

	
:

coefficients

cR =
�
cR1 ; cR2 ; : : : ; cRm

	
; cRi 2 R :

marginals

bR =
�
bR1 ; bR2 ; : : : ; bRm

	
; bRi 2 M(XVRi ) :

region-based free energy approximation:

FR(bR) =
X
R2R

cR FR(bR)
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Example: Bethe Free Energy

regions

R =
�
Ri : i 2 V

	
[
�
Rij : (i ; j ) 2 E

	
Ri = (fig; ;)

Rij = (fi ; j g; f(i ; j )g)

coefficients

ci = 1� deg(i) ; cij = 1 :

Bethe free energy as a special case of the region based free energy

FR(b) =
X
i2V

f1� deg(i)gH (bi ) +
X

(i ;j )2E

n
H (bij ) + Ebij log ij (xi ; xj )

o
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main questions
1. What about domain/consistency of bR(xR)?
2. How to choose coefficients?
3. How to choose regions?

valid region-based approximations [Yedidia, Freeman, Weiss, 2003]
I condition 1: local consistency

R 2 R; R0 � R ) R0 2 R :

X
xRnR0

bR(xR) = bR0(xR0) for all R0 � R :

let LOC(G; R) be a set of marginals b = fbR : R 2 Rg that are
locally consistent w.r.t. a collection of regions R

I condition 2: vertex countingX
R2R

cR I(i 2 R) = 1 for all i 2 V :

I condition 3: edge countingX
R2R

cR I((i ; j ) 2 R) = 1 for all (i ; j ) 2 E
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Geometric picture

LOC(G)

LOC(G; R)

MARG(G)

Polytopes

Variational inference 10-30



Justification of condition #2
X
R2R

cR I(i 2 R) = 1 for all i 2 V :

consider a special case of uniform distribution: �(x ) = 1=jX jjV j and
 ij (xi ; xj ) = 1
suppose bR(xR) are true marginals, i.e. b�R(xR) = 1=jX jjVRj

then for any graph, the region based approximation is exact:
FR(b�) = log Z

since log ij (xi ; xj ) = 0, energy terms are zerosX
R2R

cRFR(b�R) =
X
R2R

cR H (b�R)

=
X
R2R

cR jVRj|{z}P
i2V

I(i2R)

log jX j

=
X
i2V

(X
R2R

cR I(i 2 R)

)
log jX j

= jV j log jX jVariational inference 10-31



Justification of condition #3

X
R2R

cR I((i ; j ) 2 R) = 1 for all (i ; j ) 2 E :

neglect entropy (e.g. suppose  ij (xi ; xj ) = e� �ij (xi ;xj ), � !1)
suppose b�R(xR) are true marginals, i.e. b�R(xR) =

P
xV nV (R)

b�(X )

then the region based approximation correctly recovers the energyX
R2R

cRFR(b�R) = �
X
R2R

cR

X
xR

b�R(xR)
X

(ij )2E(R)

�ij (xi ; xj ) + O�(1)

= �
X
R2R

cR

X
(ij )2E(R)

Eb�ij
[�ij (Xi ;Xj )] + O�(1)

= �
X
(ij )2E

(X
R2R

cR I((i ; j ) 2 R)

)
Eb�ij

[�ij (Xi ;Xj )] + O�(1)

= �
X
(ij )2E

Eb�ij
[�ij (Xi ;Xj )] + O�(1)
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How should the regions be chosen?
Cluster variational method (Kikuchi approximations):

I First, choose a basic set of clusters (with cR = 1)
I Then, add all intersections of those basic clusters with

cR = 1�
X

R02ancestor of R

c0R

I Continue until all intersections are included

I the above choice of cR ensures that the vertex counting condition is
satisfied, i.e.

P
R2R I(i 2 R) = 1

I an example with a choice of a basic set of
f(x1; x2; x4; x5); (x2; x3; x5; x6); (x4; x5; x7; x8); (x5; x6; x8; x9)g
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I larger basic regions give better approximations
I for pairwise MRFs, Bethe free energy has the correct energy term
I Region based methods improve in giving the increasingly accurate

entropy term as clusters become larger
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The Region Graph
given a collection of regions R, how do you compute the (consistent)
coefficients?
region graph is a directed acyclic graph where an edge from R to R0

may exist if R0 � R
child, parent, ancestor, descendant
region graph is not unique
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The Region Graph
given a region graph, the weights of the regions can be computed
according to

cR = 1�
X

R02ANCESTORS(R)

cR

cloop = +1

cedge = �1

cvert = +1

region based free energy is exact if the corresponding region graph has
no (undirected) cycles and the weights cR are valid
in general, how to generate a good region graph is still open
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Generalized belief propagation

maximize FR(bR) =
X
R2R

cR FR(bR)

subject to
X
xRnR0

bR(xR) = bR0(xR0); 8R ! R0

we form the Lagrangian

L(fbRg; f�R!R0g) = FR(bR)�
X

R!R0

X
xR0

n
�R!R0(xR0)

�X
xRnR0

bR(xR)� bR0(xR0)
�o

setting derivative to zero

rbR(xR)L(fbRg; f�R!R0g) = 0
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setting rbR(xR)L(fbRg; f�R!R0g) = 0 gives an marginal computation
rule for generalized belief propagation algorithm

bR(xR) /
Y

(i;j )2ER

 ij (xi ; xj )
Y

P2P(R)

�P!R(xR)
Y

D2D(R)

Y
P 02P(D)nR;D(R)

�P 0!D(xD)

each consistency constraint bR(xR) =
P

xPnR
bP (xR; xPnR) gives

message update rule

�P!R(xR) /

P
xPnR

Q
(i;j )2ER

 ij (xi ; xj )
Q

(I ;J )2N (P;R)
�I!J (xJ )Q

(I ;J )2D(P;R)
�I!J (xJ )

I P(R) = f parent of Rg
I D(R) = f all descendants of Rg
I E(R) = R [ D(R)
I N (P ;R) = fI ! J : J 2 E(P) n E(R); I =2 E(P)g
I D(P ;R) = fI ! J : J 2 E(R); I 2 E(P) n E(R)g

GBP fixed points are region-based free energy stationary points
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Was it worth it?

10� 10 Ising model with random potentials [Yedidia et al. 2003]
2� 2 overlapping clusters are used with clustering variational method
GBP improves over BP significantly
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Upper bound using tree-reweighted belief propagation

consider all spanning trees of G
each spanning tree �k = (V ;Ek ) has its own compatibility functions
f 

(k)
ij g(i ;j )2Ek and a weight ck such that

X
k

ck = 1

log ij (xi ; xj ) =
X
k

ck log 
(k)
ij (xi ; xj )

decomposing the energy

Eb

h
�
X

(i;j )2E

log ij (xi ; xj )
i

= Eb

h
�
X

(i;j )2E

X
k

ck log 
(k)
ij (xi ; xj )

i
=

X
k

ck Eb

h
�

X
(i;j )2Ek

log 
(k)
ij (xi ; xj )

i
| {z }

expectation over a tree Ek
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from Gibbs variational principle

log Z = sup
b2M(XV )

n
Eb

h X
(i;j )2E

log ij (xi ; xj )
i

+ H (b)
o

= sup
b2M(XV )

nX
k

ck

n
Eb

h X
(i;j )2Ek

log 
(k)
ij (xi ; xj )

i
+ H (b)

oo
�

X
k

ck sup
b(k)2M(XV )

n
Eb(k)

h X
(i;j )2Ek

log 
(k)
ij (xi ; xj )

i
+ H (b)

o
=

X
k

ck sup
b(k)2LOC(�k )

n
Eb(k)

h X
(i;j )2Ek

log 
(k)
ij (xi ; xj )

i
+ H (b)

o
| {z }

can be solved exactly using BP

to get the tightest upper bound, we want to minimize the right-hand
side over fckg and f (k)

ij g

the number of spanning trees can explode
all these loose ends are resolved in [Wainwright, Jaakkola, Willsky,
2003]
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Exponential families

given a finite space XV and a collection of functions

T : XV ! Rm ;

x 7! T (x ) = (T1(x ); : : : ;Tm(x )) :

the corresponding exponential family is a family of distributions
parametrized by a vector � such that f�� : � 2 Rmg where

��(x ) =
1

Z (�)
exp

n
h�;T (x )i

o
; F (�) = log Z (�)

where hx ; yi =
P

i xiyi denotes the inner product
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Basic properties of exponential families

F (�) = log
�X

x

e
Pm

i=1
�iTi (x )

�

(1) � 7! F (�) is convex [log-sum-exps are convex]
(2) r�F (�) =

P
x

eh�;T (x )i

Z (�) [T1(x ); : : : ;Tm(x )]T = E�fT (x )g � � (�)

(3) r2
�F (�) = Cov�fT (x ); T (x )

	
(4) define a polytope

MARG(T ) � conv
�
fT (x ) : x 2 XV g

�
=

n
E� [T (x )] : � 2 M(XV )

o
; and

Image(� ) = closure
��

E�[T (x )] : � 2 Rm	�
then exponential families allow to realize any point in the interior of
MARG(T )

Image(� ) = MARG(T )
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Proofs

(1), (2), (3): exercises
(4): a bit more difficult

Claim 1: A closed convex set is the closure of its relative interior. [Hint:
Assume the set has full dimension. Each point has a cone of full dimension
around it.]

Claim 2: Let �� 2 relint(MARG(T )). Then �� = E��fT (x )g for some ��
s.t. ��(x ) > 0 for all x 2 XV . [Hint: Consider the set of signed weigths �
such that

P
x �(x )T (x ) = ��. If the claim was false, it would be tangent to the

simplex.]

Claim 3: There exists �� 2 Rm such that E��fT (x )g = E��fT (x )g.
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Proof of Claim 3

Wlog f1;T1; : : : ;Tmg linearly independent. Consider

F (�; ��) � F (�)� h��; �i

= log
n X

x2XV

exp
�
h�;T (x )i

�o
� E��fh�;T (x )ig

F ( � ; ��) : Rm ! R is differentiable and convex.
If �� is a stationary point, then E��fT (x )g = E��fT (x )g.
As � !1, F (�; ��) !1.

Implies the thesis.
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As � !1, F��(�)!1

Let � = � v , � 2 R+

F (�; ��) = log
n X

x2XV

exp
�
h�;T (x )i

�o
� E��fh�;T (x )ig

� �
h

max
x
hv ;T (x )i � E��fhv ;T (x )ig

i

and [ : : : ] > 0 strictly because ��(x ) > 0 for all x .
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Duality structure

F�(� ) � inf
�2Rm

�
F (�)� h�; �i

	
;

F� : MARG(T ) ! R ; concave.

F (�) � sup
�2MARG(T )

�
F�(� ) + h�; �i

	
;

F : Rm ! R ; convex.
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Let’s apply all this

x1

x2 x3 x4

x5
x6

x7x8x9

x10

x11
x12

G = (V ;E), V = [n ], x = (x1; : : : ; xn), xi 2 X ,

Ti ;�(x ) = I(xi = �) ; i 2 V ; � 2 X ;

Tij ;�1;�2(x ) = I(xi = �1) I(xj = �2) ; (i ; j ) 2 E ; �1; �2 2 X ;

overcomplete!
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The exponential family

��(x ) =
1

Z (�)
exp

8<
: X

(i ;j )2E ;�1;�22X

�ij (�1; �2)Tij �1�2(x ) +
X

i2V ;�2X

�i (�)Ti�(x )

9=
;

=
1

Z (�)
exp

8<
: X

(i ;j )2E

�ij (xi ; xj ) +
X
i2V

�i (xi )

9=
;
(General pairwise model)

The � parameters

bi (�) = E�fTi (�)g = ��(xi = �); for i 2 V ;

bij (�1; �2) = E�fTij (�1; �2)g = ��(xi = �1; xj = �2) ; for (i ; j ) 2 E :
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The duality structure

F (�) $ F�(b) ;

F� : MARG(G) ! R :

We want to evaluate at Φ = F (�� = log )’:

Φ = sup
b2MARG(G)

n
F�(b) + h��; bi

o
= Entropy + Energy

New interpretation
Bethe entropy is an approximate expression for F�(b).
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Interpretation works fine on trees

Proposition
If G is a tree, then MARG(G) = LOC(G) and

F�(b) =
X
i2V

H (bi )�
X

(i ;j )2E

I (bij ) = F =1(b)

As a consequence, F : LOC(G) ! R is concave.

Proof: Exercise.
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What about general graphs?

Write G as a convex combination of trees.
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Abuse: I will use T to denote trees, not functions.
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Convex combinations

T (G) =
�
spanning trees in G

	
;

� : T (G) ! [0; 1] ;

T 7! �T ; weights ;

X
T2T (G)

�T = 1 ;

X
T2T (G)

�T �
T = � :
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Convex combinations
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�
spanning trees in G
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Convex combinations

Φ = F (�) = F
� X

T2T (G)

�T �
T �

�
X

T2T (G)

�T F (�T )

Fix weigths �T .
Minimize over �T (convex!)

Problem: Exponentially many spanning trees.
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Minimization over (�T )T2T (G)

minimize
X

T2T (G)

�T F (�T ) ;

subject to
X

T2T (G)

�T �
T
ij (xi ; xj ) = �ij (xi ; xj ) ;

X
T2T (G)

�T �
T
i (xi ) = �i (xi ) :

Convex Problem
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Minimization over (�T )T2T (G)

minimize
X

T2T (G)

�T F (�T ) ;

subject to
X

T2T (G)

�T �
T
ij (xi ; xj ) = �ij (xi ; xj ) ;

X
T2T (G)

�T �
T
i (xi ) = �i (xi ) :

Convex Problem

Variational inference 10-56



Lagrangian

L((�T ); b) =
X
T

�T F (�T )

�
X

(ij )2E

X
xi ;xj

bij (xi ; xj )
nX

T

�T �
T
ij (xi ; xj )� �ij (xi ; xj )

o

�
X
i2V

X
xi

bi (xi )
nX

T

�T �
T
i (xi )� �i (xi )

o

=
X
T

�T

n
F (�T )� hb; �T i

o
+ hb; �i

Separable in �T
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Lagrangian

min
(�T )

L((�T ); b) =
X
T

�TF�(b; �) + hb; �i

=
X
T

�T

nX
i2V

H (bi )�
X

(ij )2E(T )

I (bij )
o

+ hb; �i

=
X
i2V

H (bi )
n X

T : i2V

�T

o
�

X
(i ;j )2V

I (bij )
n X

T : (i ;j )2E(T )

�T

o
+ hb; �i

=
X
i2V

H (bi )�
X

(i ;j )2V

�(ij )I (bij ) + hb; �i
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Lagrangian
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X
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X
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Tree-reweighted free energy

FTRW(b) =
X
i2V

H (bi )�
X

(i ;j )2V

�(ij )I (bij ) + hb; �i

Compare with Bethe free energy

F(b)
X
i2V

H (bi )�
X

(i ;j )2V

I (bij ) + hb; �i

�(i ; j ) = 0 Obviously concave upper bound.

�(i ; j ) = 1 Bethe free energy.
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Edge weights

� = ( �(e) : e 2 E)
Intepretation

�(e) = P�fe 2 E(T )g ; P�(T ) = �T :

Spanning-Tree polytopeX
(i ;j )2E

�(i ; j ) = jV j � 1 ;

X
(i ;j )2E(U )

�(i ; j ) � jU j � 1 ; for all U � V :
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Example

k -regular graph

jV j = n ; jE j =
nk
2
:

Take all the weights equal (not necessarily ok, but. . . )

�(i ; j ) =
2(n � 1)

nk
�

2
k

For (some) models on locally tree-like graphs, �(i ; j ) = 1 is approximately
correct ! Θ(n) error.

Variational inference 10-61



Example

k -regular graph

jV j = n ; jE j =
nk
2
:

Take all the weights equal (not necessarily ok, but. . . )

�(i ; j ) =
2(n � 1)

nk
�

2
k

For (some) models on locally tree-like graphs, �(i ; j ) = 1 is approximately
correct ! Θ(n) error.

Variational inference 10-61


