* Recap

Tree reweighted BP Bethe free energy \leq Gibbs free every \leq IFT belocat) (TCG) $\frac{m}{\sqrt{2}}$ (FCb) $\frac{m}{\sqrt{2}}$ (b) G
 G R H H G H H Bethe free enagy $\frac{max}{delta(f)}$
 $\frac{delta(f)}{f}$ $\overline{\mathcal{B}}.\overline{\mathcal{P}}.$ Tree remétated belief propagation pour détails on slides "A new class of upper bounds on the by partition function."2005
Waiwright, Jacktola, Willsky $\frac{f^{\text{true}}}{\text{Graphical Model}}$ $\frac{f_{12}}{f_{13}}$ $\frac{f_{13}}{f_{13}}$ Consider all spanning trees on G, and assign reights on the trees $\left(\frac{1}{12}\right)^{\frac{3}{2}}$ $\frac{1}{12}$ $\left(\frac{1}{12}\right)^{\frac{3}{2}}$ $\left(\frac{1}{12}\right)^{\frac{3}{2}}$ $\left(\frac{1}{12}\right)^{\frac{3}{2}}$ $\left(\frac{1}{12}\right)^{\frac{3}{2}}$ $\left(\frac{1}{12}\right)^{\frac{3}{2}}$ $\left(\frac{1}{12}\right)^{\frac{3}{2}}$ $\left(\frac{1}{12}\right)^{\frac{3}{2}}$ $\left(\frac{1}{12}\right)^{\frac{3}{2}}$ $\frac{1}{\sqrt{3}}\sqrt{\frac{3}{3}-(\frac{1}{13})^2}$ $Rule11: $\sum_{k} C_{k} = 1$$ $C_1 = \frac{1}{3}$ $C_2 = \frac{1}{3}$ $C_3 - \frac{1}{3}$ Rule #2: for carl (i.s) GE $\pi(x_1^{(k)})^{k} = x_2^{k}$

Def Tree received
\n
$$
T^{\text{true}} = T^{\text{true}} + \sum_{k=1}^{K} \text{ set of computing trees, and}
$$
\ncorresponding methods $\Sigma c_{k} = 3$ set.

\n
$$
\Sigma (k = 1)
$$
\n
$$
T^{\text{true}} = \sum_{k=1}^{K} (k + 1) \times K^{\text{true}} = \sum_{k
$$

*To solve inference problems DCA) V ariational Methods sampling : \hat{P} ($x = a$) = $\frac{1}{N}$ $\sum_{i=1}^{N}$ $\mathbb{I}_{(X_i^{\simeq} \alpha)}$ \downarrow Belief propagation Gibbs sampling Edve interence Problems

Ficational Methods

Beliet Proparation Gibbs

Deterministic · Rande

Jost · Slow Deterministic * Randomized fast . slower • approximation . exact in the limit N-o , but difficult to decide when to stop.

Def. Markov chain Monte Carlo methods. - construct a Markov chain $X^{(t)} \in \mathcal{X}^N$ \rightarrow X $\overline{f^{(t+1)}}$ $\in \mathcal{X}^n$ with transition matrix Q whose stationary distribution ^p - start with an arbitrary realization x^{ω} and run the Markov Chalk until it converges close to its stationary distribution - Repeat. Q_i : How do we construct Q ? Hastings algorithm → Giosspling On not be the construct of the markov chain to converge? → spectral analysts to prele coupling. $Strategy$ filmer a graphical model graphical model State Xlt) E H" : realization $G \Rightarrow P_{(x)} \triangleq \pi f_{\tau} (x, x)$. initial state $X^{(\omega)}$ intent state x^{-1}
Construct transition matrix Q 6 $\boldsymbol{\mathcal{R}}$ $^{136|^{n} \times 136|^{n}}$ we will not write it in a nemory, but conceptually define it Repeat: sample: $X^{(t+1)} \sim (X^{(t)})^T$. s_p rse $\frac{1}{\sqrt{\frac{1}{1-\epsilon^{2}}}$ one interesting $\frac{1}{\sqrt{2}}$ for $\frac{1}{\sqrt{2}}$ Devertally $X^{(t)}\sim\pi$: seaEcondy distribution of Q.

 $\mathring{\mathsf{P}}(\mathsf{x})$

Def.
$$
t^{\overline{i}}
$$
 we however, $t^{\overline{i}}$ we have $t^{\overline{i}}$ we have $t^{\overline{i}}$ we have $t^{\overline{i}}$ to $t^{\overline{i}}$ to

\n- \n
$$
m^{2}14e
$$
 not be wolve\n $m^{2}14e$ to the wolve\n $m^{2}1$

Claiu. π satisfying (x) is a stationary distribution of θ .		
\n $\pi^{\tau}Q_{\tau} = \sum_{x} \pi_{x}Q_{x} + \sum_{y} \sum_{z} \pi_{\tau}Q_{\tau}x = \pi_{\tau}$.\n		
\n $\Rightarrow \pi^{\tau}Q = \pi^{\tau}$ \n	\n $\Rightarrow \pi^{\tau}Q = \pi^{\tau}$ \n	
\n $\Rightarrow \pi^{\tau}Q = \pi^{\tau}$ \n	\n $\Rightarrow \pi^{\tau}Q = \pi^{\tau}$ \n	
\n $\Rightarrow \pi^{\tau}Q = \pi^{\tau}$ \n	\n $\Rightarrow \pi^{\tau}Q = \pi^{\tau}$ \n	
\n $\Rightarrow \pi^{\tau}Q = \pi^{\tau}$ \n	\n $\Rightarrow \pi^{\tau}Q = \pi^{\tau}$ \n	
\n $\Rightarrow \pi^{\tau}Q = \pi^{\tau}$ \n	\n $\Rightarrow \pi^{\tau}Q = \pi^{\tau}$ \n	
\n $\Rightarrow \pi^{\tau}Q = \pi^{\tau}$ \n	\n $\Rightarrow \pi^{\tau}Q = \pi^{\tau}$ \n	
\n $\Rightarrow \pi^{\tau}Q = \pi^{\tau}$ \n	\n $\Rightarrow \pi^{\tau}Q = \pi^{\tau}$ \n	\n $\Rightarrow \pi^{\tau}Q = \pi^{\tau}$ \n

Def. Metropolis Hastings Algorithm · Start with a candidate transition matrix K 'To ensure Unique stationary discribution, it is sufficient to have $-kx$ >0, $kx \neq 0$ [aperiodic] - for any x, y, c x^{n} , zapath $(x_{c}x, x_{2}, ..., x_{n}y)$ of positive produdility transitions Lineducibility] $K_{x_ix_{i+1}}>0$, $Y_{i}G_{i}^{r}$, Y_{i+1}^{r} what we have what we want K_{xy} $\rho_{(x)}$ \geq K_{yx} $\rho_{(y)}$ $(*)$ $\bigcirc \mathcal{L}_{xy}$ \cdot \mathcal{L}_{xy} = $\bigcirc \mathcal{L}_{yx}$ \mathcal{R}_{xy} the main trick is to remove some "Probability mass" from the larger one.
Define: Rxg = min { 1, $\frac{P(y)kyx}{P(x)kxy}$ } and xy $Qx_1 = Kx_1 \cdot Rx_1$ $Q_{xx} = 1 - \sum_{y \neq x} Q_{x}$ S.t.
Probubility sums to OME with this rejection sompliff (they) $clo~\bar{l}m: (0, Pc)$ satisfy (*). p root> $p(x)$. $Q_{xy} = \rho(x)$. K_{xy} . K_{xy} (i) $k \neq 1$ $= \rho$ (y) Kyx $RR+x=1$ $= \rho_{(1)} R_{1} x K_{1} x$

$$
* Reuar k : as $P(x)$ is only used in $Rx + w^{\overline{1}n} \{1, \frac{P(y)Kyx}{P(x)Kxy}\}$
$$

we only need
$$
\frac{P(y)}{P(x)} = \pi \frac{f_{\tau_3}(y_1 y_1)}{f_{\tau_3}(x_2 x_3)} \leftarrow
$$
 takes $\frac{O(|E|)}{G \sim P$

$$
Rewerk: Do we need to store K and Q 64R19d M(16)^\n*\n- We can choose K to be simple, such as K=\frac{1}{180} 111^\n*\nStep 1- At time t first generate candidate Xt+k from K(Xe,Xt+k)\nStep 2- Accept Xt+k with probability $R_X t_X t_k$: X^{t=t} = X^{t+t}
$$

$$
\frac{\text{*Theorem:} Metvoplis-Hastings Algorithm \text{finds } l_1 \text{ } proszcebin \text{ } d_1 \text{ } \text{if } l_2 \text{ } \text{if } l_3 \text{ } \text{if } l_4 \text{ } \text{if } l_5 \text{ } \text{if } l_6 \text{ } \text{if } l_7 \text{ } \text{if } l_8 \text{ } \text{if } l_9 \text{ } \text{if } l_1 \text{ } \text{if } l_1 \text{ } \text{if } l_1 \text{ } \text{if } l_2 \text{ } \text{if } l_3 \text{ } \text{if } l_4 \text{ } \text{if } l_5 \text{ } \text{if } l_6 \text{ } \text{if } l_7 \text{ } \text{if } l_7 \text{ } \text{if } l_8 \text{ } \text{if } l_9 \text{ } \text{if } l_1 \text{ } \text{if } l_1 \text{ } \text{if } l_2 \text{ } \text{if } l_3 \text{ } \text{if } l_4 \text{ } \text{if } l_5 \text{ } \text{if } l_7 \text{ } \text{if } l_7 \text{ } \text{if } l_7 \text{ } \text{if } l_8 \text{ } \text{if } l_9 \text{ } \text{if } l
$$

\n
$$
*Ave
$$
 be done? - the arc is in choosing K.\n

\n\n $i + tke$ spread of K is too large, then a component of the spread of K is too large, then having time of the spread of K is too heavy, then having time of the signal of K is too heavy, then having the sample $K = \frac{1}{|\mathcal{H}|^n} 111^T$, $R_{xy} = \min(1, \pi, \frac{1}{\sqrt{3}}(x, x)$.\n

\n\n $A = \frac{1}{|\mathcal{H}|^n} 111^T$, $R_{xy} = \min(1, \pi, \frac{1}{\sqrt{3}}(x, x)$.\n

\n\n $A = \frac{1}{|\mathcal{H}|^n} 111^T$, $R_{xy} = \min(1, \pi, \frac{1}{\sqrt{3}}(x, x)$.\n

\n\n $A = \frac{1}{|\mathcal{H}|^n} 111^T$, $R_{xy} = \min(1, \pi, \frac{1}{\sqrt{3}}(x, x)$.\n

* Def. Gibbs Sampling.

Step 1. sample i GS1, -, M3 Uniformly at random. Step 2. set $y_{-i} = X^{(t)}$;
 x_{-i} $\begin{cases} 0 & \text{for } i \leq 3, \\ 0 & \text{for } i \leq 3. \end{cases}$ Eu]\{i} s tep 3. Sample \forall ; from $P(\nlessgtr |\nless^{(t)}')$ \star Remark. P ι \sharp _il χ ^(e)) \propto π f i₃(\sharp _i, χ ^(t)) is efficient $*$ claim. (Q, P_{Cx}) satisfy $(*)$. proof for y that differ at only τ -th coordinate from x , $P(x)$. Qxy = $P(x)$. $\frac{1}{N}$. $P(\frac{1}{N}$. $|X_{-i}|)$ $B_0 \gamma_{ES} \rightarrow P(X_i | X_{-i}) P(X_{-i})$ $-\frac{1}{n}P$ cy. (x_i) = $P(X_i|X_{-i}) \frac{1}{n} P(X_{-i}) P(X_{i}|X_{-i})$
 $Q_{\mu}x P(\mu)$ Otherwise Qxy=o if x&y differ more than one coordinate.

* the resulting dynamics of the Markov chain is called Glauber Denomics.