
Statistical estimation

• consider a coin with outcome 

• HEADS with a probability , and 

• TAILS otherwise


• we don’t know  (called a parameter), and want to estimate it 
from random trials


• Maximum Likelihood Principle: 

• Choose the parameter that maximizes the probability of 

observed data

• say random trials gave an outcome =(H,H,T,H,T,H,H,T,…,T) 

       

μ(H) = p

p

ω
μ(ω |p) = p#H(1 − p)#T



Maximum Likelihood (ML) estimation

• Formulate it as maximization of log-likelihood 
        

              


• To solve this optimization problem analytically, (which can be 
done only for some special cases), we take the gradient of the 
objective function and set it to zero 

          


• which gives , which is consistent with our 

intuition

p* = arg max
p

log(μ(ω))
= arg max

p
#H log p + #T log(1 − p)

ℒ(p)

∂ℒ(p)
∂p

=
#H
p

−
#T

1 − p
= 0

p* =
#H

#H + #T



Sufficient statistics

• Sufficient statistics of an outcome  is a function of  that is 
compact and captures everything we need to know in order to 
compute 


• in this example, recall that  
        


• So sufficient statistics of  
is 


• In particular the order of the H’s and T’s do not matter (because 
they are independent trials)


• When running the experiment, we do not have to keep track of all 
sequence of outcomes, but jus the counts

ω ω

μ(ω)

μ(ω) = p#H(1 − p)#T

ω = (H, H, T, H, T, T, T, T, H, . . . , H)
(#H, #T)



Bayesian estimation
• Bayes theorem 

•  

• proof: 

• this is useful in assessing  

diagnostic probability from causal probability:


•  

usually,  is known, whereas  is not


• For example, if  is meningitis, and  is stiff neck
 

which is very small (because  is small) 

• prior:  is called a prior distribution, which is the marginal distribution 
of the cause without any observations 

• posterior:  is called posterior distribution, which is the 
conditional distribution of the cause given observation

μ(x1 |x2) =
μ(x1)μ(x2 |x1)

μ(x2)
μ(x1, x2) = μ(x2 |x1)μ(x1) = μ(x1 |x2)μ(x2)

μ(cause |effect) =
μ(effect |cause)μ(cause)

μ(effect)
μ(effect |cause) μ(cause |effect)

m s
μ(m = 1 |s = 1) =

μ(s = 1 |m = 1)μ(m = 1)
μ(s = 1)

=
0.8 × 0.0001

0.1
= 0.0008

μ(m = 1)

μ(m = 1)

μ(m = 1 |s = 1)



Bayesian estimation
• True probability  of the coin is unknown 

but we know it comes from a known probability distribution  
for example, 

p
μ(p)

0 1

μ(p)

p

• note that  is a continuous random variable


• applying Bayes theorem, (  is just a variable that we integrate out) 

          

p
p′ 

μ(p |H) =
μ(p)μ(H |p)

∫ 1
0

μ(p′ )μ(H |p′ )dp′ 



Bayesian estimation

•  

as the denominator does not depend on 

μ(p |H) =
μ(p)μ(H |p)

∫ 1
0

μ(p′ )μ(H |p′ )dp′ 

∝ μ(p)μ(H |p)

p

q0 10 1 0 1

µ´

prior likelihood posterior

μ(p) μ(p |H)μ(H |p) = p



Inference task: Probability of HEADS on next toss
• Conditional independence makes solving inference task much more efficient


• consider the task of tossing the coin twice and let the outcome be 


• It is easy to see that the two trials are conditionally independent given , i.e. 



• now, we consider the inference task of estimating the probability of HEADS on next 
toss


• Inference task is a task of making a prediction/decision based on some joint 
distribution, and we will make this notion mathematically precise later on


• First step is to write down what we want to know in terms of the joint distribution, 
because the joint distribution is well defined

 

which is marginalizing out  from the joint distribution,

• next, we apply chain rule to the term in the integral 

    

• and simplify using conditional independence 

                                                        

• Putting together we get 

x = (x1, x2)
p

μ(x1, x2 |p) = μ(x1 |p)μ(x2 |p)

μ(xn+1 = H |xn
1 = (HTHHT . . . )) = ∫

1

0
μ(xn+1 = H, p |xn

1 = (HTHHT . . . )) dp

p

μ(xn+1 = H, p |xn
1 = (HT . . . )) = μ(xn+1 = H |p, xn

1)μ(p |xn
1)

= μ(xn+1 = H |p)μ(p |xn
1) = p μ(p |xn

1)

μ(xn+1 = H |xn
1 = (HTHHT . . . )) = ∫

1

0
p μ(p |xn

1 = (HTHHT . . . )) dp = 𝔼[p |xn
1 = (HTHHT . . . )]



Inference task: Probability of HEADS on next toss
• So, on order to solve this inference task rigorously, we want to compute 

 
    
but in many case, computing the integral (i.e. averaging) can be challenging 


• instead we use Maximum a Posteriori (MAP) estimation:   
 
choosing the value with the highest posterior probability

μ(xn+1 = H |xn
1 = (HTHHT . . . )) = 𝔼[p |xn

1 = (HTHHT . . . )]

p* = arg max
p

μ(p |xn
1) p* = arg max

p
μ(xn

1 |p)
Maximum likelihood (ML) estimationMAP estimation


