
5. Density evolution

Density evolution 5-1

Probabilistic analysis of message passing algorithms

a

b

x1

x2

x3

x4

variable nodes factor nodes

 a(xi ; xj ; xk)
xi

consider factor graph model G = (V ;F ;E) and

�(x) =
1
Z

Y
a2F

 a(x@a)
Y
i2V

 i (xi)

sum-product algorithm and max-product algorithms are instances of
message-passing algorithms

I discrete xi 2 X
I two sets of messages f�i!a(xi)g and f�̃a!i (xi)g
I update:

�
(t+1)
i!a = Fi!a(f�̃

(t)
b!i : b 2 @i n ag)

�̃
(t)
a!i = Ga!i (f�

(t)
j!a : j 2 @a n ig)

Density evolution 5-2

assumptions for probabilistic analysis
I a random graph is a graph G = (V ;F ;E) where E is drawn randomly

from a set of possible graphs
e.g., Erdös-Renyi graph, random regular graph

I asymptotic analysis: in the limit n !1

density evolution is used in
I analyzing channel codes
I analyzing solution space of XORSAT
I analyzing a message-passing algorithm for crowdsourcing
I analyzing belief propagation for community detection
I etc.

Density evolution 5-3

Example: channel coding
sending messages through a noisy channel

Channelx y

channel is defined by PY jX (y jx)
Binary Erasure Channel (BEC)

I input xi 2 f0; 1g, output yi 2 f0; 1; �g

goal: estimate bx1: : : : ; bxn given y1; : : : ; yn
performance metric: average bit error probability

Perror �
1
n

nX
i=1

P(xi 6= bxi)

Density evolution 5-4

Message length vs. block length

code rate r

BER

� = 0:4

no coding: (01001)) (01 � 0�)
I message k = 5 bits, block length n = 5

) rate of this code r , k=n = 1, delay is one
I Perror = �=2

repetition code: (000111000000111)) (0 � �1 � 10 � 0 � � � 111)
I k = 5, n = 15
I rate r = 1=3 and Perror = �3=2, delay is 3
I in general, Perror = �1=r=2 > 0 (unless rate is zero)

information theory
I capacity of a BEC is 1� �
I there exists a code such that limn!1Perror = 0 with rate r < 1� �
I using the BEC n times, one can reliably send k = (1� �)n bits of

messagesDensity evolution 5-5

Modern coding theory
modern codes = iterative decoding (belief propagation)

I Turbo code
I Low-Density Parity Check (LDPC) code
I Polar code
I etc.

LDPC code is defined by a factor graph model

a

b

x1

x2

x3

x4

variable nodes factor nodes

 a(xi ; xj ; xk) = I(xi � xj � xk = 0)
xi 2 f0; 1g

I block length n = 4
I number of factors m = 2
I allowed messages = f0000; 0111; 1010; 1101g
I message size k , log2(# of allowed messages) = 2 (k = n �m)
I rate r , k=n = 1=2
I received y = (0 � 1�), then bx = (0111)
I received y = (0 � ��), then ?

Density evolution 5-6

Peeling decoder is equivalent to sum-product for BEC
without loss of generality, suppose all 0’s sent

0

*

0

0
0

*
*

*
0

0

*
*

Density evolution 5-7

Peeling decoder is equivalent to sum-product for BEC
without loss of generality, suppose all 0’s sent

0

*

0

0
0

*
*

*
0

0

*
*

Density evolution 5-7

Peeling decoder is equivalent to sum-product for BEC
without loss of generality, suppose all 0’s sent

0

*

0

0
0

*
*

*
0

0

*
*

Density evolution 5-7

Peeling decoder is equivalent to sum-product for BEC
without loss of generality, suppose all 0’s sent

0

*

0

0
0

*
*

*
0

0

*
*

Density evolution 5-7

Peeling decoder is equivalent to sum-product for BEC
without loss of generality, suppose all 0’s sent

0

0

0

0
0

0
*

*
0

0

*
0

Density evolution 5-7

Peeling decoder is equivalent to sum-product for BEC
without loss of generality, suppose all 0’s sent

0

0

0

0
0

0
*

*
0

0

*
0

Density evolution 5-7

Peeling decoder is equivalent to sum-product for BEC
without loss of generality, suppose all 0’s sent

0

0

0

0
0

0
*

*
0

0

*
0

Density evolution 5-7

Peeling decoder is equivalent to sum-product for BEC
without loss of generality, suppose all 0’s sent

0

0

0

0
0

0
*

0
0

0

0
0

Density evolution 5-7

Peeling decoder is equivalent to sum-product for BEC
without loss of generality, suppose all 0’s sent

0

0

0

0
0

0
*

0
0

0

0
0

Density evolution 5-7

Modern coding theory

decoding using belief propagation

�y(x) =
1
Z

Y
i2V

PY jX (yi jxi)
Y
a2F

I(�x@a = 0)

use (parallel) sum-product algorithm to find �(xi) and let

bxi = argmax�(xi)

I minimizes bit error rate

Density evolution 5-8

Decoding by sum-product algorithm
Directly applying parallel sum-product algorithm

�
(t+1)
i!a (xi) = P(yi jxi)

Q
b2@infag �̃

(t)
b!i (xi)

�̃
(t+1)
a!i =

P
x@anfig

Q
j2@anfig �j!a(xj)I(�x@a = 0)

Notice that all �; �̃’s can take only one of the following three values:

�i!a(xi) 2

("
1
0

#
;

"
0
1

#
;

"
1=2
1=2

#)

hence, we will map these vectors to symbols f0; 1; �g
because (proof by induction)

I initially,

�̃
(0)
a!i (xi) =

�
1=2
1=2

�
; �

(1)
i!a(xi) =

8>>>>>><>>>>>>:

�
1
0

�
if yi = 0�

0
1

�
if yi = 1�

1=2
1=2

�
if yi = �

Density evolution 5-9

I recursively, assuming the input messages up to t are one of the three
types,

�̃
(t+1)
a!i (xi) =

8>>>>>><>>>>>>:

�
1
0

�
if all other bits are determined and add up to 0�

0
1

�
if all other bits are determined and add up to 1�

1=2
1=2

�
if there is at least one bit that is not determined

�
(t+1)
i!a (xi) =

8>>>>>><>>>>>>:

�
1
0

�
if at least one of the input message is

�
1
0

�
�
0
1

�
if at least one of the input message is

�
0
1

�
�
1=2
1=2

�
if all input messages are

�
1=2
1=2

�
I consequently, the messages only take those three values
I we will denote those three types of messages as 0; 1, and �, meaning

determined to be 0 or 1, or not determined.

Density evolution 5-10

(simplified) Parallel sum-product for BEC
I �

(t)
i!a 2 f0; 1; �g our belief about xi

I �̃
(t)
a!i 2 f0; 1; �g our belief about xi

I at iteration 0: �(0)
i!a = yi

I at iteration t :

�̃
(t)
a!i =

�
� if any of the incoming messages is a �

�x@ani otherwise

�
(t)
i!a =

�
� if all of the incoming messages are �

xb!i otherwise

this is equivalent to the peeling decoder

Density evolution 5-11

Probabilistic analysis: density evolution
an LDPC code is defined by a graph G
probabilistic analysis: we want to predict the performance of a given
LDPC code G
to this end, we use density evolution on the computation tree
if G is locally tree like up to depth k , and if we run sum-product
algorithm for k iterations, then the resulting message �

(k)
i!a is fully

described by the computation tree for the message �
(k)
i!a :

�
(2)
i!a

�
(1)
j!b

�
(0)
`!c

Density evolution 5-12

however, it is not always possible to apply density evolution
a few assumptions

I sparse random graph construction
(e.g. random (`; r)-regular graph from the configuration model)

I asymptotic analysis:
in the limit n !1 but finite number of iterations t

why do we need these assumptions?
I it is difficult to analyze one particular graph, so we resort to the

expected performance where the expectation also take into account the
randomness in the graph generation

I random sparse graphs are locally tree-like
F if we consider random (d ; d)-regular graphs, the expected number of

2-cycles is (1
n + � � �+ d�1

n)� n , which is small compared to the
number of edges

Density evolution 5-13

Probabilistic analysis: density evolution

locally-tree like structure ensures that the incoming messages are
independent
formally, as n !1 local neighborhood of a node converges in
probability to a random tree

P(lim
n!1

depth k neighborhood of a random i is a tree) = 1

density evolution for (`; r)-regular graph
I zt 2 [0; 1] be the probability a randomly chosen message from f�

(t)
i!ag

is an erasure
I wt 2 [0; 1] be the probability a randomly chosen message from f�̃

(t)
a!ig

is an erasure
I in the limit n !1, they satisfy the density evolution equations

wt = 1� (1� zt�1)
r�1

zt = �w `�1
t

Density evolution 5-14

zt = �(1� (1� zt�1)
r�1)`�1

with initial condition z0 = �

density evolution for (3,6) code with � = 0:4(left) and 0:45(right)

rate of this code = 0.5, threshold �� ' 0.4xxx,
this simple code achieves rate less than the capacity = 1� �

Perror(t) = limn!1Perror(n ; t)
analyze limt!1 limn!1Perror(n ; t), is this what we want?

Density evolution 5-15

for a given value of �, we can numerically run the density evolution, since
it is an evolution of a scalar value, which gives

bit error rate of (3; 6)-codes

�� �

how do we find ��?

Density evolution 5-16

zt = �(1� (1� zt�1)
r�1)`�1

let’s change the equation to� zt

�

�1=(`�1)
= 1� (1� zt�1)

r�1

� = 0:4

�

`
1� 1

r

 `((1� `
r)� (1� �))

� = 0:44

for a given �, if there is no overlap, then achieve zero error probabilityZ 1

0
�y`�1dy =

�

`
;

Z 1

0
(1� (1� x)r�1)dx = 1�

1
r

rate of the code = 1� `
r vs. capacity = 1� �

extend this analysis to construct capacity achieving tornado codes
Density evolution 5-17

density evolution for general message passing algorithms

a

b

x1

x2

x3

x4

variable nodes factor nodes

 a(xi ; xj ; xk)
xi

consider factor graph model G = (V ;F ;E) and

�(x) =
1
Z

Y
a2F

 a(x@a)
Y
i2V

 i (xi)

I update: �
(t+1)
i!a = Fi!a(f�̃

(t)
b!i : b 2 @i n ag)

�̃
(t)
a!i = Ga!i (f�

(t)
j!a : j 2 @a n ig)

I density evolution equation

z (t+1) = F (w (t)
1 ; : : : ;w (t)

`�1)

w (t) = G(z (t)
1 ; : : : ; z (t)

k�1)

Density evolution 5-18

formally, as n !1 a randomly chosen message from f�(t)
i!ag

converge in probability to z (t)

who cares about random graphs?
who cares about asymptotics?

alphabet xi 2 X messages �i!a 2 Y density Z
discrete f0; 1g discrete f0; 1; �g continuous R

discrete continuous RjX j�1 distribution over RjX j�1

continuous R distribution over R dist. over dist. over R

how do we compute evolution of distributions?
I quantization
I Gaussian approximation
I population dynamics: represent the density using ‘samples’

Density evolution 5-19

