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I statistical inference addresses how to overcome computational
challenges given a graphical model

I learning addresses how to overcome both computational and statistical
challenges to learn graphical models from data

I the ultimate goal of learning could be (a) to uncover structure; (b)
solve particular problem such as estimation, classification, or decision;
or (c) learn the joint distribution in order to make predictions

I and the right learning algorithm depends on the particular goal
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I choosing the right model to learn is crucial, in the fundamental tradeoff
between overeating and underfitting, often called bias-variance
tradeoff

I consider the task of learning a function over x 2 Rd where

Y = f (x ) + Z

with i.i.d noise Z
I the goal is to predict y from x by learning the function f , from

“training data” f(x1; y1); : : : ; (xn ; yn)g
I bias-variance tradeoff for Err(x ) for a given x is

E[(Y � f̂Y n
1
(x ))2] = (E[f̂Y n

1
(x )]� f (x ))2| {z }

Bias

+E[(f̂Y n
1
(x )� E[f̂Y n

1
(x )])2]| {z }

Variance

+E[(Y � f (x ))2]| {z }
Irreducible error
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I when the model is too complex, the model overfits the training data
and does not generalize to new data, which is referred to as high
“variance”

I when the model is too simple, the model undercuts the data and has
high “bias”

I common strategy to combat this is to (a) constrain the class of models
or (b) penalize the model complexity

I graphical models provide a hierarchy of model complexity to avoid
overfitting/underfitting

I in increasing level of difficulty, learning tasks can be classified as follows

F we know the graph, or we impose a particular graph structure, and we
need to learn the parameters

F we observe all the variables, and we need to infer the structure of the
graph and the parameters

F the variables are partially observation, and we need to infer the
structure
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Maximum likelihood
�(x ) =

1
Z

Y
a2F

 a(x@a)

I we want to learn the graphical model consisting of p nodes from n
i.i.d. samples

x (1); : : : ; x (n) 2 X p

I it is more convenient to parametrize the compatibility functions as
e�a (x@a ) =  a(x@a), and one approach is to use maximum likelihood
estimator

Ln(�;G; fx (`)g`2[n ]) =
1
n

log
� nY
`=1

�(x (`))
�

=
1
n

X
`2[n ]

X
a2F

�a (x
(`)
@a )� log Z (�;G)

this is a strictly concave function over � = [�a(x@a)] 2 R
P

a2F
jX jj@aj

,
I however, evaluating this function requires computing the log partition

function, which is in general #p-hard, even if G is given
I if inference is efficient then learning is efficient
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In case of Ising models,

�(x ) =
1
Z

Y
(i ;j )2E

e�ij xixj
Y
i2V

e�ixi

I the log likelihood function is

Ln(�;G; fx (`)g`2[n ]) =
X

(i;j )2E

�ij

n 1
n

nX
`=1

x (`)
i x (`)

j

o
+
X
i2V

�i

n 1
n

nX
`=1

x (`)
i

o
| {z }

,hbM ;�i

� log Z (�;G)| {z }
,�(�)

I cM = [cMij ; : : : ;cMi ; : : :] 2 RjE j+p where cMij =
1
n

P
` x

(`)
i x (`)

j andcMi =
1
n

P
` x

(`)
i

I this is a strictly concave function over � = [�ij ; : : : ; �i ; : : :] 2 RjE j+p
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I this maximum likelihood estimator is consistent, i.e. letb� = arg max� Ln(�;G ; fx (`)g), and let �� denote the true parameter,
then

lim
n!1

b� = ��

I Proof. by optimality of b�,
hcM ; b�i � �(b�) � hcM ; ��i � �(��)

by strong convexity of �(�), there exists � > 0 such that

�(b�) � �(��) + hM; (b� � ��)i+
�

2
kb� � ��k2

which follows form the fact that r��(�
�) = M, where Mij = E�[xixj ]

and Mi = E�[xi ], and together we get

hcM ; (b� � ��)i � �(b�)� �(��) � hM; (b� � ��)i+
�

2
kb� � ��k2

it follows that

kcM �Mk kb� � ��k � h(cM �M); (b� � ��)i �
�

2
kb� � ��k2
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I we have
kb� � ��k �

2
�
kcM �Mk

which gives, with high probability,

1
jE j+ p

kb� � ��k2 �
4

�2 n

where � = inf� �min(r
2�(�))

I computing the gradient of � is straight forward:

�(�) = log
X
x

Y
(i ;j )2E

e�ij xixj
Y
i2V

e�ixi

@�(�)

@�ij
=

1
Z (�;G)

X
x

Y
(i ;j )2E

e�ij xixj
Y
i2V

e�ixi xixj

= E�[xixj ] = Mij

I again, this is computationally challenging, in general, but if such
inference is efficient, then learning can also be efficient
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I recall that

��(x ) =
1
Z

Y
a2F

 a(x@a)

Let

c(x ) =
nX

i=1

I(x (i) = x ) ; and

c(x@a) =

nX
i=1

I(x (i)
@a = x@a)

then the log-likelihood is

L( ; x (1)
; : : : ; x (n)) =

1
n

X
i2[n ]

X
a2F

log( a(x
(i)
@a ))� log Z

=
X
a2F

X
x@a

c(x@a)

n| {z }
,b�(x@a )

log( a(x
(i)
@a ))� log Z
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I taking the derivative

@L( ; x (1); : : : ; x (n))

@ a(x@a)
=

b�(x@a)

 a(x@a)
�

�(x@a)

 a(x@a)

I if the graph is a tree, then one can find the ML estimate using the
above equation

I in general, it is computationally challenging, and one resorts to
approximate solutions

I iterative proportional fitting (IPF) updates the estimates iteratively
using the above fixed point equation:

 
(t+1)
a (x@a)   

(t)
a (x@a)

b�(x@a)

�(t)(x@a)
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Parameter learning
I suppose G is given, and want to estimate the compatibility functions
f a(x@a)ga2F from i.i.d. samples x (1); : : : ; x (n) 2 X p drawn from

�(x ) =
1
Z

Y
a2F

 a(x@a)

I Example. a single node with x 2 f0; 1g, and let

�(x ) =
�

� for x = 1
1� � for x = 0

consider an estimator b� = 1
n

Pn
`=1 x (`),

I Claim. For any "; � > 0, let n�("; �) denote the minimum number of
samples required to ensure that P(jb� � �j > ") � �, then

n�("; �) �
1

2"2
log

2
�

I this follows directly from Hoeffding’s inequality:

P
�
j
1
n

nX
`=1

x (`) � �j > "
�
� 2 expf�2n"2g

but it does not depend on the value of �
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I often we want " to be in the same range as �, and letting " = �� gives

n�(��; �) �
1

2�2�2
log

2
�

but applying Chernoff’s bound:

P
� 1
n

nX
`=1

x (`) � � > ��
�

� expf�DKL(�(1 + �)k�)ng ; and

P
� 1
n

nX
`=1

x (`) � � < ���
�

� expf�DKL(�(1� �)k�)ng

and using the fact that DKL((1 + �)�k�) � (1=4)�2�, for j�j < 1=2,
this can be tightened to

n�(��; �) �
4
�2�

log
2
�
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I Example. consider now a joint distribution �(x ) (satisfying �(x ) > 0
for all x ) over x 2 f0; 1gp with a large p, and an estimatorb�(x ) = 1

n

Pn
`=1 I(x (`) = x )

I it follows that the minimum number of samples required to ensure that
P(9x such that jb�(x )� �(x )j > ��(x )) � � is

n�(�; �) �
4

�2 minxf�(x )g
log

2p+1

�

which follows from the Chernoff’s bound with union bound over
x 2 f0; 1gp

I since minxf�(x )g � 2�p , the sample complexity is exponential in the
dimension p

I this is unavoidable in general, but when �(�) factorizes according to a
graphical model with a sparse graph, then the sample complexity
significantly decreases
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I we want to learn the compatibility functions of a graphical model using
‘local’ data, but compatibility functions are not uniquely defined,

�(x ) =
1
Z

Y
a2F

 a(x@a)

I we first need to define canonical form of compatibility functions
I recall that a positive joint distribution that satisfies all conditional

independencies according to a graph G has a factorization according to
the graph G , which is formally shown in the following

I Hammersely-Clifford Theorem. Suppose a �(x ) > 0 satisfies all
independencies implied by a graphical model G(V ;F ;E), then

�(x ) = �(0)
Y
a2F

e a (x@a)

where

e a (x@a) ,
Y

U2@a

�(xU ; 0V nU )(�1)j@anU j

=
Y

U2@a

��(xU ; 0V nU )

�(0U ; 0V nU )

�(�1)j@anU j
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I to estimate each term from samples, notice that

�(xU ; 0V nU )

�(0U ; 0V nU )
=
�(xU j0@@UnU )

�(0U j0@@UnU )

if the degree is bounded by k , then this involves only k3 variable nodes
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Structural learning

I consider p random variables x1; : : : ; xp represented as a graph with p
nodes

I the number of edges is
�p
2

�
= p(p � 1)=2, and each is either present or

not, resulting in 2p(p�1)=2 possible graphs
I given n i.i.d. observations x (1); : : : ; x (n) 2 X p , (assuming there is no

hidden nodes and all variables are observed), we want to select the best
graph among 2p(p�1)=2, i.e.

F how do we give scores to each model (i.e. graph) given data?
F how do we find the model with the highest score?
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I in statistics there are two schools of thoughts: frequentist and Bayesian

F frequentist assume the parameter � of interest are deterministic but
unknown, in particular there is no distribution over �

F maximum likelihood (ML) estimation finds � that maximizes the score
of a model parameter �, with the score being the log likelihood
log P�(x (1); : : : ; x (n))

F Baysians assume there exists a distribution over the parameter of
interest �(�)

F maximum a posteriori (MAP) estimation finds � maximizing the
posterior distribution evaluated on the given data, P(�jx (1); : : : ; x (n))

Frequentist’s approach to graph learning

arg max
G

arg max
�G

1
n

nX
i=1

log
�
�G;�G (x

(i))
�

| {z }
L(G;x (1);:::;x (n))
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I likelihood scores for graphical models are closely related to mutual
information and entropy

I recall that

I (X ;Y ) ,
X
x ;y

�(x ; y) log
�(x ; y)
�(x )�(y)

;

H (X ) , �
X

x

�(x ) log�(x )

H (Y jX ) , �
X
x ;y

�(x ; y) log�(y jx )

= �I (X ;Y ) + H (Y ) :
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I consider a directed acyclic graphical model (DAG)

�(x ) =
pY

i=1

�
�
(i)
G
(xi jx�(i))

where �(i)G represents all the parameters required to describe the
conditional distribution (e.g. the entries of the table describing the
conditional distribution)

�(xi jx�(i)) = [�
(i)
G ]xi ;x�(i)

I in computing L(G ; x (1); : : : ; x (n)),

arg max
G

arg max
�G

1
n

nX
i=1

log
�
�G;�G (x

(i))
�

| {z }
L(G;x (1);:::;x (n))

the ML estimate b�G for given data is the empirical distribution, i.e.

[b�(i)G ]xi ;xpi(i) = b�(xi jx�(i))| {z }
denotes empirical distribution

=
b�(xi ; x�(i))b�(x�(i))

Learning graphical models 11-19



I it follows that the log likelihood is

L(G; x (1)
; : : : ; x (n)) =

pX
i=1

Li (G; x (1)
; : : : ; x (n))

where

Li (G; x (1)
; : : : ; x (n)) =

1
n

X
`2[n ]

log b�(x (`)
i jx

(`)

�(i))

=
X

xi ;x�(i)

b�(xi ; x�(i)) log b�(xi jx�(i))

= �H (X̂i jX̂�(i))

= I (X̂i ; X̂�(i))�H (X̂i )

together, it gives

L(G; x (1)
; : : : ; x (n)) =

pX
i=1

L(G; x (1)
; : : : ; x (n))

=

pX
i=1

I (X̂i ; X̂�(i))�

pX
i=1

H (X̂i )

| {z }
independent of G
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I given a graph G , this gives the likelihood, and all graphs are subtracted
the same node entropies, and we only need to compare the sum of
mutual information terms per graph

I Chow-Liu 1968 addressed this for graphs restricted to trees, where
each node only has one parent. In this case, the pairwise mutual
information can be computed for all

�p
2

�
pairs and ML graphs amounts

to being the maximum spanning tree on this weighted complete graph.
This can be done efficiently using for example Kruskal’s algorithm,
where you sort the edges according to the mutual information, and you
add edges iteratively starting from the largest one, adding an edge each
time if it does not introduce a cycle. One needs to be careful with the
direction in order to avoid a node having two parents.
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I the ML score always favors more complex models, i.e. by adding more
edges one can easily increase the likelihood (this follow from the fact
that complex models include simpler models as special cases)

I without a penalty on complexity or a restriction to a class of models,
ML will end up giving a complete graph

I one way to address this issue is to introduce prior, which we do not
address in this lecture
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Structural learning

nAlg(G ; �) � inf
�
n 2 N : Pn ;G;�fAlg(x (1); : : : ; x (n)) = Gg � 1� �

	
;

�Alg(G ; �) � # operations of Alg when run on nAlg(G ; �) samples

Typically, we assume G sparse
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How would you modify maximum likelihod?

minimize L(�; fx (`)g)

subject to k�k0 � m

Intractable!
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`1-regularized maximum likelihood

b� = arg min
�

L(�; fx (`)g) + �k�k1

= �hcM ; �i+ �(�) + �k�k1

[cf. J.Friedman, T.Hastie, R.Tibshirani, Biostatistics, 2008]
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Local independence test

Idea: For each i 2 V , and for any candidate neighborood S ,

test independence of xi and xV nSi , Si � S [ fig.
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A possible implementation

Local Independence Test( samples fx (`)g )
1: For each i 2 V ;
2: For each S � V n fig, jS j � k ,
3: Compute Score(S ; i) = cH (Xi jXS );
4: Set S� = arg minS Score(S ; i) and connect i to all j 2 S�;
5: Prune the resulting graph.

[P.Abeel, D.Koller, A.Ng, 2006]

Learning graphical models 11-27



Another implementation

Score(S ; i) � min
W�V nS ;j2S

max
xi ;xW ;xS ;xj��bPn ;G;�fXi = xi jXW = xW ;XS = xSg�bPn ;G;�fXi = xi jXW = xW ;XSnj = xSnj ;Xj = zj g

�� :

[G.Bresler, E.Mossel and A.Sly, APPROX 2008]
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Another implementation

Local Independence Test( samples fx (`)g, thresholds ("; 
) )
1: For each i 2 V ;
2: For each S � V n fig, jS j � k ,
3: Compute Score(S ; i);
4: S� = arg maxfjS j : Score(S ; i) > "g and connect i to all j 2 S�;

Nobody would ever use these in practice!!
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Why?

nk+1 operations!
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For the sake of simplicity

�ij = �, �i = 0

�G;�(x ) =
1

ZG(�)
exp

n
�

X
(i ;j )2E

xixj

o

M = (Mij )1�i ;j�n ; Mij = EG;�fxixj g ; cMij =
1
n

nX
`=1

x (`)
i x (`)

j
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A very simple algorithm

Thresholding( samples fx (`)g, threshold � )
1: Compute the empirical correlations fcMij g(i ;j )2V�V ;
2: For each (i ; j ) 2 V �V
3: If cMij � � , set (i ; j ) 2 E ;
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Basic intuition

Thresholding works if

min
(i ;j )2E

Mij > max
(k ;l)62E

Mkl

This is true at small � because. . .
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Does not work always because
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And its analysis
Theorem
If G is a tree, and � (�) = (tanh� + tanh2 �)=2, then

nThr(�)(G ; �) �
8

(tanh� � tanh2 �)2
log

2p
�
:

Theorem
If G has maximum degree k > 1 and if � < atanh(1=(2k)) then

nThr(�)(G ; �) �
8

(tanh� � 1
2k )

2
log

2p
�
:

Theorem
If k > 3 and � > C=k , there are graphs such that for any � , nThr(�) =1.

[J.Bento and A.Montanari, NIPS 2009, and arXiv:1110.1769]
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High temperature series

� = tanh� :

Theorem (R.Griffiths, J. Math. Phys., 1967)

EG;�fxixj g �
X


2SAW(i!j )

� j
j
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This phenomenon is generic

Example: Regularized pseudo-likelihoods
[Meinshausen , Bühlmann, Ann.Stat. 2006]
[P.Ravikumar, M.Wainwright, J.Lafferty, Ann.Stat. 2010]

�(i) � f�i ;j : j 2 [p] n figg.

minimize �
1
n

nX
`=1

logP�fx
(`)
i jx (`)

@i g+ �k�(i)k1

The first therm only depends on �(i)! Has explicit expression!
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