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Belief propagation
• Sum- product Algorithm on factor graphs
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impactful
Example > Decoding LDPC codes

.

- one of most successful application
of B. P

.

Def . LD PC ( Low Density Parity check ) codes are
a family of codes defined as follows.
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Def. Codebook = {XEH " I satisfy all parities}
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At transmission

,
one of the colewort from codebook is sent

over a noisy channel .defined by PCT; IA ) and
we need to recover X from observed Y 's .

e.g. peal#5- I :*• 3 . 7

Strategy : use Belief propagation to estimate PL Kil Yi - - - Yu ) , 9 Een]
and output findgPp÷I#g ) t1) '

z Eso. 13

* How to start with a BN formulation and get Factor Graph. Seamlessly.
* How to Include observed variables Tu inferenceHoldings
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* Junction Tree Algorithm :
Elimination on June'm tree

↳exact
.

• Once the tree is constructed
.
Inference is easy using any method.

- Conceptually the approach Is closer to Elimination algo I exact
ordering.

.

. finding the right structure for elimination to beefferent

*Given a MRF GIVE) we can construct clique Tree
( none unique)

.
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example when Global consistency is not achievable. (depending on the tree)
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When is a clique tree globally consistent ?

Def. Junction Tree Property .
Given a MRF G =CV,E) veh E Betof maximal cliques

,

for a tree T over E
,
a node i EV satisfy 3.T . P if

all ckzues containing T form a connected subtree TNT
.

Def . T is a Junction Tree for G if all iEV has J.T. P
.

[existence]
Q

.

- when does G have a Junction Tree ?

If the graph G is chordal (E any LEI has a chord).
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[Construction]
Q . How do we find a Junction tree? ①

Q
. If the graph is not chordal , what can we do ?②

① Algorithm sketch to find IT. given Gear,E) with e
:set of max

argues .

- consider a complete graph on E(
assign weight on edges as # of shared variables\ between the two cliques[
find the wax weightspe .

CE attire whose sum of edge weight
-

is maximized )
.

I
can be easily found by

P Kruskal 's algorithm .
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[Correctness] A clique treeT is an Junction tree if and only Tf
it is a maximal spanning tree.
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② If you are given a graph G -- Cbo) that
-

es nd chordal
.

Steed of algorithm
- choose an elimination ordering
t
find the reconstituted graph cubicle is chordal )\
construct a complete algae ⇐raph
[
Find wax -weight spanning tree

⇒ Junction Tree.

we can run any algorithm on this Junction tree for exact
Freelanced Inference.
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