
Def . Metropolis- Hastings Algorithm
• Start with a candidate transition matrix K
'

To ensure unique stationary distribution , ie is sufficient to Khare

- kxx > 0 ,
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what we want what we have
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the main trick Is to remove some
"

Probability mass"

from the larger one.

Define : Ray ⇒ mins 2 , Pp%?!¥÷ } team
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Qxy = Kay ' Ray
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psst> pug . Qxy= Pas . Rxyrkxy
= Ry) Kyx Cif Ray
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* Remark : as Rx) is only used in Ray -- minftp.?#Yey}
we only need Pp÷¥=¥s⇐t÷Y÷7 ← takes IEEE! .am[

does not requireZ-

* Remark : Do we need to store K and Q GRI
Matti

"

- we can choose K to be simple , such as K-- Tuan - IIIT
slept. - Ae time t first generate candidate Kuk from Khe,#E)
Step?

-

Accept X*% with probability Rye,xena n

. X⇐kX⇐k
Step3. - otherwise reject and keep current state :X =Xt

*Theorem: Metropolis - Hastings Algorithm finds le- projection of
K onto the space of reversible Markov choices Etch

stationary distribution Pca .

↳* adf.jp?oi=p.EEex/Pcxs-kxy-Ra8.y/
*Are we done ? - the ore is in choosing K .

if the spread of K is too large, then acceptance
rate is low

if the spread of K is too narrow
,
then mixtyeiee
Can belarge.
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* Def. Gibbs Sampling .

Step 1 . sample i Est
,

- - in3 uniformly at random .

Q{Step 2 .
see IT
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;
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step 3 . sample x ; from P (Atx ; )
step 4. Need←I

~ n

* Remark
. P # I X.ie') x IIs,

fish , ,xj") is efficient to compute.

*claim .
( Q

, Poo, ) satisfy G) .

Proof. for I that differ at only T -th coordinate from X,

Poo . QxI = peas . In - PCE, IX. , )

Bayes → = peak. Pc - tu Petitki)

= peek. In Pca ; ) Pcxnilki)
--

Q Ix Pex )

Otherwise QxI=o if x&y¥ differ more than one coordinate.

* the resulting dynamics of the Markov chain Is called Glauber Dynamics.



examples> Glauber dynamics for ppperek-color.info
proper coloring : given a graph G ,

and K- colors {12, --

, K} ,
a coloring Is an assignment of colors to nodes

X = Exe
,

- - -

, Xu]
,

Xi EE 1, - --

,
K} .

a proper coloring is a coloring where all pairs of
nodes connected by an edge have different colors.

Graphical Model : pox , a Iz ICH Ms)

properth
#of colorings

we propose Gibbs Sampling to solve
,
for example , IP ( X -

-XL)
,

. . -
.

Gibbs Sampling : Initialize with X, C- [ KJ
"

that's
.

f-3 LAG.B) Repeat
OR

sample I C- En] uniformly at random$0 I sample a color Xzlet" uniformly se.
° 41 HE" # AE

'
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o/y# consider Metropolis Hastings with Kiffin HIT ,
\ each clue a random configuration is proposed

and most likely resected .
It is very slow as

rejection race is high.



example > Ising models .

Pen - I exp { p ?,¥r, HA, }
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Farense temperature
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*Mixing Time . of a Markov chain .

Def . EigEke of a Markov chain Q

is the smallest time Tuicxce) such that for all t>Twice)

and for all ideal state G
"' La distribution over H
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I ⑤ '5. Qt - at ter EE
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secretary distributionQQ .
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where I p-gHv=I¥ I pom - foal is the-bt¥ .
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I p- after = Ip-81

* Bounding mixing time via coupling
Def . a coupling of two random variables X and Y with

distributions Rex, and Pycyj , is a construction of
a joint probability distribution over (X 's) ,

i.e, Radke)
such that the marginals are preserved :

§ Pxycx. = Pxcx)

{
§ Paean, - Peak.

example ) Pax , narco,1) ① independent : Pac -- Papa,
y Paced ~Nco, 4)
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example > Px - Bern Cp)

p,
Ren Bem og) ① iudep .

Egg
*' EE "prg ; ,Ff

Px ftp.p ] ② construe coupling from UEQI]
2- ~ Uco, 13

FEE
at

0k¥41
FIFE

Def. opExg to EYE#
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+ Coupling lemma :
for two random variables X

, Y (either continuous or discrete)
in eke same domain

,

I Px - Peter = Tofu:p gp.pe,
Pk'd

proof> m¥j{pxcxi.pe#BlPxyCX=y)--1-IPxyCx.x)F: ¥¥{ pax. -miners.cm. reams
4.D
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- = Fe Max { o , Pacas - Pyon }Pxca) pass - - -
-
- -

a) Px- Rctv
* further

, exists pxyusygs.ee . minimum is achieved.



* corollary : HP x - Peter E lpxy (x#Y)
for any coupling.

•

any coupling can be used to upper bound TV
-distance of

tu distributions .

ex> . optimal coupling of Bernoulli distributions . o
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* Coupling for bounding Twice) of Gibbs Sampling .

Strategy : let Xe
,
Ye be the random state after e transitions

as per Q
,
started with Xo

,
Yo
, respectively .

I Pxe - Ti ter E Yaa
,

xp
,

I Pxe - Reeler

coupling lemmata if:p.! lpcxe Eye )
.

9
we will analyze a coupling that is for any coupling.
Simple enough for analysis , axed yet gives a eight upper bound



Proposed coupling of two Gibbs sampling chains . for asyGEeI3"

couple two processes closely, while preserving marginal distribution.
random index Xo Yo

step1 . draw I C- 81 . . - in}
Step2. optimal coupling of PCXEE'1k¥ ) PHE's 1k¥)


