
Def . Intervention forces one or several random variables

XI -- EX -dieI

called intervention target to be the valueof independent
random variables Uz E H '-4

.

-

Intervention density of X under such Intervention is

Pal x I do case Uss ) E .
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This density has the Markov property of the
intervention graph G-

'⇒
,
which is defined from Gc

but removing all edges pointing to nodes Tu I .
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Def. It -Markov Equivalence Class : two DAGS Gi and Gz

are It-Markov Equivalent if
① Gen Gz

,
i.e .
,
both In the same Markov Equivalent class

② Get' and GET' have eke same skeleton for
all I C- It .

Claim : we can identify a DAG up es Tes I-Markov EquivalenceClass
with interventional data on the targets I , as N-o

.

⇒ we can orient any edges that are
- orientable from observational data
- adjacent to an Intervened node .

example> PCN = Pick ) Rahl XD Bcxslxu)
.

f-MEC { 33 -MEC 823,833 -MEC

Ground Truth : ①→②→③ ①→③→③ ①→③→③

①←③→③
①←③→③

①c-②c-③



Q
. Are they MEC

.
Markov Equivalent class ?

Q
. Are they I-MEC ,

interventional Alatau Equivalent chess ,with

II = { 8
,
{ 433.

?

Def. I- essential graph of a DAG G and targets I is defined as

E
#
CG) = U G'

G'FIG

the union of Graphs Chardy cordon of the edges)
that are I-Markov Equivalent to GC

.

G = ① ②
.
The { 8,23

I- Mecca) :

,
}

EIC G) = ①
\
③



* Greedy Interventional Equivalence Search [GIES]
Adopt GGS algorithm ( forward-takeout algorithm) for

timidly MEC under observational Data.to
interventional Data

.

Definition . we want to define a score function over

DAG G, target see I , and interventional data D=¥¥?⇒
D = C # 3,9ft

SCORECG
,
It
,
D) , there is decomposable.

• A score function is decomposable if
u

SCORE CG, II.D) = I h ( i , Tei , I, D)
Fl

Forexample, we can use BIC score . :

SORE CG
. #D= ftp.?a*..,zTEcIFEiPlXhlX-E3UexED-zEEM-

. dim CG)
.



[GIES Algorithm ]

Input: intervention targets I, Interventional data D

output: Tf- essential graph .
① initialize Gi = CV, 0)
② forward phase

G⇐%_ any max SCORE (G's ID) .
G'C- Neighborhood'TGY

where
Neighborhood of a DAG GQ is

{ DAG G'evict / E'= Euc for some G cries ~ Gets}

③ backward phase

↳
Gun
← avg max SCORGCG '

,
ID)

G'C- Neighborhood
-

(Geb)

where
Neighborhood

- of a DAG Geb is

{ DAG GENE't E ' = Etc for some Gcv,E) ~ Goes}



*course Overflew / Going forward .

Part 1
. Graphical Models & Conditional Independence structures .

Pare 2
. Inference problems - antmax Pcxl

L
marginal putty)I
compute =L

.

- Discrete-Belief propagation [ Gaussian BP
- Variational Methods
- Gibbs Sampling .

Part 3
. Learning Graphical Models
- structure Learning.I Causal structure Discovery .

If you liked this course:
CSE 546

.

Machine Learning
CSE 547

.
Machine Learning for Big Data.

STAT 535
. Statistical Learning : Modeling , prediction ,

and computing.
STAT 567

.
Statistical Analysis of sodan Networks .

STAT 566
. Causal modeling.



part L .

Probabilistic Graphical Models & Markov Properties
MRE

Graph ⇐¥¥.
BN

Representation o

Bn :D-separation r F%¥Y
an:*:::p:

"

man DE÷::÷*
*Beautiful marriage between graph theory and probability theory

(separation) ( independence)
-

Representation

Part 2.1
. Inference problems & Belief propagation .

equivalently difficult(easy
- Marginalize PCX.ly)L
map angmaxpcxly)L
partition function E
L
sampling

Belief Propagation
• "→"⇒ - Eti mama,

O O

*Beautiful marriage between graph theory and probability theory
( message passkey (approximate computation

on Graph
)

of posteriori distribution)
→

Efficient computation



* Belief Propagation & Graph Neural Networks
.

BP for factor graphs

°#d
Mi-a = nahbrick) ° ficxi ; ti)

0 I

0¥
,

m~aoicx.ch E ta Hoa)
,ain.io#-DXouk
[
in many applications we do not know

this factor
.

and learning is too complex .
A Graphical model perspective on Graph Neural Networks .

M -

tea = hw ( { m~boi3zez.ua , Y; )
{Neural network - DeepSet

of LRNN
,
LSTM

Miao ; = tow ( { Mira} , saari )
and train the weights win on some Gs ??

030

4k$think of the whole thing

o-oo.jo#¥ K¥0cess a Deep Neural Architecture . Eun o

examples of GNN > .
① Semi -supervised classification of citation network.

Yi : feature of document i
Ef. venue, Year, Bow .

loss : for a subsetof nodes , we have

label Zi G { NLP , machine

learning, computer vision}
-21¥.

. twigs?.gs?..e.u.eeuaeig
.

its



② Predicting links in knowledge graph .

loss : the current edges In G .

③ classifying molecular Network for drug discovery

(
,

{ a. 133 ) ⇒ Dataset of paired samples.

feature label

Part 2. 2. Variational Methods

Max Gl Cb) == logZa - Dial blip)
b

1st 2nd
order order

scatters statues

Naive
-

Bethe
-

Gibbs
-

Tree
Mean free free reweighed
field energy energy BP

H
Recover
B.P. ⇒ opens new doors other Graph

- based Algorithms.
.

*Beautiful marriage between graph theory and probability theory
feast ble set Densley Estimation
-

↳ computational Efficiency.



Part 2.3 Sampling .

Gibbs sampling . qb
°

o the
wennO

ylo)
O

eine-

*Beautiful marriage between graph
,

theory and probability theory
Local sememe Convergence of Mauler Chain
of a graph .
-

Design fast mixing M.
C
.

* Inference and Deep Generative Priors .

ex> super resolution

Graphical Moates
done by Human

.

Step 1 : construct a G.M.
over pixels

.

¥¥¥
seep2: find arty

" PLXHµ
low-resolution

.

Deep Generative Priors .

seep1. Learn a deep Generative Model.

face ~ hw(E )

✓range of hw
EGaussian

.

# "office's
step2. find z :?thwlH Yi;5✓ )

Lw- resolution



Pare 3
. Learning Graphical Models .

- Structure Learning( Causal structure Discovery .

samples → Conditional Independenceto SCORE
far from practical , and many open questions .


