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Gaussian graphical models

@ belief propagation naturally extends to continuous distributions by
replacing summations to integrals

Visj(zs) = H /wik(xiaxk)l/k—)i(xk) dxy
kedi\j
@ integration can be intractable for general functions

@ however, for Gaussian graphical models for jointly Gaussian random
variables, we can avoid explicit integration by exploiting algebraic
structure, which yields efficient inference algorithms
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Multivariate jointly Gaussian random variables
four definitions of a Gaussian random vector z € R": z is Gaussian iff
1. © = Au+ b for standard i.i.d. Gaussian random vector u ~ N(0,1)

T

2. y =a' x is Gaussian for all ¢ € R"”

3. covariance form: the probability density function is

1 1 _
nlx) = Wwexp{ —5@—mTAT (@ —m)}

denoted as z ~ N (m, A) with mean m = E[z] and covariance matrix
A =E[(z — m)(xz —m)T] (for some positive definite A).
4. information form: the probability density function is

1
wu(x) o< exp { — §£CTJ$ + th}

denoted as z ~ N ~1(h, J) with potential vector h and information
(or precision) matrix J (for some positive definite .J)

e notethat J=A"ltand h=A"1m=Jm

@ x can be non-Gaussian and the marginals still Gaussian
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@ consider two operations on the following Gaussian random vector

3 m1 A1 Ar2 a1 h1 Jin Ji2
St R (RN APl Rl (P R g )
@ marginalization is easy to compute when x is in covariance form

z1 ~ N(mi,A11)

for z1 € R%, one only needs to read the corresponding entries of

dimensions d; and d?
but complicated when x is in information form

z1 ~ NTYNR,J)
_ e
where J' = A111 = ( I o]J! 0} ) and

Wo=Jmi=([1 0] m )71 1 0] J-'A

o we will prove that b/ = hq — J12J2_21h2 and J' = Ji1 — J12J2_21J21
@ what is wrong in computing the marginal with the above formula?
for z1 € R% and 25 € R% and d; < da, inverting Jao requires

runtime O(d3397*) (Strassen algorithm)
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o Proof of J' = Ay = Ji1 — JiaJoyy Jon

» J' is called Schur complement of the block Jy5 of the matrix J
» useful matrix identity

A I B e A

0 1 C D||-Dc 1 0 D
A B]T' I 0] [(A—-BD-'c)~* o0 ][1 -BD-!
C D - |-Dl¢ 1 0 D-1| |0 I

_ [tA-BD"tC)! —-S—1Bpp-1
- —-D-cs-! D'+ D-1cs-'BD!

where S = A— BD~1C
> since A =J 1,

U Y E it [ = Ji2dgy Jan) —S 125!
Ja1 J22

where S = J11 — J12J2_21J21, which gives
An = (Ji1 — Jiadyy o)t
hence,
J! AL = Ji1 = Jiedayt Jn

Gaussian graphical models
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@ Proof of ¥ = J'mq = hy — J12J231h2

» notice that since

A = Jin Jio] 7! _ S—1 —S*1J12J2*21
a1 Ja2 —JotJa1 ST Tt + Jyt J21 ST e oyt
where S = J11 — J12J521J21, we know from m = Ah that
mi = [571 —S—lapag |
12J99 h2

since J' = S, we have
K =Jm = []I —J12J_1] h
22 1 1hy
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@ conditioning is easy to compute when z is in information form
zi|lTe  ~ N71<h1 — Ji2z2, J11 )

proof: treat x2 as a constant to get

R

p(z1, z2)
1opr | Jin Ji2 z1 T ,7| 1
o eXP{‘g[% 372]{ Jor Jog o +[hi R3] o }

1
o< exp{ — 5(1{Jl111 +2$g]211‘1) + h?xl}

p(z1|z2)

1
= exp{ - 51‘{‘7111‘1 + (h1 - J12.772)T:D1}

but complicated when x is in covariance form
zilre ~ N(@m',A)

where m/ = mj + A12A2_21($2 — mg) and A’ = Ay — A12A2_21A21
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Gaussian graphical model

theorem 1. For z ~ N (m,A), x; and x; are independent if and only
if Ajj =0
Q. for what other distribution does uncorrelation imply independence?
theorem 2. For 2 ~ N (h, J), zi=xy\f; jy—; if and only if J;; =0
Q. is it obvious?
@ graphical model representation of Gaussian random vectors

» J encodes the pairwise Markov independencies
» obtain Gaussian graphical model by adding an edge whenever J;; # 0

u(r) o exp{ — %CETJI + hTac}

1. T T 1. T
- He—izi Jigzithi @ H e~ 2% Jii%j

i€V () (i,J)€EE Pij(wi,25)

> is pairwise Markov property enough?
> Is pairwise Markov Random Field enough?
problem: compute marginals p(z;) when G is a tree
» messages and marginals are Gaussian, completely specified by mean
and variance
» simple algebra to compute integration
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example: heredity of head dimensions [Frets 1921]
@ estimated mean and covariance of four dimensional vector
(L1, By, L, Ba)

@ lengths and breadths of first and second born sons are measured
@ 25 samples

@ analyses by [Whittaker 1990] support the following Gaussian graphical

model
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example: mathematics scores [Whittaker 1990]

@ Examination scores of 88 students in 5 subjects
e empirical information matrix (diagonal and above) covariance (below

diagonal)
Mechanics Vectors Algebra Analysis Statistics

Mechanics 5.24 -2.44 -2.74 0.01 -0.14
Vectors 0.33 10.43 -4.71 -0.79 -0.17
Algebra 0.23 0.28 26.95 -7.05 -4.70
Analysis 0.00 0.08 0.43 0.88 -2.02
Statistics 0.02 0.02 0.36 0.25 6.45

Vectors Analysis

Algebra
Mechanics Statistics
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Gaussian belief propagation on trees

@ initialize messages on the leaves as Gaussian (each node has x; which
can be either a scalar or a vector)

_ 1. Ty o T _
vii(zi) = i(w) = e 2% Jusithiei o N Ji0)

where hi*)j = hi and JZ'A)]‘ = Jii

o update messages assuming vg_;(zx) ~ N7 (hp_i, Jusi)

visj(x;) = i) H / bike (i, T )Wp—si (Tg) dy

kedi\j

@ evaluating the integration (= marginalizing Gaussian)

/wik(xi7mk)'/k~>i(xk)dmk = /eiZiTJMIk7ézg]k%ﬂk+hgﬁ"mk dxy,
_ Ior 1[0 Jik %‘ T T
,/exp{ — f[cci xy, ] { T T +[0 hie_yil - }dwk
~NT ( szk_nhk—nv_J'Lka_”Jkl)

since this is evaluating the marginal of z; for (z;, ) ~ /\/*l< [ 0 } , { 0 Jik ] )
he—i| ' [Jik  Jk—i
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therefore, messages are also Gaussian v;_,;(x;) ~ N~ (hiy;, Jisj)

°
@ completely specified by two parameters: mean and variance
@ Gaussian belief propagation
hin; = hy— Z Jird i P
k€di\j
Jivg = Ju— Y Jwdi T
kedi\j
@ marginal can be computed as z; N/\f_l(fli, jl)
hi = hi— Z Jied it b
kedi
Ji = Ju-— Z Tie i L Thi
keoi
o for 2; € R? Gaussian BP requires O(n - d®) operations on a tree
» matrix inversion can be computed in O(d®) (e.g., Gaussian elimination)
o if we naively invert the information matrix Joo of the entire graph

1~ N7Uhi — Ji2J55 ha, J11 — J12J55" J21)

requires O ((nd)*) operations

Gaussian graphical models
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@ connections to Gaussian elimination

> one way to view Gaussian BP is that given J and h it computes

m=J'h

> this implies that for any positive-definite matrix A with tree structure,
we can use Gaussian BP to solve for z

» example: Gaussian elimination

Az =D

(= A"'b)

» Gaussian elimination that exploits tree structure by eliminating from

the leaves is equivalent as Gaussian BP

Gaussian graphical models
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@ MAP configuration
» for Gaussian random vectors, mean is the mode

1 T -1
max exp{—i(x—m) Az —m)}
taking the gradient of the exponent

0 1 T A —1 _ —1
%{—i(x—m)A (z—m)} =—-A""(z—m)

hence the mode z* =m

Gaussian graphical models
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Gaussian hidden Markov models

e\ e\ e\ e\ )
Zo X1 €2 €3 T4 €5 Te
Yo 1 2 Y3 Ya Ys Ye
@ Gaussian HMM

> states z; € R?
> state transition matrix A € R*¢
> process noise v; € RP and ~ N(0,V) for some V € RPXP, B € R4*P

Ti41 = A:rt + th
o ~ N(O,Ao)

v

observation y; € RY, ' € R% x4
observation noise w; ~ N (0, W) for some R € R% x4

v

yp = Cy +wy
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e in summary, for H = BV BT

e factorization

g N(O,Ao)

$t+1|$t ~ N(A-Tta
yt|113t ~ N(C'xt,

pw(,y) = p(zo)p(yolwo)p(zi|wo)p(yr|z1) - -

o exp ( - %:{:OTAala:()) exp < - %(yo - Cxo)wal(yo — C’xo))
_Ax0)>
t
= [T
k=0

Gaussian graphical models

1
exp ( — 5(:{:1 — Azo)TH Y (ay
t ¢

(@) [T r-1k(@n—1, zx) H
k=1 k=0

H)
W)

(Yx) H Sk, k (Tk, Yi)

k=0
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@ factorization

t t t t
w(@,y) o [T e(@n) [ vr—rk@e—1,26) [ ¢er) [ ork (@ ve)

k=0 k=1 k=0 k=0

—Lal (At + CTWTIC+ ATH  A)zg k=0

= J

0
1. T —1 T —1 T rr—1
—zzi(H 4+ C W "C+A"H "Ax O<k<t
log (o) = {27k o
= Ji
— el (H '+ CTW IOy k=t
—_————
= J¢
1 _ 1, = 2P H TAxy_
og Yr—1,k(T—1,%1) Ty Tp_1
= Lyg
1
log pr(yx) = —5y;3W_1yk
1 = 2FcTw—!
og ¢k, k (Tk, Yi) T}, Yk
= My
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@ problem: given observations y estimate hidden states x

o O O O O O O

i) 1 o T3 T4 T5 L6

pulzly) o H eXP{ - *931@ k Ik + a Myyy } H eXP{ —aj ( Lk)xkq}
~——

k=0 hk Ik k-1

@ use Gaussian BP to compute marginals for this Gaussian graphical

model on a line
» initialize

Jos1 = Jo, ho—s1 = ho
Jos = Js, he—s = he
» forward update T = Ji— LiJo 1_”LT
hisiva = hi—L; JiZ 1_nhvi—1—>i
» backward update
P Jisici = Ji—Lip z+1~>zL2+1
hisic1 = hy — z+1JZ+1H1hi+1ﬁi

Gaussian graphical models
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» compute marginals

Ji = Ji— L, LT — Ly J24 LY
hi = hi— LiJ Y hio1i — Lis1J 3 ihivioi

> the marginal is

Gaussian graphical models
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Kalman filtering (1959)

@ important problem in control

@ provides a different perspective on Gaussian HMMs
e problem: linear quadratic estimation (LQE)
» minimize the quadratic loss:

Lwiw) = Y@k -2’ = Ew) - )" () - 2)

k

> since x is random, we minimize the expected loss
E[Lz.2)ly] = #()72(y) +Elx"aly] — 22(y) Efely]
» taking the gradient w.r.t Z(y) and setting it equal to zero yields
22(y) — 2E[zly] = 0

» minimum mean-squared error estimate is Z*(y) = E[z|y]
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O O O O )

Zo x1 x2 x3 Zq Iy Ze

Yo 1 2 Y3 Ya Ys Ye

@ Linear dynamical systems with Gaussian noise (= Gaussian HMM)

> states z; € R?
> state transition matrix A € R%*4
> process noise v; € R? and ~ N(0,V) for some V € RP*P, B € R*P

Ti41 = Axt + BUt
o ~ N(O,AQ)

observation y; € RY, ' € R% *xd
observation noise w; ~ N'(0, W) for some R € R% x4

v

v

yr = Cxy + wy
» all noise are independent

Gaussian graphical models 7-21



Conditioning on observed output

@ we use notations

Te]s = E[xt|y07"'ays]
Ss = El(me — 2y5) (@ — z45) |yo, -+ )

» the random variable 2¢|yo, - - -, ys is Gaussian with mean x|, and
covariance Yy

> Ty|s is the minimum mean-square error estimate of x; given yo, -+, ys
» X4, is the covariance of the error of the estimate x;,
@ we focus on two state estimation problems:

» finding x4, i.e., estimating the current state based on the current and
past observations

» finding x4 14, i-e., predicting the next state based on the current and
past observations

e Kalman filter is a clever method for computing z;; and x4,
recursively
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Measurement update

o let's find @y, and Xy in terms of xy,_; and Xy,

o let }/;5—1 == (y07 Tt 7yt—1)v then
Y |Yie1 = Coy|Yio1 + wiYi—1 = Cay|Yiq1 + wy

since w; and Y;_1 are independent

@ so z;|Y;—1 and y;|Y;—1 are jontly Gaussian with mean and covariance

[ T|t—1 } [ Et\tfl 2t|t710T
Cay—r]’  [CXy— Czt|thCT +W
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@ now use standard formula for conditoining Gaussian random vector to
get mean and variance of

(l’t|Yt—1) ’ (yt|Yt_1)
which is exactly the same as x;|Y;

Typ = Typ-1 T+ Et\t—ICT(CEt\t—ICT + W)y — Cwyy_y)
Y = Byge-1 — Et\tflcT(CzﬂtflCT+W)7102t|t71

o this recursively defines z; and X, in terms of ;1 and ;¢

o this is called measurement update since it gives our updated estimate
of z; based on the measurement y; becoming available
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Time update

@ now we increment time using x;11 = Az + By,

@ condition on Y; to get
1Yy = Axy|Y: + Bw|Yy = Axy|Y; + Bwy

since vy is independent of Y;

o therefore z; ), = Awy; and

Yippe = E[(xtJrl\t - $t+1)(33t+1|t - $t+1)T]
= E[(Azy, — Azy — Bug)(Azy, — Az — th)T]
= A%, A"+ BVBT
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Kalman filter

o Kalman filter:

measurement update and time update together give a recursion
start with zg_; = 0 and Xg_; = Ag

apply measurement update to get xo and g

apply time update to get x1|p and Xy

repeat ...

vV vy vy VvYyy

@ we have an efficient recursion to compute
Ty = arg miny E[(mt — ) (2 — 2)|yo ... ,yt]

@ notice there is no backward update as in Gaussian BP, because we are
interested in real time estimation: estimate current state given
observations so far
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Example #1: Consensus propagation
[Moallemi and Van Roy, 2006]

Y11
Observations of the ‘state of the world': y1,y2,...,yn
Objective: compute at each node the mean

1 n
y= ﬁzyz
i=1

Bottle-neck: communication allowed on the edges
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Graphical model approach

o define a Gaussian graphical model /i, () on G with parameters
y = (y1,Y2,-..,Yn) such that

Eu{%} =Y

@ equivalently, define J and h such that m = J~'h =71

@ of course we could define J =1 and h =71

@) = G e { = g le = 7113}
1 1 _

... but this does not address the problem.
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@ use a Gaussian graphical model

1

(@) = - eXp{ —% > (@i — ) —% > (@ —yz‘)Z}

(i)eB iev

and solve for z (hoping that the solution m is close to y1)

1
m = arg min % Z (zi —x5)% + 3 Z(ﬂcz — ;)2

z€R™ “ £
(i4)EE iev

@ intuition: as v — oo, x; ~ x; for all 7, j € V. Hence z; =~ 7:

m = argrgrgn{Z(f Vi) } Zyz

eV ’LEV

Gaussian graphical models
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Graph Laplacian

e Laplacian of a graph is defined as

-1 if (i,j) e E
Lo)ii = . DA '
(L6 { degn (i) ifi=j.
o for z € R", we have (z, Lo z) = %Z(i’j)eE(xi —z;)% In particular,
> EG =0
> £G1 =0
» If G is connected, then the null space of L& has dimension one
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@ rewriting things,

1 y 9 1 2
py(x) = A exp{ ) Z (i —xj)” — B Z(wz — Yi) }
(i.j)€E i€V
1 ¥ 1
= 5 ew{ - 2@ Lan) 5 o - yl3)
o if we compute E, {z} by taking the derivative and setting it to zero,
we get
—~vLgr—x+y=0
and
Efz} = (I+7Le)y
=0 11Ty =51

@ can we compute this using Gaussian belief propagation (in a
distributed fashion)?
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Consensus Propagation

Belief Propagation
let A; = degs(i), then

py(z) = E Z TiTj — 5 Z(l + Az + Zyzﬂfz )
( J)EE zGV eV
Ji=1+90, Jiy=-v, hi=y.

J'(t—l-.l) = 1++A;— Z 72
i i S@

keai\j k—i
h(t—l—l)

i—) = y’b+ Z k—n

keoi\j lc—m
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Consensus Propagation

Redefine
t t
Kl(J)] = —7+Ji(lj
(t)
o D
=y t
KO,
K
Kz'(t—jrjl) = L i_n )
keaa\; L+ KL,
K@ ®
) Yi + D keoi T ONME S
g T ©®

k—1
1+ Zkeai\j 1+7_1}’<:_)”

v

Interpretation? K;_,; as size of population and m;_,; as population mean
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From a quadratic MRF to a covariance matrix

@ given a quadratic Markov random field parametrized by h and J

1 1
p(x) = 7 H exp{h?wi — xZTJuxZ} H exp{—ix?Jijxj}
1% (i,9)EF

it is a valid Gaussian distribution only if J is positive definite
@ a symmetric matrix J is positive definite if and only if
0. 27Jx > 0 for all z € R™
1. all eigen values are positive
proof = A = T‘Zﬁf >0
proof <= z'Jr =2"UDUz =3"Di =3%,7Dsi > 0
2 has a Cholesky decomposition: there exists a (unique) lower triangular
matrix L with strictly positive diagonal entries such that J = LTL
proof =
proof <= 2T Jz = 2" LT Lx = || Lz||®> > 0
3 satisfies Sylvester's criterion: leading principal minors are all positive (a
kth leading principal minor of a matrix J is the determinant of its
upper left k by k sub-matrix)

@ there is no simple way to check if J is positive definite
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Sufficient conditions

@ toy example on 2 X 2 symmetric matrices

]

@ what is the sufficient and necessary condition for positive definiteness?

Gaussian graphical models 7-35



Sufficient conditions
o sufficient condition 1. J is positive definite if it is diagonally
dominant, i.e.,
D il < i
J#i
» proof by Gershgorin's circle theorem

@ [Gershgorin’s circle theorem] every eigenvalue of A € R™*"™ lies
within at least one of the Gershgorin discs, defined for each i € [n] as

D, = {ggeRHx—Jiz‘|S Z|Jw|}

J#i

2 T T T T T T

]

-1 :
10 05 05 05
0 5 0.1 0.2 T I E— 0 2 4 6 8 10 12
03 0 0 05
0 05 05 —4

@ Corollary. diagonally dominant matrices are positive definite
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e proof (for a amore general complex valued matrix A). consider
an eigen value A € C and an eigen vector x € C™ such that

Ax =z

let ¢ denote the index of the maximum magnitude entry of = such
that |x;| > |z;| for all j # i, then it follows that

Z Aijl'j = )\xi
Jj€ln]

and
> Az = (A= Ay
J#i

dividing both sides by x; gives

i i Aijz;
-l = |[ZEE < SO|EEE < S Ayl = Ry
! g#e Ji
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@ when there is an overlap, it is possible to have an empty disc, for
1 1 -2 : .
example [Z 0] and [1 _J have eigen values {—2,2} and {i, —i}

@ theorem. if a union of k discs is disjoint from the union on the rest
of n — k discs, then the former union contains & eigen values and the
latter n — k.

o proof. let
B(t) £ (1 —t)diag(A) + t(A)

for t € [0,1], and note that eigen values of B(t) are continuous in ¢.
B(0) has eigen values at the center of the discs and the eigen values
{A(#)i}ieln) of B(t) move from this center as t increases, but by
continuity the k eigen values of the first union of discs can not escape
the expanding union of discs

@ counter example? computational complexity?
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Sufficient conditions

o sufficient condition 2. J is positive definite if it is pairwise
normalizable, i.e., if there exists compatibility functions v;'s and

Pij's such that Ji = 3" p; a@(;i)'

—log¥i(zi) =z aiwi+ b z;
—log ¥ij(xi,x;) = sza( Vi + o] a(;]):zj + x?ag;j)a:j
(u) ;a( 7)
we have a; > 0 for all ¢ and (U) 2 (m) is PSD for all 2 x 2
2 ij @y

minors
» follows from [ f(z)g(z)dz < [|f(z)|dx [|g(z)|dx

x1 x2 x2 x3 x1 x2 x2 x3
x1 2 -1 x2 1 2 x1 2 -1 x2 2 2
x2 -1 3 x3 2 3 x2 -1 2 x3 2 3

@ counter example? computational complexity?
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Correctness

@ there is little theoretical understanding of loopy belief propagation
(except for graphs with a single loop)

@ perhaps surprisingly, loopy belief propagation (if it converges) gives
the correct mean of Gaussian graphical models even if the graph has
loops (convergence of the variance is not guaranteed)

e Theorem [Weiss, Freeman 2001, Rusmevichientong, Van Roy 2001]
If Gaussian belief propagation converges, then the expectations are
computed correctly: let

) = (SR

2

where 'fnl(-z) = belief propagation expectation after ¢ iterations

ji(e) = belief propagation information matrix after ¢ iterations

BZ@ = belief propagation precision after ¢ iterations and if
() & limy_, o 5° exists, then

7
~ (00)
m; = m;
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A detour: Computation tree
-

L
e computation tree CT(i;¢) is the tree of {-steps non-reversing
walks on G starting at 4.

@ what is m

T‘:io

® i,j,k,...,a,b,... for nodes in G and r,s,t,... for nodes in CT(i; /)

@ potentials ; and v;; are copied to CT(i;£)

@ each node (edge) in G corresponds to multiple nodes (edges) in
CTe(is ).

@ natural projection 7 : CTg(i;¢) — G, e.g., w(t) =7(s) =j
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A detour: Computation tree
-

L
e computation tree CT(i;¢) is the tree of {-steps non-reversing
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T‘:io
b
i w(u):bf\ (v) =c
U v
c
a
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A detour: Computation tree
-

L
e computation tree CT(i;¢) is the tree of {-steps non-reversing
walks on G starting at 4.

@ what is m

(t) =a 7(s)=a
® i,j,k,...,a,b,... for nodes in G and r,s,t,... for nodes in CT(i; /)
@ potentials ; and v;; are copied to CT(i;£)
@ each node (edge) in G corresponds to multiple nodes (edges) in
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@ natural projection 7 : CTg(i;¢) — G, e.g., w(t) =7(s) =j
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What is "7

e Claim 1. mgﬁ) is m?), which is the expectation of z,, w.r.t. Gaussian
model on CT¢(i;¢)

» proof of claim 1. by induction over /.
> idea: BP ‘does not know' whether it is operating on G or on CT¢(4;¢)

@ recall that for Gaussians, mode of —%$TJ$ + ATz is the mean m,

hence
Jm=nh

and since J is invertible (due to positive definiteness), m = J~1h.

@ locally, m is the unique solution that satisfies all of the following
series of equations for all : € V'

Jiim; + Z Jijm; = h;
JEOI
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@ similarly, for a Gaussian graphical model on CT(i;¢)
Ty

rSs

the estimated mean 719 is exact on a tree. Precisely, since the width
of the tree is at most 2/, the BP updates on CT(7; ) converge to the
correct marginals for t > 2¢ and satisfy

S t
rrnq( + j{: J;sﬂl = r
seor

where r is the root of the computation tree. In terms of the original
information matrix J and potential h

J%(r%ﬂ(ﬂ7ﬁ£w'+ j{: J%(r ),m(s)1 A(O __h
sEIr
since we copy J and h for each edge and node in CT¢(4;£).
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» note that on the computation tree CT (i, ;¢), m&” = m&‘) fort > ¢
since the root 7 is at most distance ¢ away from any node.

» similarly, for a neighbor s of the root r, ) = ml for ¢ >l+1
since s is at most distance ¢ + 1 away from any node.

» hence we can write the above equation as

J‘n’(r 7 ( r)m )+ Z J (r 7r(s 7 (£+1) = h (1)
seor

Gaussian graphical models 7-44



if the BP fixed point converges then

Jim =
we claim that limy_, m&f) = mf(j)) since
lim m® = lim mY by Claim 1.
N (—oo  T(T)

by the convergence assumption

we can generalize this argument (without explicitly proving it in this
lecture) to claim that in the computation tree CT(7;¢) if we
consider a neighbor s of the root 7,

lim Mt = )
(oo ° 7(s)
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Convergence

from Eq. (1), we have
z 1
J7r 7r(r + Z J 7r(s D = h‘ﬂ'(’!’)
seor
taking the limit ¢ — oo,
e ) T D Jn(e)n(e)gy) = har)
seor

hence, BP is exact on the original graph with loops assuming
convergence, i.e. BP is correct:

”m —|— Z me = h
JED

Jn(>®) = p
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What have we achieved?

@ complexity?
@ convergence?

o correlation decay: the influence of leaf nodes on the computation
tree decreases as iterations increase

@ understanding BP in a broader class of graphical models (loopy belief
propagation)

o help clarify the empirical performance results (e.g. Turbo codes)
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Gaussian Belief Propagation (GBP)

o Sufficient conditions for convergence and correctness of GBP

>

Rusmevichientong and Van Roy (2001), Wainwright, Jaakkola, Willsky
(2003) : if means converge, then they are correct

Weiss and Freeman (2001): if the information matrix is diagonally
dominant, then GBP converges

convergence known for trees, attractive, non-frustrated, and diagonally
dominant Gaussian graphical models

Malioutov, Johnson, Willsky (2006): walk-summable graphical models
converge (this includes all of the known cases above)

Moallemi and Van roy (2006): if pairwise normalizable then
consensus propagation converges
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