5. Density evolution

Density evolution

5-1

Probabilistic analysis of message passing algorithms

variable nodes factor nodes
¢a($i, Zj, :Ck)
©
O

e consider factor graph model G = (V, F, E) and
p(z) = 5 [] bolwea) [| i(a)
aEF eV

@ sum-product algorithm and max-product algorithms are instances of
message-passing algorithms
» discrete 7; € X
> two sets of messages {v;_,q(z;)} and {J,—i(z:)}
» update:

v = P ({5, b e 0i\ a})
P = Ganil{r, 1 € 8a\1})

Density evolution 5-2

@ assumptions for probabilistic analysis
» a random graph is a graph G = (V, F, E) where E is drawn randomly
from a set of possible graphs
e.g., Erdds-Renyi graph, random regular graph
» asymptotic analysis: in the limit n — oo

@ density evolution is used in

» analyzing channel codes
analyzing solution space of XORSAT
analyzing a message-passing algorithm for crowdsourcing
analyzing belief propagation for community detection
etc.

vV vy vYyy

Density evolution 5-3

Example: channel coding

@ sending messages through a noisy channel

x—) y

o channel is defined by Py |x(y|z)
@ Binary Erasure Channel (BEC)
» input z; € {0,1}, output y; € {0,1,*}

0 L1-c 0

f ?

1 T—¢ 1

@ goal: estimate Z;....,Z, given y1,..., Yn

@ performance metric: average bit error probability
1 n

Perror = E ZP(ZE ?é Ez)
i=1

Density evolution 5-4

Message length vs. block length

€e=0.4
0 L-e o BER: / 7
€ B /
9 ,
1 I—¢ 1 A e —a
code rate r

@ no coding: (01001) = (01 % Ox)
» message k = 5 bits, block length n =5
= rate of this code 7 = k/n = 1, delay is one
> Perror = 6/2
@ repetition code: (000111000000111) = (O % %1 % 10 % 0 % % % 111)
» k=5 n=15
» rate 7 = 1/3 and Pepor = €3/2, delay is 3
> in general, Perror = €'/7/2 > 0 (unless rate is zero)
@ information theory
» capacity of a BECis 1 —¢
» there exists a code such that lim,_yo0 Perror = O withrate r < 1 — ¢
» using the BEC n times, one can reliably send k = (1 — €)n bits of
Density evonggaoes 5-5

Modern coding theory

e modern codes = iterative decoding (belief propagation)
» Turbo code
» Low-Density Parity Check (LDPC) code
» Polar code
> etc.

@ LDPC code is defined by a factor graph model
variable nodes factor nodes

()

%6{0,1}
OSSN
()

n 'l/Ja(fri, Ty, xk) =]I("rz @ T ® T = O)

block length n =4

number of factors m = 2

allowed messages = {0000, 0111,1010,1101}

message size k = log,(# of allowed messages) =2 (k =n — m)
rater = k/n=1/2

received y = (0 * 1), then T = (0111)

» received y = (0 * %), then ?
Density evolution 5-6

vV vy vy VY VY

Peeling decoder is equivalent to sum-product for BEC
without loss of generality, suppose all 0's sent

Density evolution

5-7

Peeling decoder is equivalent to sum-product for BEC
without loss of generality, suppose all 0's sent

¥ O % ¥ O O % O O

*

*

o

Density evolution

5-7

Peeling decoder is equivalent to sum-product for BEC
without loss of generality, suppose all 0's sent

*¥ O % ¥ O O % O O

*

Density evolution

5-7

Peeling decoder is equivalent to sum-product for BEC
without loss of generality, suppose all 0's sent

¥ O % ¥ O O % O O

*

*

o

Density evolution

5-7

Peeling decoder is equivalent to sum-product for BEC
without loss of generality, suppose all 0's sent

¥ O ¥ O O OO O O

*

oo

Density evolution

5-7

Peeling decoder is equivalent to sum-product for BEC
without loss of generality, suppose all 0's sent

¥ O ¥ O O OO O O

*

Density evolution

5-7

Peeling decoder is equivalent to sum-product for BEC
without loss of generality, suppose all 0's sent

¥ O ¥ O O OO O O

*

oo

Density evolution

5-7

Peeling decoder is equivalent to sum-product for BEC
without loss of generality, suppose all 0's sent

0

0

0

0

0

0

* CD\

0 \D
0 :’ '-.---"'--t:——‘ ——————
0 - et TR
0

0

Density evolution

5-7

Peeling decoder is equivalent to sum-product for BEC
without loss of generality, suppose all 0's sent

OO O O O ¥ O O OO0 O o

Density evolution

5-7

Modern coding theory

@ decoding using belief propagation

1
By(z) = z [T Pyix(vilz) [l(@zoe = 0)
eV acF

@ use (parallel) sum-product algorithm to find p(z;) and let

Z; = argmax u(z;)

» minimizes bit error rate

Density evolution

5-8

Decoding by sum-product algorithm

@ Directly applying parallel sum-product algorithm
~(t
VD (@) = P(ui12) Theon oy Pini(@)
ﬂz(zi_zl) - Ez@a\{z} njeaa\{i} Vi—a(2)[(®50 = 0)

@ Notice that all v,¥'s can take only one of the following three values:

e {119 [}

hence, we will map these vectors to symbols {0, 1, x}
@ because (proof by induction)

> initially,
1 .
|:O:| if Y, = 0
@)= o] W@ =] 5w
1/2 e
[1/2 if y; = %

Density evolution

5-9

» recursively, assuming the input messages up to t are one of the three

types,
{é] if all other bits are determined and add up to 0
D((lt_i)(:ci) = {(1) if all other bits are determined and add up to 1
[1;; if there is at least one bit that is not determined
1 . . .1
0 if at least one of the input message is 0
uz(t:;)(a:i) = (1) if at least one of the input message is (1)
2] ., . 1/2
{1/2} if all input messages are [1/2}

» consequently, the messages only take those three values
» we will denote those three types of messages as 0, 1, and %, meaning
determined to be 0 or 1, or not determined.

Density evolution 5-10

° (simplified) Parallel sum-product for BEC
Ha € {0, 1, x} our belief about z;
5 e {0, 1, ¥} our belief about z;

(l*)l o
» at iteration O: ufla =Y

> at iteration ¢:

_ { x if any of the incoming messages is a *

®Tp.\; otherwise

>l/

| 4

~(t)

Volsi

NOI. x if all of the incoming messages are *
=ae | gp,; otherwise

@ this is equivalent to the peeling decoder

Density evolution

5-11

Probabilistic analysis: density evolution

@ an LDPC code is defined by a graph G

@ probabilistic analysis: we want to predict the performance of a given
LDPC code G

@ to this end, we use density evolution on the computation tree

o if G is locally tree like up to depth k, and if we run sum-product
(k)

1—a

algorithm for k iterations, then the resulting message v:"! is fully

k
described by the computation tree for the message v, ,:

EE

Vl%c Visa

VTW
?

E@

Density evolution 5-12

@ however, it is not always possible to apply density evolution
@ a few assumptions

» sparse random graph construction

(e.g. random (¢, r)-regular graph from the configuration model)
» asymptotic analysis:

in the limit m — oo but finite number of iterations ¢

@ why do we need these assumptions?

» it is difficult to analyze one particular graph, so we resort to the
expected performance where the expectation also take into account the
randomness in the graph generation

» random sparse graphs are locally tree-like

* if we consider random (d, d)-regular graphs, the expected number of
2-cycles is (£ + -+ + 9=1) x n, which is small compared to the
number of edges

Density evolution 5-13

Probabilistic analysis: density evolution

o locally-tree like structure ensures that the incoming messages are
independent

@ formally, as n — oo local neighborhood of a node converges in
probability to a random tree

P(lim depth k neighborhood of a random 7 is a tree) =1
n—oo

e density evolution for (¢, 7)-regular graph

» 2 € [0,1] be the probability a randomly chosen message from {Vga
is an erasure

» w; € [0, 1] be the probability a randomly chosen message from {’7:(121}
is an erasure

» in the limit n — oo, they satisfy the density evolution equations

wy = 1-— (1 — Zt_l)ril

ze = 6wf71

Density evolution 5-14

zZt = 6(1 — (1 — Zt,]_)ril)zil

with initial condition zg = ¢
@ density evolution for (3,6) code with € = 0.4(left) and 0.45(right)

! 7 1

0.8 + yd 0.8

06 | e 06

04 —— t 0.4
e

o rate of this code = 0.5, threshold €* ~ 0.4xxx,
@ this simple code achieves rate less than the capacity = 1 — ¢
° Perror(t) = limp 500 Perror(n; t)
@ analyze lim¢_,00 limy 00 Perror(7, t), is this what we want?
Density evolution 5-15

for a given value of €, we can numerically run the density evolution, since
it is an evolution of a scalar value, which gives

bit error rate of (3, 6)-codes

how do we find €*?

Density evolution 5-16

2t = 6(1 — (1 — Zt_1)T_l)£_1
let's change the equation to

1/(£—1)
()" = -

e=04 e=0.44

for a given ¢, if there is no overlap, then achieve zero error probability

1 1
/ey“ldy:%, /(1—(1—x)“1)dm:1—
0 0

rate of the code = 1 — f vs. capacity = 1 —¢

extend this analysis to construct capacity achieving tornado codes
Density evolution

1

r

density evolution for general message passing algorithms

variable nodes factor nodes
¢a($i, Zj, :Ck)
©
O

e consider factor graph model G = (V, F, E) and
p(z) = 5 [] bolwea) [| i(a)

acF eV
> update: 5D — B (450 b e di\ ad)
70, = Gail{y2, 15 €8\ 3})
» density evolution equation
200 = pwl? we(i)l)
wt) = G(zl(t), ey z,gt_)l)

Density evolution

5-18

e formally, as » — oo a randomly chosen message from {v,"’,

converge in probability to z(*)
@ who cares about random graphs?

@ who cares about asymptotics?

(®) 1

’ alphabet z; € X \ messages Vi ,q € Y \

density Z

continuous R

discrete {0, 1}

discrete {0, 1, *}

discrete

continuous RI¥I-1

distribution over RI*I-1

continuous R

distribution over R

dist. over dist. over R

@ how do we compute evolution of distributions?

» quantization

» Gaussian approximation
» population dynamics: represent the density using ‘samples’

Density evolution

5-19

