*** Overview**

· Graphical Models & Markov Morence
· Inference Problems : filmer lacks find PCXI
- are mox PCxI - Belief Propagation - Varlatibual methods - Gibbs somplings · Learning Graphical models: given samples $x^{(1)}, x^{(2)}, \cdots, x^{(n)} \in \mathcal{X}^n$ - Learn the structure of the graph - Learn the parameters of the factors. * How to find z from a black-box that pines PCX. from PCX)

*Structural learning. • ^X EH" Random Vector. ° directed graphical model : $|E| = \binom{M}{2} = \frac{M(M-1)}{2}$ # of possible DAGs $\leq 3^{161}$ = $3^{\frac{141}{2}}$. Given X " P , $X^{(n)}$ independent samples from unknown $P(x)$. - How do me score each graph? - How do we find the graph with highest score? There are 2 ways to approach such statistical problems Frequentist
Assume graph G and conditionals $P = \{P(x_i | x_{\tau_i})\}_{i=1}^M$. Assume grap ' Assume graph G and conditionals P are deterministic but unknown are drawn from some known prior distribution $P_{G,\rho}$ CG.P) . Maximum Likelihood call) estimation . · Maximum a postoriori CMAP) finds LG, ^p) that maximizes log likelihood estimation finds CG,^p) that maximizes the posterior distribution $\frac{\mu}{\mu}$ α β λ log μ α β λ β) M $\frac{a}{p} \sum_{j=1}^{N} \log P_{G,p} \left(\chi^{(j)} \right)$ max $P(G,p | \chi^{\prime\prime\prime},\chi^{\prime\prime\prime})$

* Frequentist 's approach to structural learning $\hat{G} = \lim_{\alpha \to 0} \frac{1}{\alpha} \frac{d}{dx} \frac{d}{dx} \frac{1}{\alpha} \frac{d}{dx} \frac{d}{dx} \frac{d}{dx} \frac{d}{dx} \left(\frac{d}{dx} \frac{$

$$
*Simple Case with n=2. , x=cx, x=2. (0, 1, 1) \in \{0, 1\}
$$

samples (0,0), (0,1), (1,1), (0,0)
empirical distribution: $\hat{p}_1(x_1) = \begin{cases} \frac{3}{4} & x_1=0 \\ 4 & x=1 \end{cases}$, $\hat{p}_2(x_2) = \begin{cases} \frac{1}{2} & x_2=0 \\ 1 & x_1=1 \end{cases}$

Case 1:

\n
$$
\begin{array}{rcl}\n\hline\n\text{Case 1:} & \text{for} & G_{1} = \emptyset & \emptyset \\
& \text{the maximum} & \text{Ukel}(\text{head} \text{ estimate of } \text{R}(x), \text{R}(x)) & \text{are} \\
& \text{max } \frac{1}{N} \sum_{j=1}^{M} \log \text{R}(x^{(j)}) \\
& = \max_{\begin{array}{l} N_{0} \times X_{j} \\ P_{1} \end{array}} \left\{ \rho_{1}(0) \cdot \log \rho_{1}(0) + \hat{\rho}_{1}(1) \cdot \log \rho_{1}(1) \right. \\
& = \max_{\begin{array}{l} N_{0} \times X_{j} \\ P_{1} \end{array}} \left\{ \rho_{1}(0) \cdot \log \rho_{1}(0) + \hat{\rho}_{1}(1) \cdot \log \frac{\text{R}(x)}{\text{R}(x)} \right. \\
& = \frac{\text{max } X_{j} \cdot \hat{\rho}_{1}(x_{j}) \cdot \log \hat{\rho}_{1}(x_{j}) + \sum_{j=1}^{N} \hat{\rho}_{1}(x_{j}) \cdot \log \frac{\text{R}(x)}{\text{R}(x_{j})}}{\text{R}(x_{j})} \\
& = \frac{\text{max } \frac{1}{N} \sum_{j=1}^{N} \log \text{R}(x^{(j)})}{\text{max } \frac{1}{N} \sum_{j=1}^{N} \log \text{R}(x^{(j)})} \\
& = \sum_{j=1}^{N} \hat{\rho}_{1}(x_{1}) \cdot \log \hat{\rho}_{1}(x_{j}) \cdot \sum_{j=1}^{N} \hat{\rho}_{2}(x_{j}) \cdot \log \hat{\rho}_{2}(x_{j}) \\
& = \frac{1}{N} (\hat{\rho}_{1}) & \text{the } N(\hat{\rho}_{2}) \\
\hline\n\end{array}
$$

Case 2:
$$
G_2 = \bigoplus_{\substack{M\sim X \\ P_1(X,X_2)}} P_2 \rightarrow P_3(P_4(X_1)) = -H_{(\bigoplus_{12})} - D_{FL}(\bigoplus_{12}^{1} || P_{12})
$$

= -H(\bigoplus_{12})

$$
h(0 0) = -H(\hat{\beta}) - H(\hat{\beta})
$$
\n
$$
h(0 0) = -H(\hat{\beta}_{12})
$$
\n
$$
h(0 0) = -H(\hat{\beta}_{12})
$$
\n
$$
...
$$
\n

Remark X. depending on the sample size N and

\n
$$
the target false positive rate \beta,
$$
\n
$$
decisian is made by
$$
\n
$$
L(D+B) - L(D \otimes) = H(\beta_{12}) - H(\beta_{13}) - H(\beta_{23})
$$
\n
$$
\leq T_{\beta_{12}}(x_1; x_2)
$$
\n
$$
output \quad D+B \quad if \quad T_{\beta_{12}}(x_1; x_2) > \frac{t_2}{N}
$$
\n
$$
0 \quad \text{otherwise.}
$$

* We need to restrict the model class OR control false discovery rate.

Refresh	rateGens:
\pm (XiY) $\cong \sum_{xY} P(xY) \log \frac{P(xY)}{P(x)P(Y)}$	
$H(X) = \sum_{x} -P(x) \log P(x)$	
$H(Y X) = \sum_{x} -P(xY) \log P(x)$	
H(X)	$H(Y X) = H(Y) - \pm (XY)$
$H(X Y) = H(XY) + \pm (XY)$	
$H(X Y) = H(XY) + \pm (XY)$	
$H(X Y) = H(XY) + \pm (XY)$	

* Maximum Litelihood Approach for a DAG. $G^* = \alpha g$ mox mox $\frac{1}{N} \sum_{i=1}^N \log \frac{n}{i!} P_i (x_i | x_{\pi_i})$ the maximum is achieved at $P_{i}(X_{i}|X_{\tau_{\tilde{\iota}}}) = \begin{matrix} \hat{\rho}_{i}(X_{i}|X_{\tau_{\tilde{\iota}}}) & \ \hat{L}_{the}$ empirical distribution $\frac{1}{\lambda} \sum_{\tilde{J}=\tilde{J}}^N$ log \tilde{L} $\tilde{P}_{\tilde{c}}(x_i | \chi_{\pi_i})$ $= \sum_{i=1}^{n} \frac{1}{N} \sum_{i=1}^{N} log \hat{p}_{i}^{2}(x_{i}|x_{\tau_{i}})$

= $\sum_{i=1}^{n} \sum_{x_{i},x_{\pi_{i}}} \beta_{i}(x_{i},x_{\pi_{i}}) \cdot \log \beta_{i}(x_{i}|x_{\pi_{i}})$ = $\sum_{i=1}^{N}$ - $H_{\hat{\rho}}(X_{\hat{i}} | X_{\pi_{\hat{i}}})$ = $\sum_{i=1}^{n} \{T_{\hat{\rho}}(x_i; x_{\hat{\alpha}_i}) - H_{\hat{\rho}}(x_i)\}$
fund of from a family Does use depend on G.
of fraphs that mode per terms

*Remarkigthis gives a "score" = likelihod for any given DAG G. t we can now search over a class of graphs to find the best \leftarrow Ip $(X_i, X_{\pi_i}) \geq \exists p (X_i | X_{\pi'_i})$ if $\pi_i \supseteq \pi'_i$
and hence denser graphs are preferred (and overfitted) Les ne need au appropriate class of graphs to search

4. Chow-hīu algaritului: seareles over all trees., efficaedy.

\nStep 1: Create a complete graph over
$$
V=24, ..., n
$$

\nwith e edge weights: $\pm p(X,X) = W_{ij}$

\nStep 2: Use Kruskal's algorithm, for example, to find the max-neighbor than, for example, to find the max-neighbor than, for example, the V_{ind} the max-neighbor term of the original tree.

\nCAU: Show that $\sum_{i=1}^{N} \sum_{j} \hat{\rho}(X_{i,j} \times \pi_{i,j})$

\nof $\sum_{i=1}^{N} \sum_{j} \hat{\rho}(X_{i,j} \times \pi_{i,j})$

\nof $\sum_{i=1}^{N} \sum_{j} \hat{\rho}(X_{i,j} \times \pi_{i,j})$

\nfor general graphs, $n!$ strategy make it introduce.

*Another impractical approach for <u>undirected</u> graph learning. Consider leanury au Ising Model (G, Q), X=EI13
from samples {x⁽¹⁾, x⁽²⁾, ..., x(n)}=D the Likelihood is $P_{(6,\emptyset)}(D) = \prod_{l=1}^{N} P_{(4,\emptyset)}(x^{l})$ $=\prod_{l=1}^N\frac{1}{\sum_{G_l}(\omega)}\prod_{(i,j)\in E}\mathcal{L}^{(l)}(x_j^{(l)}\theta_{ij})\prod_{\tilde{i}\in V}\mathcal{L}^{(l)}(x_j^{(l)}\theta_{\tilde{i}})$ = $exp\left\{N \cdot \log \sum_{i}(\rho) + \sum_{(i,j)k\in\mathbb{Z}} N \cdot \hat{M}_{ij} + \sum_{i \in V} N \cdot \hat{M}_{ii}\right\}$
 $\frac{1}{N} \sum_{l=1}^{N} k_i^{(l)} Y_j^{(l)}$ $\frac{1}{N} \sum_{l=1}^{N} X_i^{(l)}$ the lag-litelihood is $L(G,\theta,D)=-\frac{1}{N}log P_{(G,\theta)}(D)$ = $\Phi(\theta)$ - $\langle M, \theta \rangle$

14 precision function
 $\begin{bmatrix} \hat{\mu}_1 \hat{\mu}_2 & \cdots \end{bmatrix}$ - $\begin{bmatrix} \theta_1 \hat{\theta}_2 & \cdots \end{bmatrix}$
 $\begin{bmatrix} \hat{\mu}_1 \hat{\mu}_2 & \cdots \end{bmatrix}$ + not zero for

(i.j) $\angle E$ & (i.j)

Remark: this is strictly convex in θ ,
but lef-partition function requires inference

* learning is easier when inference is easier.
Sulingemeral this is organizationally interactable, even if

but continuing our theoretical) investigation, we want to apply this method to deam the structure of the graph as follows mtuiaife minimize hCG, ^O,^D) G θ As we did previously, we need to restrict our search to a class of "simple" fraphs, as otherwise deuse graphs a lways win. A natural condition is $|E|\leq M$. $minim$ ique λ (K_n θ , 0) , where K_n is the O complete graph 5.6 $||0||_0 \leq m$ As 11016 constraint is intractable, people have proposed m inimize $\Phi(\theta) - \langle \hat{M}, \theta \rangle + \lambda \cdot ||\theta||_1$ θ where $1101_1 = \sum_{i,j} |\theta_{ij}|$

A different approach: Local Independence Test
\nthis to take a-lourley of specific of the hand problem.
\nAlg1: Local Independence Test (complest (M)2)
\n
$$
Alg1
$$
: Local Independence Test (comples { $X^{(B)}_{D-1}$, weighted the R
\n $-\varepsilon = 0$
\nFor each $S \subseteq V \setminus \{i\}$ s.t. $15! \le K$
\n $- \varepsilon = 0$
\nFor each $S \subseteq V \setminus \{i\}$ s.t. $15! \le K$
\n $- \varepsilon = 0$ (SoneE(S,i)=H β LX_i|X_S)
\n $= \varepsilon = 0$ (Sii.)
\n $\varepsilon = 0$ (ii.)
\n $\varepsilon = 0$ (iii) $\frac{1}{3} \varepsilon S$
\n $\varepsilon = 0$ (iv.)
\n $\varepsilon = 0$
\n $\varepsilon = 0$ (iv.)
\n $\varepsilon = 0$
\n $\varepsilon = 0$ (iv.)
\n $\varepsilon = 0$
\n $\varepsilon = 0$ (iv.)
\n $\varepsilon = 0$
\n $\varepsilon = 0$ (v.)
\n $\varepsilon = 0$
\n $\varepsilon = 0$
\n $\varepsilon = 0$ (v.)
\n $\varepsilon = 0$
\n

 $Stil$ These approaches are of more theoretical interest, as the run-time is $O(n^{k+t})$. Here is a practical aborithm. $A|_{S}$ 2: Thresholding (samples $\{x^{d_2}\}_{d_1}$, threshold τ) - Compute the empirical correlation {Mij} v.s.26VxV - For each (i, J) GVxV If $\mathcal{M}_i \geq \tau$, set (i,j) GE where $\hat{\mathcal{M}}_{i,j} = \frac{1}{N} \sum_{\ell=1}^{N} \left(\mathbb{X}_{i}^{(\ell)} - \overline{K}_{i} \right) \left(X_{j}^{(\ell)} - \overline{X}_{j} \right)$ $\overline{X}_{i} = \frac{1}{N} \sum_{\ell=1}^{N} X_{i}^{(\ell)}$ Remark: a heuriséic based on the fact that two nodes faraway in the graph might be less corrected. 0-0-0-0-0-0-0 Mikk Mij in general, this can fail if. True graph learned graph $\frac{1}{2}$