*Recap

Tree reweighted belief propagation I more details on slides "A new class of upper bounds on the by partition function." 2005 Wolwerght, Jacktola, Willsky example> Graphical Model 1 13

3 13

Consider all spanning trees on G, and assign reights on the trees

Rule #1: ZG=1

Rule #2: for oak (13)6E T (1/3) = for Def Tree reweighted belief propagation. given T= ETK3K- set of spanning trees, and corresponding weights {Ck} s.t. $\Sigma C_{k}=1$ log $f_{ij}(x_i,x_j) = \sum_{k} G_k \log f_{ij}(x_i,x_j)$ then the energy term in Gibbs free every decomposes as E [- Z 4 / 0 (K,K)] = E [- Z Z G 18/13 (K,K)] = 54 E/- 5 by do (x, x) energy of a one tremoble *Claim: log Z = \(\subseteq \tag{\text{Lap Zk}}\)

easy to compute with B.P. as it is a tree. proof:

log Z = Max Eb[[[by f; (x,x)] + Entropy (b) IG=1 -= MUX SUE EL [SHE by for (ES)] + Entropy (6)} This can be solved exactly with B.P.

· Caveat Twe wont to select (4, to that nivinge Icalg Zx

of spanning trees can explode

* To solve interence problems	P(X)
Variational Methods	sampling: $\widehat{P}(X=a) = \frac{1}{N} \sum_{i=1}^{N} I(X=a)$
Belief Propagation	Gibbs Sampling
+	
· Deterministic .	Randomized
	slower
· approximation .	exact in the limit N-00, but difficult to
	decide when to st
Defi Markov Chain Monte Carlo	methods.
- construct a Markov a	chain X (4) & X (tt) & X with
transition next	rix a whose stationary distribution PCX)
- Start with an arbitra	
<u> </u>	Kou Chain until it conveyes close to
	ary distribution
- Repeat	·
Q1: How do we construct Q	? — Metropolis-Hostings algorithm - Gibbs sampling
Q2: How long does it take 1	for the markor Chain to converge? To spectral ambrois. To path coupling.
·	To spectal auntrois.
	préh coupling.
Stroter	
(T > P I T. L. (V. V.) initial sta	$X^{(t)} \in X^{(t)}$: realization the $X^{(u)}$ in the state $X^{(u)}$
	travation matrix Q & R 1761 Mx 1761 M
we.	will not write it in a remon, but conceptually define it
	Sprse.
Repeat: Sample: X	$(X^{(t)}) \sim (X^{(t)}) \cdot Q$
	one interesting to you of a
Eventally XC	t $\sim \pi$: sectionary distribution of Q.
	Pcx

Def. time-house neous finite-state Markor Chains.	
Markov chain - State space HM	
Narkov chain- State space Hn Transition matrix Q ER 12614 x 13614	
Qxx = IP(Xxx=x)	
Def. Stationary distribution Tof M.C. T= [7]	
Def. Stationary distribution $\pi \circ f M.C.$ $\pi^{T}.Q = \pi^{T}$ $ \mathcal{X} ^{n}$	
· might not be unique) we do not jot into dotailed condictions on a that ensures existence sunique was tut construct a s-t. it is vat.	
· might not exist. Construct () s.t. it is 1845	
Def. a Markov chain is Reversible if 271 5.t	
detailed tolone exwetion is sotisfied	
TT x. Qxx = Ty Qxx for all 2x (*)	
Claim. To satisfying (*) is a stationary distribution of Q.	
ne 1>	
proof> $(\pi^{T}Q)_{+} = \sum_{x} \pi_{x}Q_{x}y = \sum_{x} \pi_{y}Q_{y}x = \pi_{y}.$ $(*) \qquad Q_{z} = \sum_{x} \pi_{x}Q_{x}y = \sum_{x} \pi_{y}Q_{y}x = \pi_{y}.$ $(*) \qquad Q_{z} = \sum_{x} \pi_{x}Q_{x}y = \sum_{x} \pi_{y}Q_{y}x = \pi_{y}.$ $(*) \qquad Q_{z} = \sum_{x} \pi_{x}Q_{x}y = \sum_{x} \pi_{y}Q_{y}x = \pi_{y}.$ $(*) \qquad Q_{z} = \sum_{x} \pi_{x}Q_{x}y = \sum_{x} \pi_{y}Q_{y}x = \pi_{y}.$ $(*) \qquad Q_{z} = \sum_{x} \pi_{x}Q_{x}y = \sum_{x} \pi_{y}Q_{y}x = \pi_{y}.$ $(*) \qquad Q_{z} = \sum_{x} \pi_{x}Q_{x}y = \sum_{x} \pi_{y}Q_{y}x = \pi_{y}.$ $(*) \qquad Q_{z} = \sum_{x} \pi_{x}Q_{x}y = \sum_{x} \pi_{y}Q_{y}x = \pi_{y}.$ $(*) \qquad Q_{z} = \sum_{x} \pi_{y}Q_{x}y = \sum_{x} \pi_{y}Q_{x}y = \sum_{x} \pi_{y}Q_{x}y = \prod_{x} \pi_{y}Q_{x}y $	
(*) Dis Stackactic : 0	
Nw-sum to	
$\Rightarrow \pi^T Q = \pi^T$	
we will construct a Markov Chain Q that is reversible.	
Spectral analysis can be applied.	
pacient straight and a species.	

Def. Metropolis-Hastings Algorithm

·Start with a condidate transition matrix K To ensure unique stationary distribution, it is sufficient to have - Kxx >0 , +x 676 N [aperiodic]

- for any x, y cxm, = a path (x,=x,x2, -, xm=x) of

positive probability transitions Cirreducibility]

Kxixin >0, 4; 681, -, 14-13

what we want (*) Qxy. Pix) = Qyx Pcy) what we have King Par > Kyz Pay)

the main trick is to remove some "Probability wass" from the larger one.

Define: $Rxy \triangleq min \{1, \frac{P(y) kyx}{P(x) kxy}\}$ for each xy

> ary = Kry· Rxy Qxx = 1 - \(\sum_{1\nu x} \Qxx S.t. probability sums to one

with this respection sampling (1-Ray) claim: (a, p(x)) satisfy (x). proof> p(x). Qxy = P(x). Kxy. Kxy (if Rxxx1) = Pcy) Kyx & Rxx=1 = Pcx) Ryx-Kyx.

* Remark: as
$$P(x)$$
 is only used in $Rxy = n \cdot i \cdot 1$, $P(x) \cdot Kxy$

we only need $\frac{P(y)}{P(x)} = \frac{\pi}{4\pi} \frac{f_{ij}(y_i y_j)}{f_{ij}(x_i x_j)} + takes O(171)$

Computation

also does not require Z .

*Remark: Do we need to store K and Q EXR 1961 121 11 - We can choose K to be simple, such as K=129 111 T

Step1 - At time t first generate condidate x take from K(xt, x take)

Step2 - Accept x take with probability Rxt, x take: x take

Step3. - Otherwise reject and keep current state: x take

*Theorem. Metropolis-Hastings Algorithm finds ly-projection of K onto the space of reversible Markov Chains with Stationary distribution P(x).

*Are we done? - the art is in choosing K.

if the spread of K is too large, then acceptores

Yate is low

if the spread of K is too hawan, then mixing time

Can be large

example >
$$K = \frac{1}{1941} 111^T$$
, $R_{xy} = win \left(1, \frac{\pi}{\cos x} \frac{\frac{1}{125}(x_i, y_i)}{\frac{1}{125}(x_i, x_j)}\right)$

·all pairs first sampled with each probability. (as per K)
- but many chudidates with be unlikely and be reseated.

* Def. Gibbs Sampling.

Step 1. sample $i \in \{1, \dots, n\}$ uniformly at random. Step 2. Set $y_{-} := X^{(t)}$:

[u]\{i\}

Step 3. Sample $y_{-} := Y_{-} :$

* Remark. PCYIX (4) & TT fig(4; Xjt) is efficient

* Claim. (Q, Pcxs) satisfy (*).

proof for y that differ at only i-th coordinate from 2c,

P(x). Qxy = P(x). 1. P(7:1X-1)

Bayes - = PCX.1X-i) PCX-i) - in PCY.1X-i)

 $= P(x_1x_{-1}) \frac{1}{n} P(x_{-1}) P(x_1x_{-1})$ $Q_{-1}x \qquad P(x)$

otherwise axy=0 if x 8 y differ more than one coordinate.

* the resulting dynamics of the Markov chain is added Glauber Dominion.