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* None of the algorithms above work in large scale practical problems.
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Can we design an algorithm that is efficient & works well in proceed.
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* Review of logistic Regression .
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* Logistic regression for neighborhood selection .

Structural Learning Logistic regression
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Theorem [ ktivaus , Meka, 2017]
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* This principle can be used for more general graphical models .
For example , Gaussian Graphical Models .
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If we only care about the graph structure , for now,
we can re-parametrize and solve for each node
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and threshold the resulting w to recover the neighborhood.

* An alternative fraud also very popular)) way to
learn the structure of a Gaussian Graphical Model is
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* This is a concave maximization ,
and solved with

gradient ascent.

* This more accurate than node-wise neighborhood leaning
as all edgers are learnt Jointly.


