*Causal Structure Discovery.

Observational Data

Concer

Smoking cause lungconcer?

Smoking

Eo, 13

	Tes	NO
Yes	15%	85%
No	6%	94%

SMoking

Dung Cancer
{0, 1}

Correlation does not imply causality.

Alternative Explanation

people with specific gene is likely to smoke AND fet luy concer.

- the people would have jetten lung concer even if they did not smoke.

- hence, smoking does not couse concer.

Interventional Data.

Randonized trials. random 50% of population set smoking =1 random 50% of population set smoking 20.

you can identify causality by intervention, but it can be methical and/or expensive.

* /	411 nodes are e	berved with a	Observational Data.		
		-			
			$h P(x) = \frac{\pi}{11} P_i(x_i ka_i)$		
Def. Markon	, Equivalence C	lass (MEC)			
G	~ G2 2	I(G) = I	(G ₂)		
	,~G2 (====================================	J. 7	7		
		i.A.			
		Moral G	is the same		
			Moral		
		3	Ò		
Claim: From o	observational data,	we can only no	ecover G up to its MEC.		
proof:	Ginglies #	PW that factorizes	as Gi also footsizes as G2.		
G	G ₂	Gz	Ga		
\mathcal{H}		\sim			
	3	3 (3)	2 3		
	are equalization				
UEC on 3 node s	A	<u>*</u>	- Skeleton,		
			Lykral		
$ \begin{array}{c cccc} \hline x & y & x & y \\ \hline z & z & z \end{array} $		X.	TY XXX XXX		
		(x) (y) (X)	KLIS, LARIX, XHELL		
		② V alue	, G can only be partially identified		
		(x)—y) × 1 Vente	, a zero oney , , , ,		
2 2		vto m	solve the direction of edges within MBC		
		x y We v	red to use interventional data.		

Constraint-based Algorithm [SGS-Algorithm] Spottes-Glynour-Scheines 2001.

Step 1. Start with Complete Graph GZCVIE). Undirected graph

Stop 2. Using observational data, for all CIBEVAV remove (i,3) from E if 3 S.t. Xi 1X5 (XS.

Step3. for all triplets (i, j, k) & VxVxV st.

Check if XILX; | Xrest VEK3 It yes, direct edges as

Step 4. Orient remaining undirected edges by consistency, recursively do this

* How do we check X: 11 X3 | X3

Q. When does SGS-Algorithm fail to recover MEC?

ex>I(b(x'xx'x3))={x'nx71x3'xxnx3 |x'xnx1x3)

SGS alportithm

OUTPUT

possible Grand truth.

 $I(x_i)x_i(x_s) = 0$

1 (xi jx; (xs)

Ground truths Ø→30→30 0←0←

0-2-3

Recall Global Markov Property.

If X_i and X_j are d-separated in G by S, then X_i IL X_j IXs.

Def. P(x) is faideful w.r.t. G. if X_i IL X_j IXs for all $S \Rightarrow (i.j) \notin E$.

Claim. If $I = X_i^{(i)}, \dots, X_j^{(N)}$ iid $I = X_j^$

Lim P(GSGS &G*)=0

MEC

· Constraint-based afforithm T requires lots of gamples

Thathfulness assumption.

Cond independes as constraints.

* Score-based Algorithms
•
Recall: log-likelihood Score of a DAG G. $X^{0} - X^{(N)}$ $SCORE(G) = N \sum_{i=1}^{n} I_{p}(X_{i}; X_{\pi_{i}}) - N \sum_{i=1}^{n} H_{p}(X_{i})$
SCORE (G) = (N) $\sum_{n=1}^{\infty} I_{\alpha}(x_{n}; x_{n}) - N \sum_{n=1}^{\infty} H_{\alpha}(x_{n})$
121
departs on G 9 Does not depart on G
wichest further restrictions on G., complete DAG whomas makines
Max Score.
Def. Bayeslan Information Criteria (BIC) score. SORTORIC (G) = SCORT(G) - 105 N . Lim (G).
COST (C) & COST (C) LOSN (T) (C)
DOROGIC (G) = SCOKBG) = 4 - · MM (G).
log likelikal how complex model. how wany varieties rezerial to socrite po
how many variables regulates
lescrite p
where $din(G) = \frac{1}{2}(121-1) \cdot 7 ^{1\pi_i}$ Principle.
where din(G)= > (1x1-1). [x] Til
121
· First term log-likelihood scales as N. Samplest Second term regularization scales as log N. Samplest
Second term regularization scales as log N.) samples ?
* Pronoution:
* Properties:
DScore equivalent: GizGz (ScoreBIC (Gi)=SCOREBIC (Gz).
MEC

2) Consistency: If G* is a perfect map for P(X).

Then as N-roo, G* is the unique maximizer.

3) Decomposable: SCOREBIC = Z SCORE (X; XTi). => Greedy Equivalence Search (GES).

Alforthu [Greaty Ezwivable Search].

Initialize G(V, E=\$)

Phase I: t=1--, T = time until no more fain add an edge that vaximizes SCORBBZ (Gtru)

phase I. t=T+1, ---

remove an edge that moximizes SCORERIC (Good)

Claim: As N-00, GES connectly finds MEC under faithfulness. *How long can Tbe?

* Permutation-based Greeky Search Algorithm

Idea:

Table 1: Equivalence Class Counts

n	Equivalence classes	Cl/ADG	Cl ₁ /Cl
1	. 1	1.00000	1.00000
2	00 j 0 0 2	0.66667	0.50000
3	. 11	0.44000	0.36364
4	185	0.34070	0.31892
5	8782	0.29992	0.29788
6	1067825	0.28238	0.28667
7	312510571	0.27443	0.28068
8	212133402500	0.27068	0.27754
9	326266056291213	0.26888	0.27590
10	1118902054495975141	0.26799	0.27507

(Gillispie & Perlman, 2001)

the # of MECs for n-node graph explodes.

we instead search over all permutations cand sheletons)

→ #MEC \$10¹⁸ vs. 108=3,628,800

we apply Greely Search.

Greely Search for Sparsest Permetation [GSP] Afrorithm.

Initialize: 7(11) as arbitrary ordering.

Repeat: t-1,

for each permutation/ordering TT in the neighborhood of TI(E)
construct a DAG GT by

 $(\pi_i, \pi_j) \in \mathcal{E}_{\pi} \iff X_{\pi_i} \not \perp X_{\pi_j} | X_{\pi_i \dots \pi_{r-i}, \pi_{r+i} \dots \pi_{j-i}}$

Evaluate SCOREBIC (G-1)

Treet) the best scoring candidate permutation.

• the permutations are neighboring of they differ only in

two address positions

e.f. (2, 5, 3, 1, 4)

(2, 3, 5, 1, 4)

· Claim: GSP is consistent under strictly weaker condition than faithfulness

