Date | Content | Reading | Lecture slides |
---|---|---|---|
Probabilistic graphical models | Optional reading: Lauritzen Ch3, KollerFriedman Ch3-4, | ||
1/5 | Welcome/overview | probability.pdf and statistics.pdf (my notes on background materials to help with hw0) |
overview.pdf prelecture_note1.pdf livelecture_note1.pdf |
1/7 | Directed graphical models | graph.pdf markov.pdf |
Proof of equivalence of Markov properties prelecture_note2.pdf livelecture_note2.pdf |
1/12 | Undirected graphical models |
prelecture_note3.pdf livelecture_note3.pdf |
|
1/14 | Relations between graphical models |
prelecture_note4.pdf livelecture_note4.pdf |
|
Belief propagation | Optional reading: KollerFriedman Ch9,10,13,7, Lauritzen Ch5 | ||
1/19 | Sum-product algorithm (belieif propagation) and max-product algorithm | bp.pdf maxproduct.pdf |
prelecture_note5.pdf livelecture_note5.pdf |
1/21 |
prelecture_note6.pdf livelecture_note6.pdf |
||
1/26 | Sum-product algorithm on factor graphs |
prelecture_note7.pdf livelecture_note7.pdf |
|
1/28 | Density evolution | densityevolution.pdf |
prelecture_note8.pdf livelecture_note8.pdf |
2/2 | Density evolution |
prelecture_note9.pdf livelecture_note9.pdf |
|
2/4 | Gaussian graphical models | gauss.pdf |
prelecture_note10.pdf livelecture_note10.pdf |
2/9 | Gaussian Belief Propagation |
prelecture_note11.pdf livelecture_note11.pdf |
|
Variational metohds and sampling | Optional reading: KollerFriedman Ch11-12, | ||
2/11 | Variational methods | variational.pdf |
prelecture_note12.pdf livelecture_note12.pdf |
2/16 | Variational methods |
prelecture_note13.pdf livelecture_note13.pdf |
|
2/18 | Variational methods |
prelecture_note14.pdf livelecture_note14.pdf |
|
2/23 | Markov chain Monte Carlo | mcmc.pdf |
prelecture_note15.pdf livelecture_note15.pdf |
2/25 | Markov chain Monte Carlo |
prelecture_note16.pdf livelecture_note16.pdf |
|
Learning graphical models | Optional reaeding: KollerFridman Ch16-20, | 3/2 | Learning graphical models | learning.pdf |
prelecture_note17.pdf livelecture_note17.pdf |
3/4 | Learning graphical models |
prelecture_note18.pdf livelecture_note18.pdf |
|
3/9 | Causal structure discovery |
prelecture_note19.pdf livelecture_note19.pdf |
|
3/11 | Causal structure discovery / Summary |
prelecture_note20.pdf |