
3. Markov property

Markov property for MRFs

Hammersley-Clifford theorem

Markov property for Bayesian networks

I-map, P-map, and chordal graphs

(primarily based on Lauritzen book)
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Markov Chain

X–Y –Z

X ⊥ Z|Y
µ(X,Y, Z) = f(X,Y )g(Y, Z)

Q. What independence does MRF imply?
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Markov property

A B C

let A ∪B ∪ C be a partition of V
Definition: graph separation

B separates A from C if any path starting in A and terminating in C
has at least one node in B

Definition: global Markov property

distribution µ over X V satisfies the global Markov property on G if
for any partition (A,B,C) such that B separates A from C,

µ(xA, xC |xB) = µ(xA|xB)µ(xC |xB)

Markov property 3-3



Markov property for undirected graphs

We say µ(·) satisfy the global Markov property (G) w.r.t. a graph
G if for any partition (A,B,C) such that B separates A from C,

µ(xA, xC |xB) = µ(xA|xB)µ(xC |xB)

We say µ(·) satisfy the local Markov property (L) w.r.t. a graph G
if for any i ∈ V ,

µ(xi, xrest|x∂i) = µ(xi|x∂i)µ(xrest|x∂i)

We say µ(·) satisfy the pairwise Markov property (P) w.r.t. a graph
G if for any i, j ∈ V that are not connected by an edge

µ(xi, xj |xrest) = µ(xi|xrest)µ(xj |xrest)

obviously: (G)⇒ (L)⇒ (P)
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Proof of (L)⇒(P): suppose (L) holds, then for any i and j not
connected by an edge. since, for any deterministic function h(·),

X ⊥ Y |Z =⇒ X ⊥ Y |(Z, h(Y )) (1)

X ⊥ Y |Z =⇒ X ⊥ h(Y )|Z (2)

xi ⊥ xrest|x∂i
(1)
=⇒ xi ⊥ xrest|(xV \{i,j})
(2)
=⇒ xi ⊥ xj |(xV \{i,j})

proofs of (1) and (2):

µ(x, y, h(Y ) = h, z) = µ(x, y, z)I(h(y) = h)

= f(x, z)g(y, z)I(h(y) = h)

this implies both X ⊥ (Y, h(Y ))|Z and X ⊥ Y |(Z, h(Y ))

µ(x, h, z) =
∑

y µ(x, y, h, z) = f(x, z)
∑
y

g(y, z)I(h(y) = h)︸ ︷︷ ︸
g̃(h,z)

this implies X ⊥ h(Y )|Z
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what conditions do we need for (P )⇒ (G) to hold?
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in general (P ) 6⇒ (G), but (P )⇒ (G) if the following holds for all disjoint
subsets A,B,C, and D ⊆ V :

intersection lemma

if xA ⊥ xB|(xC , xD) and xA ⊥ xC |(xB, xD), then xA ⊥ (xB, xC)|xD (3)

for instance, for a strictly positive µ(·), i.e. if µ(x) > 0 for all x ∈ X V ,
then the above holds [Exercise 3.1]
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Proof of (P)⇒(G) when (3) holds: [Pearl,Paz 1987]
by induction over s , |B|

initial condition: when s = n− 2, (P)⇔(G)

induction step:
assume (G) for any B with |B| ≥ s and prove it for |B| = s− 1

i

Ã

A B C

w.l.o.g, we consider a set A
with |A| ≥ 2 and B with
|B| = s. by induction
assumption, for any i ∈ A,

xC ⊥ xÃ|(xB, xi)
xC ⊥ xi|(xB, xÃ)

by (3),

xC ⊥ (x
Ã
, xi)|xB

by induction, we see that (G)
holds for all sizes of B.

When (3) does not hold (for example µ(x) = 0 for some x) then (P) doe
snot imply (L) or (G): counter example in [Exercise 3.2]
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Hammersley-Clifford

Theorem (Hammersley-Clifford) 1971
A strictly positive distribution µ(x) (i.e. µ(x) > 0 for all x) satisfies the
global Markov property (G) with respect to G(V,E) if and only if it can
be factorized according to G:

(F) : µ(x) =
1

Z

∏
c∈C(G)

ψc(xc)

i.e. any µ(x) with Markov property can be represented with MRF

(F) ⇒ (G) is easy [Exercise 2.1]

(F) ⇐ (G) requires much more effort
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Proof sketch (Grimmett, Bull. London Math. Soc. 1973)

for every S ⊆ V , define pseudo compatibility functions

ψ̃S(xS) ,
∏
U⊆S

µ(xU , 0V \U )
(−1)|S\U|

need strict positive µ(·) for the division to make sense

example: For S = {i} let µ+i ( · ) , µ( · , 0V \{i})

ψ̃i(xi) =
µ+i (xi)

µ+i (0)

for S = {i, j} (not necessarily an edge) let µ+ij( · ) , µ( · , 0V \{i,j})

ψ̃ij(xi, xj) =
µ+ij(xi, xj)µ

+
ij(0, 0)

µ+ij(xi, 0)µ
+
ij(0, xj)
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claim 1: ψ̃S(xS) =const. unless S is a clique
claim 2: for any µ(x), µ(x) = µ(0V )

∏
S⊆V ψ̃S(xS)

then, it follows from claims 1 and 2 that

µ(x) =
1

Z
µ(0V )

∏
c∈C(G)

ψ̃c(xc)

this proves that for any positive µ(x) satisfying (G) we can find a
factorization as per (F )
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Proof of claim 1:
i

j

S

T
for any i, j ∈ S, expand the product as

ψ̃S(xS) =
∏
U⊆S

µ+U (xU )
(−1)|S\U|

=
∏
U⊆T

(
µ+U∪{i,j}(xU , xi, xj) µ+U (xU )

µ+U∪{i}(xU , xi) µ+U∪{j}(xU , xj)

)(−1)|T\U|

and unless S is a clique, there exists two nodes i and j in S that are not
connected by an edge, then

µ+U∪{i,j}(xU , xi, xj)

µ+U∪{i}(xU , xi)

(G)
=

µ(xi|xU , 0rest) µ(xU , xj , 0rest)
µ(xi|xU , 0rest) µ(xU , 0j , 0rest)

=
µ(0i|xU , 0rest) µ(xU , xj , 0rest)
µ(0i|xU , 0rest) µ(xU , 0j , 0rest)

=
µ(xU , 0i, xj , 0rest)

µ(xU , 0i, 0j , 0rest)
=

µ+U∪{j}(xU , xj)

µ+U (xU )
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proof of claim 2 (where did (−1)|S\U | come from?): recall,

ψ̃S(xS) ,
∏
U⊆S

µ(xU , 0V \U )
(−1)|S\U|

Möbius inversion lemma
[see also G.C.Rota, Prob. Theor. Rel. Fields, 2 (1964) 340-368] let
f, g :

{
subsets of V

}
→ R. Then the following are equivalent

f(S) =
∑
U⊆S

g(U) , for all S ⊆ V

g(S) =
∑
U⊆S

(−1)|S\U |f(U) , for all S ⊆ V

let, f(S) := log µ(xS , 0V \S) , then

g(S) =
∑
U⊆S

(−1)|S\U | logµ(xU , 0V \U ) = log ψ̃S(xS)

hence, exp(f(V )) = µ(x) = exp
( ∑
U⊆V

log ψ̃U (xU )
)
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Give an example of a distribution which is not strictly positive, that
does not satisfy (G) [Exercise 3.1]

Markov property 3-14



Recap
consider a distribution µ(x) that factorizes according to an undirected
graphical model on G = (V,E),

µ(x) =
1

Z

∏
c∈C

ψc(xc)

where C is the set of all maximal cliques in G
(Global Markov property) for any disjoint subsets A,B,C ⊆ V , µ(x)
satisfy xA–xB–xC whenever B separates A and C

B
A

C
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x1

x2
x3

x4

x5

x6
x7 x8

x9

x10

x11

x12

example: color the nodes with {R,G,B} such that no adjacent node has
the same color

µ(x) =
1

Z

∏
(i,j)∈E

I(xi 6= xj)

for a node i, if we condition on the color of the neighbors of i, color of i is
independent of the rest of the graph
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Hammersley-Clifford theorem
I (pairwise) if positive µ(x) satisfies all conditional independences implied

by a graph G without any triangles, then we can find a factorization

µ(x) =
1

Z

∏
(i,j)∈E

ψij(xi, xj)

I (general) if positive µ(x) satisfies all conditional independences implied
by a graph G, then we can find a factorization

µ(x) =
1

Z

∏
c∈C

ψc(xc)

there are conditional independencies that cannot be represented by an
undirected graphical model, but is represented by a Bayesian network
Example: µ(x) = µ(x1)µ(x3)µ(x2|x1, x3)

1

2

3 1

2

3

x1 and x3 are independent no independence
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Markov property of directed graphical models

Examples

1 2 3

1 2 3

1 2 3

1 2 3

µ(x) = µ(x1)µ(x2|x1)µ(x3|x2)

µ(x) = µ(x2)µ(x1|x2)µ(x3|x2)

µ(x) = µ(x1)µ(x3)µ(x2|x1, x3)

µ(x) = µ(x1)µ(x3)µ(x2|x3)

since µ(x3|x2) = µ(x3|x1, x2),
we have x1–x2–x3

since µ(x3|x2) = µ(x3|x1, x2),
we have x1–x2–x3

x1 and x3 are independent
but not x1–x2–x3

x1 is independent of (x2, x3)
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there are simple independencies we can immediately read from the
factorization : xi ⊥ xpr(i)\π(i)|xπ(i) (pr(i) is the set of predecessors
in a topological ordering)

1

2

5

6

3

4

immediate

x2 ⊥ x3|x1

x4 ⊥ x1, x3, x5, x6|x2
x3 ⊥ x2, x4|x1

x5 ⊥ x1, x4|x2, x3
x6 ⊥ x1, x2, x3, x4|x5

less immediate
x3 ⊥ x4|x1 , but x3 6⊥ x4|x1, x6, etc.

however, there are more independencies that follows from the
factorization

using the idea of d-separation, there is a way (e.g. Bayes ball
algorithm) to get all the independencies that are implied by all joint
distributions that factorize according to a DAG G
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note that a particular distribution µ(·) that factorize as G might have
more independence than specified by the graph (for example, complete
independent distribution (µ(x) =

∏
i µ(xi)) always can be represented by

any DAG), but we are interested in the family of all µ’s that factorize as
per G, and statements about the independencies satisfied by all of
the µ’s in that family
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formally, let nd(i) be the set of non-descendants of node i, which are the
set of nodes that are not reachable from node i via directed paths

we say µ(x) has the local Markov property (DL) w.r.t. a directed acyclic
graph G, if for all i

µ(xi, xnd(i)\π(i)|xπ(i)) = µ(xi|xπ(i))µ(xnd(i)\π(i)|xπ(i))

Definition: topological ordering is an ordering where any node comes
after all of its parents (not necessarily unique)
let pr(i) be the set of predecessors in a topological ordering

we say µ(x) has the ordered Markov property (DO) w.r.t a directed
acyclic graph G, if for all i and all topological ordering

µ(xi, xpr(i)\π(i)|xπ(i)) = µ(xi|xπ(i))µ(xpr(i)\π(i)|xπ(i))

(DL) ⇔ (DO), since for each i there exists a topological ordering that
places all xnd(i) before xi
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we say a distribution µ(x) has the global Markov property (DG) w.r.t.
an acyclic directed graph G, if for all subsets A, B, C such that A and C
are d-separated by B,

µ(xA, xC |xB) = µ(xA|xB)µ(xC |xB) or equivalently xA ⊥ xC |xB

a trail from i to j in a directed acyclic graph is blocked by S if it
contains a (shaded) vertex k ∈ S such that one of the following happens

xA ⊥ xC |xB
xA ⊥6 xC

xA ⊥ xC |xB
xA ⊥6 xC

xA ⊥6 xC |xB
xA ⊥ xC

blocked

not blocked

blocked

not blocked

not blocked

blocked

two subset A and C are d-separated by B if all trails from A to C are
blocked by one of the above cases
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2

5

6

3

4

1

2

5

6

3

4

x3 ⊥ x4|x1 x3 6⊥ x4|x1, x6

A trail from a node x4 to another node x3 in a directed graph is any path
from x4 to x6 that ignores the direction of each of the edges in the path
(you can go in the opposite direction of the edge)
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a Bayesian network on a directed acyclic graph G factorizes as

(DF) : µ(x) =
∏
i∈V

µi(xi|xπ(i))

(DF)⇔ (DG)⇔ (DL)⇔ (DO)

I proof of (DG)⇒(DL): the non-descendants of a node are d-separated
from the node i conditioned on π(i) (proof by example)

2

3

4

6

5

1

by (DG) it follows that x4 ⊥ x1, x2|x3

I proof of (DL)⇒(DF): follows from the definition of conditional
independence and Bayes rule

Markov property 3-24



I proof of (DF)⇒(DG): requires an alternate (actually the original)
definition of global Markov property

Lemma 1: If µ(x) factorizes according to a DAG G, then for any
ancestral set A, the marginal distribution µ(xA) factorizes according
to GA, where GA is the subgraph defined from G by deleting all nodes
in AC

Proof: consider the factorization and marginalize out all not in the
ancestral set.
Lemma 2: If µ(x) factorizes according to a DAG G, then xA ⊥ xB |xC
whenever A and B are separated by C in the undirected graph
moral(G(an(A ∪B ∪ C))), which is the moral graph of the smallest
ancestral set containing A ∪B ∪ C.
Proof: use Lemma 1.

the above definition of independence in the Lemma 2. is the original
definition of global Markov property for DAGs

it is equivalent to the condition (DG) (defined in the previous slide),
but we will not prove this equivalence in the lecture

Markov property 3-25



for any distribution µ(x) that factorizes accroding to a directed acyclic
graph (DAG) G, and for any disjoint subsets A,B,C ⊆ V , we can test
whether xA–xB–xC using Bayes ball algorithm:

1. shade all nodes in B

2. place a ball at each node in A

3. let balls propagate, duplicating
itself, following the rules shown
on the right (Remark: balls do
not interact)

4. if no ball can reach C, then
xA–xB–xC

blocked

not blocked

blocked

not blocked

not blocked

blocked

1

2

3

7

4

5

6

A = {4}
B = {3, 5}
C = {6}
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for any distribution µ(x) that factorizes accroding to a directed acyclic
graph (DAG) G, and for any disjoint subsets A,B,C ⊆ V , we can test
whether xA–xB–xC using Bayes ball algorithm:

1. shade all nodes in B

2. place a ball at each node in A
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on the right (Remark: balls do
not interact)

4. if no ball can reach C, then
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not blocked

blocked

not blocked

not blocked

blocked

1

2

3

7

4

5

6

B
B

A = {4}
B = {3, 5}
C = {6}
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for any distribution µ(x) that factorizes accroding to a directed acyclic
graph (DAG) G, and for any disjoint subsets A,B,C ⊆ V , we can test
whether xA–xB–xC using Bayes ball algorithm:

1. shade all nodes in B

2. place a ball at each node in A

3. let balls propagate, duplicating
itself, following the rules shown
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for any distribution µ(x) that factorizes accroding to a directed acyclic
graph (DAG) G, and for any disjoint subsets A,B,C ⊆ V , we can test
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for any distribution µ(x) that factorizes accroding to a directed acyclic
graph (DAG) G, and for any disjoint subsets A,B,C ⊆ V , we can test
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for any distribution µ(x) that factorizes accroding to a directed acyclic
graph (DAG) G, and for any disjoint subsets A,B,C ⊆ V , we can test
whether xA–xB–xC using Bayes ball algorithm:

1. shade all nodes in B

2. place a ball at each node in A

3. let balls propagate, duplicating
itself, following the rules shown
on the right (Remark: balls do
not interact)

4. if no ball can reach C, then
xA–xB–xC

blocked

not blocked

blocked

not blocked

not blocked

blocked

1

2

3

7

4

5

6

BB

B

A = {4}
B = {3, 5}
C = {6}
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for any distribution µ(x) that factorizes accroding to a directed acyclic
graph (DAG) G, and for any disjoint subsets A,B,C ⊆ V , we can test
whether xA–xB–xC using Bayes ball algorithm:

1. shade all nodes in B

2. place a ball at each node in A

3. let balls propagate, duplicating
itself, following the rules shown
on the right (Remark: balls do
not interact)

4. if no ball can reach C, then
xA–xB–xC

blocked

not blocked

blocked

not blocked

not blocked

blocked

1

2

3

7

4

5

6

B

B

B

A = {4}
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for any distribution µ(x) that factorizes accroding to a directed acyclic
graph (DAG) G, and for any disjoint subsets A,B,C ⊆ V , we can test
whether xA–xB–xC using Bayes ball algorithm:

1. shade all nodes in B

2. place a ball at each node in A

3. let balls propagate, duplicating
itself, following the rules shown
on the right (Remark: balls do
not interact)

4. if no ball can reach C, then
xA–xB–xC

blocked

not blocked

blocked

not blocked

not blocked

blocked

1

2

3

7

4

5

6

B

B

B

A = {4}
B = {3, 5}
C = {6}

implies x4–{x3, x5}–x6

blocked balls are destroyed

Q.when do we stop?
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if a distribution µ(x) factorizes according to a DAG G, i.e.

µ(x) =
∏
i∈V

µi(xi|xπ(i))

then µ(x) satisfies all the conditional independencies obtainable by
Bayes ball
if a distribution µ(x) satisfies all the conditional independencies
obtainable by Bayes ball on a DAG G, then we can find a
factorization of µ(x) on G
in the worst-case Bayes ball has runtime O(|E|) [Shachter 1998]
there are conditional independencies that cannot be represented by a
Bayesian network, but is represented by a MRF,
Example: µ(x) = ψ12(x1, x2)ψ23(x2, x3)ψ34(x3, x4)ψ41(x4, x1)

1

2

3

4

x1–{x2, x4}–x3, x2–{x1, x3}–x4
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Markov property of factor graphs

Factor graphs are more ‘fine grained’ than undirected graphical models

1

2

3 1

2

3 1

2

3

ψ(x1, x2, x3) ψ12(x1, x2)ψ23(x2, x3)ψ31(x3, x1) ψ123(x1, x2, x3)

all three encodes same independencies, but different factorizations
(in particular 3|X |2 vs. |X |3)

set of independencies represented by MRF is the same as FG

but FG can represent a larger set of factorizations

for a factor graph G = (V, F,E), for any disjoint subsets
A,B,C ⊆ V , µ(x) satisfy xA–xB–xC whenever B separates A and C
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Independence maps (I-maps)

which graph (graphical model) is ‘good’?

let I(G) denote all conditional independencies implied by a graph G

let I(µ) denote all conditional independencies of a distribution µ(·)
G is an I-map of µ if µ satisfy all the independencies of the graph G,
i.e.

I(G) ⊆ I(µ)

given µ(x), can we construct a G that captures as many
independencies as possible?

G is a minimal I-map for µ(x) if
I G is an I-map for µ(x), and
I removing a single edge from G causes the graph to no longer be an

I-map
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Constructing minimal I-maps
Constructing minimal I-maps for Bayesian network

1. choose an (arbitrary) ordering of x1, x2, . . . , xn

2. consider a directed graph for Bayes rule

µ(x) = µ(x1)µ(x2|x1) · · ·µ(xn|x1, . . . , xn−1)

3. for each i, select its parents π(i) to be the minimal subset of
{x1, . . . , xi−1} such that

xi–xπ(i)–{x1 . . . , xi−1} \ xπ(i)

minimal I-map for BN is not unique
I there are n! choices of the ordering, and a priori we cannot tell which

ordering is best
I even for the same ordering, the I-map might not be unique

e.g. X1 = X2 and X3 = X1 + Z, then x3 ⊥ x1|x2 and x3 ⊥ x2|x1,
but x3 6⊥ (x1, x2) so there are two I-maps for the ordering (1,2,3),
depending on which sequence of edges you prune
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Constructing minimal I-maps for Markov random fields

1. consider a complete undirected graph

2. for each edge (i, j), remove the edge if i and j are conditionally
independent given all the rest of nodes

if µ(x) > 0, then the resulting graph is the unique minimal I-map of µ

can you prove this?

idea: when µ > 0, graph obtained from the pairwise independencies is
exactly the same as the graph obtained from the global
independencies (from Hammersley-Clifford) and hence there is no loss
in only considering the pairwise conditional independencies when
constructing the graph

when µ(x) = 0 for some x, then I-map might not be unique
[Exercise 3.2]
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Moralization

moralization converts a BN D to a MRF G such that I(G) ⊆ I(D)

resulting G is an minimal (undirected) I-map of I(D)
1. retain all edges in D and make them undirected
2. connect every pair of parents with an edge

1

2

31

2

3

when do we lose nothing in converting a directed graph to an
undirected one? (when moralization adds no more edges than already
present in D)

there exists a G such that I(D) = I(G) if and only if moralization of
D does not add any edges

proof of ⇒: in the example above, the independence is not
preserved, and this argument can be made general

proof of ⇐: we will not prove this in the lecture
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Perfect maps (P-maps)
G is a perfect map (P-map) for µ(x) if

I(G) = I(µ)

1

2

3

set of all distributions on V

perfect 
undirected

perfect 
directed

trees

Markov chains

1

2

3

4

chordal 
undirected

examples:

trees have efficient inference algorithms, which plays a crucial role in
developing efficient algorithms for other graphs as well
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Trees

1

2 3

4 5 6

1

2 3

4 5 6

undirected tree is a connected undirected graph with no cycle

directed tree is a connected directed graph where each node has at
most one parent

conversion from MRF on tree to BN on tree: take any node as root
and start ‘directing’ edges away from the root

I non-unique
I all conversions result in the same set of independencies

example: Markov chain, hidden Markov models

exact inference is extremely efficient on trees
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Chordal graphs

consider an undirected graph G(V,E)

we say (i1, . . . , ik) form a trail in the graph G = (V,E) if for every
j ∈ {1, . . . , k − 1}, we have (ij , ij+1) ∈ E
a loop is a trail (i1, . . . , ik) where ik = i1

an undirected graph is chordal if the longest minimal loop is a
triangle

1

2 3

4 5 6

1

2 3

4 5 6

given G, if there exists a DAG D such that if I(G) = I(D) then G is
a chordal graph

proof idea: any loop of size > 3 with no chord (a chord is an edge
connecting two vertices that are not consecutive in the loop), have
independency that cannot be encoded by a DAG
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Not all moral graphs are chordal

but all chordal graphs are moral

deciding whether a graph G is moral or not is NP-complete

deciding whether a graph is chordal or not can be done in polynomial
time

Markov property 3-36



the following are equivalent for MRFs
(1) G is chordal
(2) there exists an orientation of the edges in G that gives a DAG D whose

moral graph is G
(3) there exists a directed graphical model with conditional independencies

identical to those implied by G, i.e. I(G) = I(D)

proof of (2)⇒(3): follows from the moralization slide (we did not
provide a proof)
proof of (3)⇒(1): “proved” in the previous slide
proof of (1)⇒(2):

I Lemma 3. a chordal G is recursively simplicial.
given a recursively simplicial graph G, we can construct a DAG D as
follows:
start with empty D0 and fix a simplicial ordering (1, . . . , n)
start from node x1, sequentially adding one node at a time, adding ∂xt
to Dt−1 and add edges from ∂xt towards xt (unless there is already an
edge in the opposite direction)
it is clear for the construction that D is acyclic

the moral graph of D has no additional edges, since the parents of any
node form a clique in the original graph
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use triangulation to construct such a directed graph D from an
undirected chordal graph G, which we will not cover in this course

a node in G is simplicial if the subgraph defined by its neighbors
form a complete subgraph

a graph G is recursively simplicial if it contains a simplicial node
xi and when xi is removed from the (sub)graph, what remains is
recursively simplicial

proof of Lemma 3. is omitted here, but refer to e.g.
http://www.cs.berkeley.edu/∼bartlett/courses/2009fall-
cs281a/graphnotes.pdf
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Roadmap

Cond. Indep. Factorization Graphical Graph Cond. Indep.
µ(x) µ(x) Model G implied by G

x1–{x2, x3}–x4; 1
Z

∏
ψa(x∂a) FG Factor Markov

x4–{}–x7; 1
Z

∏
ψC(xC) MRF Undirected Markov

...
∏
ψi(xi|xπ(i)) BN Directed Markov

Undirected graphical models: (F)⇔ (G)⇔ (L)⇔ (P)

For any positive µ(x) that satisfy (G), we can find a factorization (F)

List of all positive distributions {µ(x)} that factorize according to (F)
is equivalent as the list of all distributions that satisfy (G)

Directed graphical models: (F)⇔ (G)⇔ (L)⇔ (O)
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