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Example 3 .

Hidden Markov models for speech recognition
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. Baum - Welch algorithm : for learning the graphical model

• Viterbi algorithm : for inferring the most likely sequence

Example 4 .
Markov Random Field model for super - resolution
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. Goal : given a low - resolution image , infer high-resolution Image.
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Goal : infer the most likely true scores
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(we wane) inference
• Find the most probable realization
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inference can be dramatically efficient by exploiting structure

claim : suppose
variables are conditionaly independent .
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. Graphical models

f
Markov Random Fields = Undirected Graphical Models
Factor Graphs
Bayesian Networks = Directed Graphical Models

• Inference on Graphical Models q
sum-product algorithm = Belief propagation
Max -produce algorithm

• Learning Graphical Models - Parameter estimation
L
structure 'learningL
Leaming wieh hidden variables
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