(a) p factorizes according to G;
(b) p satisfies the directed global Markov property with respect to G;

(c) p satisfies the directed local Markov property with respect to G.

A useful intuition for the implication of (a)= (b) in Theorem 1 comes from our
three-node examples depicted in Fig. 3. In particular, we can think of paths through
a middle node being “blocked” or not depending on both the direction of the edges
incident to it, and whether that node is in the conditioning set or not.

More specifically, we saw that when we have the edge structure of Example 1, the
variables associated with the end nodes are independent (corresponding to a blocked
path) if conditioned on that associated with the middle node, and not otherwise.
Moreover, the same holds for the common-cause structure of Example 2. However,
the opposite holds for the common-effect (V-structure) of Example 3: the variables
associated with the end nodes are independent without any conditioning on the
remaining variable, and are otherwise dependent.

Checking for d-separation is straightforward to carry out on graphs of modest
size, by inspection. For larger graphs, an efficient algorithm can be designed based
on checking d-separation by inspecting all paths in breadth-first search manner. In
the literature, this algorithm is known as the Bayes ball algorithm.

We now prove Theorem 1. We divide the proof into three parts: (1) if p factorizes
according to G, then d-separation implies conditional independence i.e., (a) = (b),

(2) if p satisfies the directed global Markov property with respect to G, then it also
satisfies the directed local Markov property with respect to G ie., (b) = (c), and
(3) if p satisfies the directed local Markov property with respect to G, then it factors
according to G i.e., (¢) = (a). The proof of (1) is somewhat more involved while the
others are pretty straightforward.

Proof. We start with (1), showing that d-separation implies conditional independence.
We use induction on the number of nodes N. For N = 1, there is nothing to show.
Suppose the statement holds for any directed acyclic graph (DAG) on N — 1 nodes.
Now consider a DAG D on N nodes. Consider a topological ordering of all the nodes
of D and let w be the node with the largest number, i.e. it has no descendent or child.
Without loss of generality relabel the nodes so that w = N. Let D’ be obtained by
removing w from D. It is also a DAG and has N — 1 nodes. Crucially, the set of
nodes 1,..., N — 1 have a distribution that factorizes according to the DAG D’: due
to the factorization implied by D, we can write out the joint distribution p,, as
the product Hfi_ll Pxi|xr, (%i|Tx;), and this is exactly the factorization required by D".
Note that this is a consequence of the choice of w as the last node in the topological
ordering. There are three possibilities stated below and for each of them we prove
the desired statement using the induction hypothesis:
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(a) w ¢ AUBUC. Consider a pair of nodes a € A and b € B and any path
between them in D’. This path can be viewed as a path in D, and we have by
assumption that it is blocked in D by €. If this blocking is via rule C1 (above
Defn 2), then some node ¢ € €, blocks the path in D and continues to do so in
D’. If the blocking is via rule C2, i.e., there is some node on the path where the
arrows meet head-to-head and neither it nor any of its descendants D are in C,
we again see that this continues to hold in D’. Thus the path is blocked in D’
and by the induction hypothesis applied to D', we obtain that x4 1L xg | Xe.

(b) w € A (the same argument applies to w € B). Let A’ = A\w. Note that
w ¢ A'UBUC, so the previous paragraph shows that A’ is d-separated from B
with respect to € in D’ and therefore x4/ I xg | Xe.

Observe that no parent of w is in set B: Otherwise, we have an edge between
w and a node in B, which violates the assumption of d-separation of A and B
given C. Let P =, \ € be the set of parent nodes of w in D that are not in C.
We will show that (i) xarup AL X | Xe, and (i) x, AL xg | Xaueup. From these
and the definition of conditional independence one can obtain x4/upuw AL X3 | Xe
(be sure to check this for yourself!).

To show (i), it is sufficient to show that xp 1L x3 | x¢ and then to combine this
with x4 1L xp | xeup. We start by showing the latter conditional independence,
which is similar to x4/ AL xg | Xe shown in case (a) above, and but conditioning
on xgup instead of xg. Consider a path from a € A’ to b € B in D’. The same

argument as in (a) shows that if it is blocked via rule C1 by € in D, then it
remains so in D’ and also when adding in P to the conditioning set, and the
desired statement follows by the inductive hypothesis on D’ as before. The
remaining case to consider is that the blocking of the path under consideration
is (only) via rule C2, in which case adding nodes P to the conditioning set
can plausibly unblock the path between a and b. Suppose for the sake of
contradiction that this occurs. This can happen only if a head-to-head node in
the path has a node in P as its descendant, and let d be the node that is closest
to b among such nodes. Since w is a child of p in D, we see that there is a path
between b € B and w € A in D that is unblocked by €, which contradicts our
initial assumption. It follows that x4 1L x3 | Xeup-

To show xp L x | xe, we will argue that P is is d-separated from B by € in D’
and use the induction hypothesis for D’. Suppose for the sake of contradiction
that this were not the case, i.e., there is a path in D’ from a node p € P to a
node b € B that it is not blocked with respect to €. Now extend this path by
adding w as the first node (there is an edge between w and p, oriented towards
w). Node p has become an internal node on the path. It is not head-to-head
since the edge to w is oriented towards w, and it does not belong to € because
we are in the case that w € A. We have constructed an unblocked path in
D from w € A to b € B with respect to €, which violates our assumption of
d-separation. Therefore, P is d-separated from B with respect to € in D’, which
proves xp L xg | x¢ using the induction hypothesis.

Now we move on to (ii) x, AL xp | x4:ueup. For this, again note that all parents
of w are a subset of AUCUP and B are ancestors disjoints from these. Therefore,
by the Markov property of the DAG we obtain (ii).

Finally, consider the case w € C. Let ¢ = C\w. Then, we claim that A and
B must be d-separated by € in D’. Consider an arbitrary path between nodes
a € A and b € B, and by assumption it is blocked by € in D. If the blockage is
via rule C1, then it cannot be w that is responsible, since w has no descendants
and both of the relevant scenarios require the blocking node to have an outgoing
edge. If the blockage is via rule C2, then removing w does not change presence
of a head-to-head node with no ancestors in €' as ¢’ C €. Thus, A and B
are d-separated by € in D', and by the induction hypothesis we have that
XA A XB | Xer.

Now w must be d-separated from at least one of A or B with respect to C'.
Suppose not. That is, w has unblocked path to a node a € A and has an
unblocked path to a node b € B with respect to €. Then, concatenation of
these two paths with w yields an unblocked path (since the two paths meet
head-to-head at w and hence rule (a) does not apply) between a and b with
respect to € in D. This contradicts our initial assumption and hence w is d-
separated either from A or B with respect to €’. Without loss of generality, let

w be d-separated from B with respect to €. That is, AUw is d-separated from
B with respect to €’ in D. We want to conclude that xqu, AL x5 | xer.

To that end, we argue similarly to case (b). Consider parents P of w that are
not in €. As before, we can argue that P is d-separated from B with respect
to €' in D'. Therefore, x4up AL xz|Xe using the induction hypothesis. Further,
as argued earlier, it must be that P N B = &. Therefore, using the property of
DAG, we have that x,, 1 xg|xaupuer since B are ancestors of w excluding it’s
parents and AUPUC’ contains all parents of w. Putting everything together, we
have x4y, AL X | Xer. From this, it can be checked from definition of conditional
independence that x4 AL x5 | Xeruw- That is, x4 AL x5 | Xe.

We now move on to part (2), showing that the directed global Markov property
implies the directed local Markov property. For any ¢ € V, note that {i} is d-separated
from the set nd(z) \ m; with respect to m;. Hence by the global Markov property, it
holds that x; AL X,a@)\x; | Xr;, which implies the local Markov property.

We now move on to part (3), showing that the directed local Markov property
implies factorization according to §. Without loss of generality assume a topological
ordering of the nodes. Then using the chain rule, we can write th joint distribution
as

N
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where the last equality follows from the directed local Markov property. Thus, we
have that p factorizes according to the DAG G, which concludes the proof. 0O



