9. Approximate inference by sampling

Markov Chain Monte Carlo methods

@ Metropolis-Hastings algorithm

Gibbs sampling

Bounding mixing time via spectral analysis

@ Bounding mixing time via coupling
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Approximate inference with samples

@ inference problem in graphical model

p(z) = % [T %s(z, )

(i,7)EE

@ belief propagation
» fast (especially on sparse graphs) and very popular
» deterministic
» computes (approximation of the) marginals
@ approximate inference with samples
given samples {z(), ... (")} from distribution w(z)

—ZH —:zzl ) — wu(z;)

gives an approximate marginal
» slower and difficult to decide when to stop
» randomized
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Generating samples from a distribution

generating samples from u(z) generating samples from u(z;)
Markov Chain Monte Carlo methods sequential Monte Carlo methods
Metropolis-Hastings algorithm particle filtering

e Markov Chain Monte Carlo methods work as follows

» construct a Markov chain P whose stationary distribution is equal to u

» start from an arbitrary realization z(®) and run the Markov chain until
it converges to its stationary distribution

» this gives a sample from u(z)

@ how do we construct such a Markov chain P?

@ how long does it take for the Markov chain to converge?
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Metropolis-Hastings algorithm

@ Markov chain with a finite state space
» a Markov chain is defined by a state space X™ and a |X|" x |X|"
dimensional transition matrix P such that

Py =P(z41 = ylz: = )

» stationary distribution of a Markov chain is a |X|™-dim row vector of
distribution such that
=
» a Markov chain is reversible if there exists a probability distribution 7
such that the detailed balance equation is satisfied:

Mg Pry = Ty Py forall z,y

» further, the corresponding 7 is a stationary distribution
(ﬂ'TP)I = Zwwa = Zﬂ'szy = T
y y

@ the strategy is to construct a Markov chain P such that it is
reversible, so that we can apply spectral analysis techniques, and has
the desired stationary distribution m; = u(z)
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e Metropolis-Hastings algorithm
» start with a candidate transition matrix X, which we will modify to

create P
» to ensure unique stationary distribution, it is sufficient to have
* Ky >0 forall z € X", and [aperiodic]
* the undirected graph G(K) = (X", E(K)) is connected,
where B(K) ={(z,y) : KwyKyz > 0} [irreducible]

» we want the transition matrix to satisfy the detailed balance equation
with 4, but instead for each pair (z, y), suppose the following holds
without loss of generality, i.e. instead of u(z)Kzy = u(y) Ky we have

/"(x)sz > /J'(y)Kyz
» the trick is to remove some ‘probability mass’ from the larger one

* define Ry = min (l ”E ;?Z)

* let
P, = { Koy Ray ify#z
l—zyﬂpxy ify=z
* then, P satisfies the detailed balance equations w.r.t u, and hence u is
a stationary distribution of P

(&) Koy Ry = () Ky = (&) Ky A0 = (0) e e
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@ challenges with Metropolis-Hastings algorithm
» do we need pu to construct P?
¥y (2i,2;)
we only need H(m €EUynm)
which can be evaluated efficiently. In particular, we do not need to
compute the partition function Z.

» how do we store X and P with dimensions |X|™ x |X|"?
consider this construction as describing a sampling process

* at time ¢ generate a candidate sample z’ according to K (z, z'),
which possibly has a simple structure
* accept the candidate state with probability R,
* otherwise reject and keep current state
o theorem. Metropolis-Hastings algorithm finds £;-projection of K onto
the space of reversible Markov chains with stationary distribution p

P = min ZZW ,u,(a:)Q;cy|

QeR(w) G 2
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@ the ‘art’ is in choosing appropriate K, since bad choice of K results in
a Markov chain with slower convergence

o if 'spread’ is too narrow, we are not exploring
o if 'spread’ is too large, acceptance rate can be low

e example.

1

K=
x|

. Vi (Y3, ¥5)
117, R.y, = min (1, R AL AR
’ ( (ZgleE ij(xi’xj))

all pairs are sampled with equal probability (as per K), but many of
them might be unlikely and be rejected with high probability
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Gibbs sampling

e Gibbs sampling defines Py as
> at each time step, first select 7 € {1,...,n} from a uniform distribution
> set Yn\i = ml(z])\i and sample y; from u(y:|zim\ i)
o for sparse graphs, it is easy to evaluate u(y;|z(aps) o [Tjca; ¥ii(¥ir )
@ thus generated P satisfy the detailed balance with u
» suppose z and y only differ in exactly one position %

B@)Py = w(e) m(wlmane)

1
p(@il 2 i) 1 (@) B (Yl )

1
= /-‘(z[n]\i)#(yi|$[n]\i)E/J'(mim[n]\i)

N————
#(y) Py

» otherwise, Py = 0 if £ and y differ in more than one position

@ the resulting dynamics of the Markov chain is called Glauber
dynamics
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@ Gibbs sampling and the analysis of Glauber dynamics is used in

» Noisy best response in coordination games
[L. Blume, Games Econ. Behav., 1995]

» Learning Boltzmann machines (contrastive divergence)
[G. Hinton, Neural Computation, 2002]
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Mixing time
@ two common ways to analyze the mixing time of a (reversible) Markov

chain is spectral analysis and coupling

o Define. e-mixing time of P is the smallest time such that for all
t > Tmix(e)

(PP —aTlry < e
for any initial distribution p(®), where |z — y|Tv = 3, |z — vs| is the

total variation distance
o Theorem. we can show that |(p(®)T Pt — 77|y < \)\z\t( L )

Tmin

where |A2| < 1 is the second largest eigenvalue of P

this implies
log ——— log —~—
Tmlx(E) < Vv min Vv min
= log(1/1Az]) T 1—|Ag
——

spectral gap of P

1

=g S called the relaxation time of a Markov chain
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@ spectral properties of Markov chains

Property 1. mP = 7 and P1 = 1 corresponding to A\; =1
Property 2. 7T =gTp=...=qgTpt

@ spectral properties of reversible Markov chains

Property 3. P = M~/28MN%2 for some symmetric matrix S and M = diag(~)

Proof.

Property 4. P and S have the same (set of) eigen values

EVALR!
Property 5. A1(S) = 1 with : as the eigen vector
VT
such that
S = UAUT
i Xa
= | | vm o vt w) |
/A 0
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@ Proof. of the spectral bound

2|(p@)T P =Ty = Zmp(
_ ZI( ()"

)il

=) _1y2
2 s

v

1

< ||((P ) T pt —7rT)|_|_1/2|| ||7r1/2|| [Cauchy-Schwar
()7 P — x7 PN
— ||(p(0) TI-I—l/ZSt”
< e =m0 2 xg)f [Spectral analysis]
< (14 — ) 22| [Triangular ineq.]
(P — m) N2 < JI(m) 2|+ IO In )2
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1. (p(o) —

>

>
»
>
>

I(p©@ —mn=H2sH < |(p® — M2 g

7)TN~1/2 is orthogonal to the first singular vector of S

recall P = N~%/25M%/2

largest eigenvalue of P is one with left and right eigen vectors 7 and 1
let 71/2 = N'/21

Sml/2 = 71/2 since Sw1/2 = NY/2pN—1/2nY/21 = NY/21

hence, /2 = M/21 is the eigenvector corresponding to the largest
eigen value of S which is also one

(p(O) _ W)Tﬂ—l/z ) |—|1/2]1 =0
is orthogonal to the first singular left vector of S, then

la™S* < lallo2(S)’

> eigen value decomposition: S = UAUT, where UUT = UTU =

v

v

Sl UlAl Ul , and aTSt = a (S Sl)
[aTS| = lla™(S = S1)*| < llallllS = Sullz = A3l all
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the spectral properties of some simple random walks on graphs
» complete graph:

11 1 1
11111 1 1
pP== ith Az] =0, Toix X ———
2|1 1 1 1|0 WithPe[=0, * log(1/0)
111 1
> cycle:
(0 1 001
(|t o1 oo
P=-10 1 0 1 0|, with |A]=1—-0(1/n?), Tmix x n?
2100 1 0 1
Ll 0010
> star:
[0 1/4 1/4 1/4 1/4
1 0 0 0 0
P=|1 0 0 0 0|, withdyg=-1, Thix =00
1 0 0 0 0
1 0 0o o0 0
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Bounding mixing time via conductance [Exercise 8.1]

@ spectral analysis, and in particular the second largest eigen value of P,
gives a means to bound the mixing time

@ however, computing the spectral gap can be challenging
@ Cheeger’s inequality provides a bound on the spectral gap:

1 2

< R

1-— >\2 - o2

where conductance ® of P is defined as
6 & i Zecsses P

scxr  w(S)m(S¢)

o direct computation of ® is possible in some cases

2Iog5\/:7_

Tmix(f) o2
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Bounding mixing time via coupling
» Define. a coupling of two random variables X and Y with
distributions px(z) and py(y) is a construction of a joint probability
distribution over (X, Y), i.e. u(z,y) such that the marginals are
preserved: 3, (2, 4) = px () and 33, (2, ¥) = v (v)

» example. two (marginal) Gaussians u(z) ~ N(0,1) and
p(y) ~ N(0,4)

* independent
* Y=2X

9-16

Approximate inference by sampling



» example. two (marginal) Bernoulli X ~ Bern(p) and Y ~ Bern(q)

* independent
* construction from UJ0, 1]

» how closely can we couple X and Y?
in other words, what is

min P(X#Y)

coupling of pz,py
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» Coupling lemma. for two (continuous or discrete) random variables X
and Y in the same domain,

lux — pylrv = min P(X #Y)

couplings of pux, uy

1— Z,ux,y(:c,:c)

S~ {ux(@) = minfux (@), wv(2)}}

» proof.

P(X # Y)

v

= Z max{0, ux(z) — pv(z)}
= 23 |ux(@) — pr ()]

further, exists u(z, y) such that u(z, ) = min{u1(z), p2(z)}, and
(z,y) = (px(z)—p(z,2))(ky (¥)—1(Y,9))
wz,y 1721 u(2,2)
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» example of an optimal coupling

/0 wp.p _J 0 wp. g
X{l wp. 1—p Y{l w.p. 1—gq
need to construct a probability distribution over X and Y
min{p, ¢} max{0,p — ¢} P
max{0,g—p} | min{l—p,1—q} || 1—p
| q | 1-¢ [

this naturally extends to larger alphabet. Equivalently, one could draw
Z ~ Uniform[0,1], then coupling is nothing but determining intervals in
[0, 1] for each output of X and Y. For example, the optimal coupling is

x 0 |fZ€_[O,p] v 0
1 otherwise

1

if Z €]0,q]
otherwise

» Corollary of the coupling lemma. total variation can be upper

bounded by any coupling,

lwx —pylrv < P,y (X #7Y)

Approximate inference by sampling
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Coupling for bounding Tiix of Gibbs sampling

» let X; and Y; be random states after ¢ transitions according to P with
initial state Xy and Yy
» Corollary of the coupling lemma. for any coupling of X; and Y3,

lux, — py.lrv < P, v)(Xe # i)

» Strategy. to get a tight bound on the total variation, we need to
construct good coupling.

lux, —mlrv < max |ux, — py,|Tv
HXgsHYg

max P(Xt 7é Yt)

HXq,HYg

IN

we consider a particular coupling of two Gibbs sampling chains for
z,y € {0, 1}"
1. draw uniform I € [n]
2. draw z} from w(z}|za;r) and y; from u(yj|yar) using the optimal
coupling
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e Bounding P(x, v,)(X: # Y:) by path coupling
[R. Bubley and M. Dyer, FOCS 1997]

» Define. D(z,y) is the minimal number of allowed moves in the
transition matrix P to go from z to y (e.g. Hamming distance for
Gibbs sampling)

» Idea. if we can construct a coupling such that

E[D(zet1, Ys+a)lzs, vl < aD(z, y) (1)

for some 0 < a < 1, then

lpx, —pvlrv < P(Xe # Ye)
< E[D(zt, w)]
S atD(zOryU)
lo D(20,%0)
S Tan(e) < —
log =
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Path coupling for Gibbs sampling

two Markov chains start at a distance as measured by D(z(19), £(2:0)),
and with the right coupling two sample path eventually converge and
follow the same sample path after some (random) time

x(l,O)

D(x(ho),x(zso))

At this time, the system has equilibrated.

x>0

» Path coupling. to prove that E[D(z¢t1, Yt+1)|2t, Y] < aD(zt, y:) it
is sufficient to prove it for z; and y; that only differ in one vertex
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X

|=
/”)

—
")\ «—

X
2
Y

Have to consider all possible pairs Consider each step instead

—

Claim. If E[ D(%, 9)|D(z,y) = 1] < a then Eq. (1) follows.
Proof sketch. consider a minimum length path from z to y:

b= (mi P1,-- -2, PD(z,y)-1» y)
which are, after one step of the Markov chain, mapped to
(fl\:: ﬁl: v 1?’D(I,y)—l: @)
by triangular inequality,
E[D(i’: @)|$) y] < ]E[D({i) ﬁl) + D(ﬁl: ﬁ'Z) +ooet+ D(ﬁD(m,y)fli @)]
< aE[D(z,y)]
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for some graphical models, path coupling constant a can be bounded,
e.g.

ulz) = —exp{ Z Hz]mlxj}

1,JER

» Claim. for Gibbs sampling on Ising models,

1 — dmax tanh(6max)

E[D(z11, y141)| D(zt, ) = 1] < 1— -

» hence, Gibbs sampling mixes fast when dpax tanh(fmax) < 1

» Step 1. Construction of a good coupling. to prove the claim, we
consider a particular coupling of two Gibbs sampling chains
1. draw uniform I € [n]
2. draw z; from p(z/|zar) and y; from p(y;|yer) coupled in the following

way

2-1. draw a random Z ~ Uniform[0, 1]

2-2. let
oo AL i zeopu(er=+lzer)] ] +1 i Z€[0,u(yr = +1|yer)]
71 =1 otherwise Yr=9\ -1 otherwise
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» Step 2. Analysis of the distance. we are left to show that

! ! H ; 1 ..
E[D(z',y"')|z and y differ only at ¢] < 1—&—5{—14— §A|tanh(6’u)|}
JEDBT

case 1. if I =4, D(z',y') reduces to 0
E[D(z',y')|z and y differ only at 7,] = 4] =0

this happens with probability 1/n
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case 2. if I ¢ {t} U8, D(z',y') remains at 1
E[D(z',y')|z and y differ only at %, ¢ {:} U 8] =1

. . .- 1+\8i|
this happens with probability 1 — ==

Approximate inference by sampling
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case 3. if I € 81, D(z',y") can increase with probability
|u(zr = +lzar) — w(yr = +lvar)l =

AN (4, +) AN (=, 4)

A(+)¢i1(+) +) + A(_)¢i1(+7 _) B A(+)¢i1(_) +) + A(_)Idjﬂ(_) _)
where A(H) = Hjeal\{i} ¥ji(j,+), and AL = Hjeal\{i} Vi (z, —)
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» Claim. for Ising model with ¥(z;, z;) = €%4%%  the probability is
bounded by |tanh(6;;)|
» proof. in the case of 6;; > 0, we want to show that

A b A g—0u
AR e 4 AC) e A(H)e—0r 4 A(-) b
A(+)A(7)(626” _ 672911)
(AC)2 + (A))2 + A(H) A=) (e20i 4 e—20ur)
(e — g=20u)
(A2 + (A())2 (26 + e—26ur)
(e — e~ 26u)

= 24 (e + ¢ 20u)

tanh(ﬂﬂ)

where we used the fact that A(P) A=) =1 and it also follows that
(A 4 (A2 > 2.
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For Ising model,

ool) = 775

(average degree 4).

C(t)

4
1

Ve

Approximate inference by sampling

C(1)

08

06

04

02 r

exp {9 Z xixj} .

(1)eB
we showed that Gibbs sampling mixed fast if tanh(fmax) degmax < 1.
Experiment with G uniformly random with N vertices and 2N edges

,,,,,;—;_»__;;;\;‘—; e N=30 -

N=10 ——
N=20 —mm 1

eﬁos
h(e) =0. 4621

10 100 1000 10000 100000
t

—— [number of steps]
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o theorem. [Mossel, Sly, 2010] Assume 8;; = 8 > 0. Then the Glauber
Markov chain mixes rapidly provided

(k—1)tanh(f) < 1
o theorem. [Gerschenfeld, Montanari, FOCS 2007] Assume
(k—1)tanh(8) > 1

then there exists a sequence of k-regular graphs G,, = ([n], E,) for
which the Glauber Markov chain mixes in time exp{©(n)}.
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e Is (k — 1)tanh(f) = 1 fundamental?
» Recall computation tree T(%?) is formed from a graphical model by
considering a root node z; and a tree of all non-backtracking
(non-reversing) paths for length ¢.

» Proposition. Let v;(z;) be the BP estimate after ¢ iterations, 1/1(3]-(:2:1')

be the BP message, and ,u@”(xﬂ be the marginal of the root z; on
the computation tree T, with some boundary conditions to be
specified with the model. Then,

V§t0+t1)($i) _ N(tl’i)(fri)

with the boundary condition of the computation tree set to 1/( f) i (

for a node z; in the boundary with parent node z;.
> Proof. proof by induction.
» Corollary. Let T denote the boundary nodes of the tree. If

(@il 2gpen)py < 8(2), (2)

z;)

max [l (@i|zopen) — 4
Ty p(t,i)s aT(”>

then, for all ¢, t, > t,
) (@) — v ()| < 6(2)
In particular, if §(t) — 0 as t grows, then BP converges.
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» Define. B;(t) as the subgraph of G that includes all nodes at most
distance t from node z;.
» Corollary. If B;(t) is a tree, and Equation (2) holds, then

| op@) - v@) | < ().
~—~— ~——

actual marginal  BP estimate

In particular, if g is the girth (the length of the shortest cycle) of G,
then we have

() = vi(z:)| < 6((9 - 1)/2)

» Proof. observe that pu(z;) = > ¢ p(zi|z®)u(z®) where z(*) are the
nodes at distance t from z;.

» the condition (2) is known as correlation decay and we established
that correlation decay implies convergence of BP in general graphs and
correctness of BP on locally tree-like graphs, but checking condition
(2) can be challenging
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Dobrushin’s uniqueness criterion

» Dobrushin’s criterion measures the strengths of interactions, and
provides a sufficient condition for Condition (2).
» Define. Influence of 5 on 7 as

A . ) — — !
Czj a z,z’ that ro]?'llayxdiffer at g |/J.(ZI)1 o |$V\l) M(xz o |xV\i)|TV

* 0< Cy <1
* Cy =0 unless (¢,j) € E
» Theorem.[Dobrushin, 1968] Small influence implies correlation decay.
Let
A
v = Eréa‘;({ Z Cij} .
jEBT

Then,

max
z,z’

wa = lzne ) = w@ = 1ensm)e < 77
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Proof strategy

@ bound influence on vertex 5 from those outside a ball of radius £
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@ assume neighborhood of j is a k-regular tree

@ a graphical model satisfies uniqueness condition if
J

B(5:4)

ANVAR AN AN
[ 538 53 53 u %0

sup
YaB126B

w(zj|zes = yaB) — p(z;|ToB = Zas)‘ <eg)lo
[In reality slightly stronger condition needed for proof]
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Checking for uniqueness

T(z—7)

hi_>j = atanhE#’T(iﬁj){a:i}.

Uniqueness: h;_,; asymptotically independent of boundary condition
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Checking for uniqueness

Exercise:

hiy; = 0; + Z atanh{ tanh 6;, tanh h,_,;} .

vEchildren(z)

@ 0;=8 6,=0,
® Tap(j0) = +1, Tog(j,e) = —1 (monotonicity)

hey1 = (k — 1)atanh{ tanh S tanh h;} .

Approximate inference by sampling
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A one-dimensional recursion

12 12 12

1 / 1 / 1

hest ™ // ) / ) //
04 / 04 04 /
02 / 02 o2t

0 0 0
0 02 04 06 08 1 12 0 02 04 06 08 1 12 0 02 04 06 08 1 12

hy he he
(k—1Dtanhpf <1 (k—1)tanh g =1 (k—1)tanh g >1

@ who cares about regular trees?

@ regular trees are the worst case for decay of correlations

Approximate inference by sampling
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What about the lower bound?

Theorem (Gerschenfeld, Montanari, FOCS 2007)

Assume (k — 1)tanh g > 1.
Then there exists a sequence of k-regular graphs G, = (V,, = [n], E,) for
which the Glauber Markov chain mixes in time exp{©(n)}.

v

Proof.
Take G, a uniformly random k-regular graph and prove that w.h.p.

IP’#{ Z i = 0} = e_@(”),

eV
P,u{ Z‘:/:L‘l > 0} :IP’#{ Z/xl < 0} = % — e 9(n)
1€ 1€

Bottleneck! ]
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Are random graphs a curiosity?

No! Used as gadgets in
@ Sly, Computational transition at the uniqueness threshold, 2010

@ A. Sly, N. Sun, The Computational Hardness of Counting in Two-Spin
Models on d-Regular Graphs, 2012

e A. Galanis, D. Stefankovic, and E. Vigoda, Inapproximability of the
partition function for the antiferromagnetic Ising and hard-core
models, 2012

Theorem
For antiferromagnetic Ising models 8;; = —6 < 0, 8; = 0, the partition
function cannot be approximated unless RP=NP.
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e Upper bound Z%(B) by n'®EgZ%(B).

e Lower bound Zg(B) by ...

Approximate inference by sampling
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Estimating Zg

Theorem (A.Dembo, A.Montanari, Ann. Appl. Prob. 2010)

Let {Gp = (Vn, En)}n>1 be a sequence of graphs that (1) Is uniformly
sparse; (11) Converges locally to a unimodular Galton-Watson tree. Let
Zn(B, B) be the Ising model partition function with 6;; = 8, ; = B.
Then

.1 . ,
Jim - log Z,(B, B) = [explicit expression]

= [Bethe free energy]|
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