10. Variational methods

- Gibbs free energy
- Naive mean field
- Bethe free energy
- Region-based approximation
- Tree-based convexification

Loopy belief propagation

- ullet directed edges on $G\colon ec{E}$
- messages: $u^{(t)} \equiv \{\nu_{i o j}(\cdot)\}_{(i,j) \in \vec{E}}$
- ullet loopy belief propagation: $u^{(t+1)} = \mathsf{F}(
 u^{(t)})$

$$u_{i o j}^{(t+1)} \quad \propto \quad \prod_{k\in\partial i\setminus j} \Big\{ \sum_{x_k\in\mathcal{X}} \psi_{ik}(x_i,x_k)
u_{k o i}^{(t)}(x_k) \Big\}$$

$$F: M(\mathcal{X})^{\vec{E}} \rightarrow M(\mathcal{X})^{\vec{E}}$$
 $\nu \mapsto F(\nu)$

where $\mathsf{M}(\mathcal{X})$ is the set of probability measures on \mathcal{X}

• if loopy BP converges, it eventually conerges to a **fixed point** of F

$$u^* = \mathsf{F}(\nu^*)$$

1. does F have a fixed point?

Variational inference

- 2. if F has one or more fixed points, what are they?
- 3. does BP converge to a fixed point?

Existence of a fixed point

- Theorem. (Hadamard 1910, Brouwer 1912) Any continuous function mapping from a convex compact set to the same convex compact set has a fixed point.
- existence of at least one fixed point of F follows from
 - F is continuous
 - the set of normalized messages is convex and compact
- but what do these fixed points correspond to?
- and how do they relate to BP?
- variational approach tries to answer these questions by formulating the inference problem as an optimization problem

Gibbs variational principle

- start with a hard optimization problem
- approximate the solution by imposing constraints and searching in a smaller feasible set
- relate the solutions of the relaxation to BP
- 'actual' probability

$$\mu(x) \;\; = \;\; rac{1}{Z} \prod_{(i,j) \in E} \psi_{ij}(x_i,x_j) \;\; = \;\; rac{1}{Z} \psi_{ ext{tot}}(x)$$

- we know ψ_{tot} but not Z
- 'trial' probability ('belief') $b(x) \in \mathsf{M}(\mathcal{X}^{|V|})$

we focus on characterizing log partition function

$$\Phi \equiv \log Z = \log \left\{ \sum_{x \in \mathcal{X}^{|V|}} \prod_{(i,j) \in E} \psi_{ij}(x_i,x_j)
ight\}$$

• variational characterization of the log partition function

$$\Phi = \sup_{b \in \mathsf{M}(\mathcal{X}^{|V|})} \mathbb{G}(b)$$

• define Gibbs free energy $\mathbb{G}_{\psi}(b)$

$$\begin{array}{lll} \mathbb{G}_{\psi}(b) & = & \displaystyle\sum_{x \in \mathcal{X}^{|\mathcal{V}|}} \left(b(x) \log \psi_{\mathrm{tot}}(x)\right) - \displaystyle\sum_{x \in \mathcal{X}^{|\mathcal{V}|}} \left(b(x) \log b(x)\right) \\ & = & - \underbrace{\mathbb{E}_b \left[-\log \psi_{\mathrm{tot}}(X)\right]}_{\text{expected energy w.r.t. } b} + \underbrace{\mathbb{E}_b \left[-\log b(X)\right]}_{\text{entropy of } b} \end{array}$$

such that

- strictly concave
- $\sup_{b \in \mathsf{M}(\mathcal{X}^{|V|})} \mathbb{G}_{\psi}(b) = \Phi$
- $\mu = \arg\max_{b} \mathbb{G}_{\psi}(b)$
- interpretation
 - the optimal solution $b^*(x) = \mu(x)$ minimizes average energy while maximizing entropy

Proof of $\Phi = \sup_b \mathbb{G}_{\psi}(b)$

rearranging terms,

$$egin{array}{lll} \mathbb{G}_{\psi}(b) &=& \displaystyle\sum_{x \in \mathcal{X}^{|V|}} ig(b(x) \log \psi_{ ext{tot}}(x)ig) - \displaystyle\sum_{x \in \mathcal{X}^{|V|}} ig(b(x) \log b(x)ig) \ &=& \displaystyle\sum_{x \in \mathcal{X}^{|V|}} b(x)ig(\log Z + \log rac{1}{Z}\psi_{ ext{tot}}(x)ig) - \displaystyle\sum_{x \in \mathcal{X}^{|V|}} ig(b(x) \log b(x)ig) \ &=& \displaystyle\log Z - \displaystyle\sum_{x \in \mathcal{X}^{|V|}} b(x)ig(\log b(x) - \log \mu(x)ig) \ &=& \displaystyle\Phi - D_{ ext{KL}}(b||\mu) \end{array}$$

where $D_{\mathrm{KL}}(\cdot||\cdot)$ is the Kullback-Leibler divergence

- from information theory, it is known that
 - $D_{\mathrm{KL}}(b||\mu) \geq 0$
 - $D_{\mathrm{KL}}(b||\mu) = 0$ if and only if $b = \mu$

- ullet good news: we can compute partition function Z by solving a convex optimization
- ullet bad news: $\mathsf{M}(\mathcal{X}^{|V|})$ is $|\mathcal{X}|^{|V|}-1$ dimensional
- ullet next strategy: solve the optimization over a low-dimensional subset S

• this give a **lower bound** on the log partition function, because we are maximizing over a smaller set

$$\Phi \geq \sup_{b \in S} \mathbb{G}_{\psi}(b)$$

Naive mean field

 define a subset of distributions that can be factorized according to naive mean field factorization

$$S_{ ext{MF}} = \{\, b \in \mathsf{M}(\mathcal{X}^n) \, : \, b(x) = b_1(x_1) imes b_2(x_2) imes \cdots imes b_n(x_n) \}$$

- slight abuse of notation: $b = \{b_i\}_{i \in V}$ let \square c
- F_{MF} : $S_{ ext{MF}}
 ightarrow \mathbb{R}$ $b \mapsto \mathbb{G}_{\psi}(b)$
- we can compute it explicitly, after some algebra

$$\mathbb{F}_{ ext{MF}}(b) \;\;\; = \;\; \sum_{(i,j) \in E} \sum_{x_i,x_j} b_i(x_i) b_j(x_j) \log \psi_{ij}(x_i,x_j) - \sum_{i \in V,x_i} b_i(x_i) \log b_i(x_i)$$

mean field variational inference problem

$$egin{array}{ll} \max_{b \in S_{ ext{MF}}} & \mathbb{F}_{ ext{MF}}(b) \ & ext{subject to} & b_i(x_i) \geq 0 & ext{for all } i \in V, \ x_i \in \mathcal{X} \ & \sum_{x_i \in \mathcal{X}} b_i(x_i) = 1 & ext{for all } i \in V \end{array}$$

- consider b_i 's as approximate node marginals
- ullet although $\mathbb{F}_{\mathrm{MF}}(\cdot)$ is not concave, we can search for local maxima
- characterizing the local maxima
 - ▶ the stationary points of a constrained optimization satisfy that the derivatives of the Lagrangian are zero

$$\begin{split} L(b,\lambda) &= \mathbb{F}_{\mathrm{MF}}(b) - \sum_{i \in V} \lambda_i \Big\{ \sum_{x_i \in \mathcal{X}} b_i(x_i) - 1 \Big\} \\ &= \frac{1}{2} \sum_{i \in V, x_i \in \mathcal{X}} b_i(x_i) \Big\{ \sum_{j \in \partial i, x_j \in \mathcal{X}} b_j(x_j) \log \psi_{ij}(x_i, x_j) \Big\} - \sum_{i \in V, x_i} b_i(x_i) \log b_i(x_i) \\ &- \sum_{i \in V} \lambda_i \Big\{ \sum_{x_i \in \mathcal{X}} b_i(x_i) - 1 \Big\} \end{split}$$

- lacktriangle define a **Lagrangian multiplier** λ_i for each constraint $\sum b_i(x_i)=1$
- non-negativity constraints are implicit from the log

$$egin{array}{ll} rac{\partial L(b,\lambda)}{\partial b_i(x_i)} &=& \sum_{j\in\partial i}\sum_{x_j\in\mathcal{X}}b_j(x_j)\log\psi_{ij}(x_i,x_j)-1-\log b_i(x_i)-\lambda_i \ &=& 0 \end{array}$$

• solving for $b_i(x_i)$ we get naive mean field equations:

• a fixed point can be searched by iteration:

$$b^{(t+1)} = \mathsf{F}_{\mathrm{MF}}(b^{(t)})$$

Bethe free energy

- one dimensional marginals give a very poor approximation
- example: $x_1, x_2 \in \{0, 1\}$

$$\mu(x) = rac{1}{2} \mathbb{I}(x_1 \oplus x_2 = 0)$$
 and $\mu(x) = rac{1}{2} \mathbb{I}(x_1 \oplus x_2 = 1)$

- would like to define a parameterization of b(x) such that
 - account exactly for the pairwise correlations induced by edges
 - \blacktriangleright exact on distribution μ defined over a tree

Locally consistent marginals

- consider a parametrization
 - lacktriangledown $b_i(x_i)$: an approximation of the marginal $\mu(x_i)$
 - $b_{ij}(x_i,x_j)$: as an approximation of the marginal $\mu(x_i,x_j)$
- $\bullet \ \mathsf{let} \ b = \{b_i, b_{ij}\}$
- b is a set of globally consistent marginals of a distribution on \mathcal{X}^n if there exists a $\mathbb{P}(\cdot) \in \mathsf{M}(\mathcal{X}^{|V|})$ such that

$$egin{array}{lll} b_i(x_i) &=& \sum\limits_{x_{V\setminus \{i\}}} \mathbb{P}(x) & ext{, for all } i \ & \ b_{ij}(x_i,x_j) &=& \sum\limits_{x_{V\setminus \{i,j\}}} \mathbb{P}(x) & ext{, for all } i,j \end{array}$$

denote the set of all valid marginals by

$$ext{MARG}(G) \;\; = \;\; \left\{ b = \{b_i,\, b_{ij}\} \; : \;\; ext{marginals of a distribution on } \mathcal{X}^{|V|}
ight\}$$

• in general, checking $b \in MARG(G)$ is NP-hard

• $b = \{b_i, b_{ij}\}$ is a set of locally consistent marginals if

$$\sum_{x_i} b_i(x_i) = 1$$
 , for all i $\sum_{x_j} b_{ij}(x_i, x_j) = b_i(x_i)$, for all i, j

- not all locally consistent marginals correspond to a valid joint probability distribution
- example. three nodes with $\mathcal{X} = \{0, 1\}$

$$b_1 = b_2 = b_3 = (0.5, 0.5)$$
 $b_{12} = b_{23} = \begin{bmatrix} 0.49 & 0.01 \\ 0.01 & 0.49 \end{bmatrix}$
 $b_{31} = \begin{bmatrix} 0.01 & 0.49 \\ 0.49 & 0.01 \end{bmatrix}$

denote the set of all locally consistent marginals by

$$\mathrm{LOC}(G) = \left\{b = \{b_i, b_{ij}\} : \text{ locally consistent marginals } \right\}$$

- when G is not a tree
 - ▶ locally consistent $\{b_i, b_{ij}\}$ might not be marginals of any distribution
- when G is a tree
 - ▶ for any locally consistent $\{b_i, b_{ij}\}$, there exists a unique measure $p \in M(\mathcal{X}^{|V|})$ whose marginals are given by $\{b_i, b_{ij}\}$
 - the measure p(x) is given by

$$p(x) = \prod_{i \in V} b_i(x_i) \prod_{(i,j) \in E} rac{b_{ij}(x_i, x_j)}{b_i(x_i)b_j(x_j)}$$

• (we did not define Bethe free energy $\mathbb{F}(\{b_i,b_{ij}\})$ yet, but) the Gibbs free energy is equal to the Bethe free energy, i.e. $\mathbb{G}(p) = \mathbb{F}(\{b_i,b_{ij}\})$, and hence

$$\log Z = \max_{\{b_i, b_{ii}\} \in LOC(G)} \mathbb{F}(\{b_i, b_{ij}\})$$

Variational inference

Locally consistent marginals on a tree

- given a tree G = (V, E) with n nodes and $\{b_i, b_{ij}\} \in LOC(G)$
- prove (by induction) that

$$p(x) = \prod_{i \in V} b_i(x_i) \prod_{(i,j) \in E} rac{b_{ij}(x_i, x_j)}{b_i(x_i)b_j(x_j)}$$

is a unique measure on \mathcal{X}^n with marginals $p(x_i) = b_i(x_i)$ for all i and $p(x_i, x_j) = b_{ij}(x_i, x_j)$ for all $(i, j) \in E$

- for n=1, it is trivial
- ullet assume it is true for n and add a new vertex i=n+1, connected to j=n

$$egin{array}{lcl} p(x_V,x_{n+1}) & = & p(x_V)\,p(x_{n+1}|x_V) \ & = & p(x_V)\,p(x_{n+1}|x_n) & ext{[Markov property]} \ & = & p(x_V)\,rac{p(x_n,x_{n+1})}{p(x_n)p(x_{n+1})}p(x_{n+1}) & ext{[Bayes rule]} \ & = & \left\{ \prod_{i=1}^{n} & rac{b_{ij}(x_i,x_j)}{b_i(x_i)b_j(x_j)} \prod_{i=1}^{n} b_i(x_i)
ight\} rac{p(x_n,x_{n+1})}{p(x_n)p(x_{n+1})}p(x_{n+1}) \end{array}$$

Bethe free energy

- ullet variational inference on locally consistent marginals $b=\{b_i,b_{ij}\}$
 - want to define an objective function

$$\mathbb{F}: \mathrm{LOC}(G) \longrightarrow \mathbb{R}$$
 $b = \{b_{ij}, b_{\ell}\}_{(i,j) \in E, \ell \in V} \longmapsto \mathbb{F}(b)$

such that

$$rg \max_b \mathbb{F}(b) \;\; pprox \;\; \mu \, ,$$
 $\max_b \mathbb{F}(b) \;\; pprox \;\; \Phi \, ,$

 \bullet recall that for a valid distribution b, Gibbs free energy is defined as

$$\mathbb{G}_{\psi}(b) = -\underbrace{\mathbb{E}_{b}[-\log \psi_{\mathrm{tot}}(X)]}_{\mathrm{energy}} + \underbrace{\mathbb{E}_{b}[-\log b(X)]}_{\mathrm{entropy}}$$

 when G is a tree, the first and second order marginals fully describe the joint distribution:

$$b(x) = \prod_{i \in V} b_i(x_i) \prod_{(i,j) \in E} rac{b_{ij}(x_i,x_j)}{b_i(x_i)b_j(x_j)}$$

• Bethe free energy on a tree

energy

$$egin{array}{lll} \mathbb{E}_b[-\log\psi_{\mathrm{tot}}(X)] &=& -\sum_{(i,j)\in E}\mathbb{E}_b[\log\psi_{ij}(x_i,x_j)] \ &=& -\sum_{(i,j)\in E}\mathbb{E}_{b_{ij}}[\log\psi_{ij}(x_i,x_j)] \ &=& -\sum_{(i,j)\in E}\sum_{x_i,x_i}b_{ij}(x_i,x_j)\log\psi_{ij}(x_i,x_j) \end{array}$$

entropy

$$H(b) \equiv \mathbb{E}_b[-\log b(X)]$$

$$= \sum_{i \in V} \underbrace{-\mathbb{E}_{b_i}[\log b_i(X_i)]}_{=H(b_i)} - \sum_{(i,j) \in E} \underbrace{-\mathbb{E}_{b_{ij}}[\log b_{ij}(X_i, X_j) - \log b_i(X_i) - \log b_j(X_j)]}_{=H(b_i)}$$

ullet in general, define Bethe free energy of $b=\{b_i,b_{ij}\}\in ext{LOC}(G)$ as

$$\mathbb{F}(b) = - \operatorname{energy} + \operatorname{entropy} \\ = \sum_{(i,j) \in E} \sum_{x_i, x_j} b_{ij}(x_i, x_j) \log \psi_{ij}(x_i, x_j) \\ - \sum_{(i,j) \in E} \sum_{x_i, x_j} b_{ij}(x_i, x_j) \log \frac{b_{ij}(x_i, x_j)}{b_i(x_i)b_j(x_j)} - \sum_{i \in V} \sum_{x_i} b_i(x_i) \log b_i(x_i) \\ = \sum_{(i,j) \in E} \sum_{x_i, x_j} b_{ij}(x_i, x_j) \log \psi_{ij}(x_i, x_j) \\ - \sum_{(i,j) \in E} \sum_{x_i, x_i} b_{ij}(x_i, x_j) \log b_{ij}(x_i, x_j) - \sum_{i \in V} (1 - \operatorname{deg}(i)) \sum_{x_i} b_i(x_i) \log b_i(x_i)$$

• one justification of using $\mathbb{F}(\cdot)$ is that if G is a *tree* then

Variational inference

$$\sup_{\{b_i,b_{ij}\}} \mathbb{F}(\{b_i,b_{ij}\}) = \sup_{b \in \mathsf{M}(G)} \mathbb{G}(b) = \Phi$$

where M(G) is the set of distributions that decompose according to G

- the above optimization problem is called Bethe variational problem
- for general graphs, the solution to the above maximization approximates the log partition function, and it is known as **Bethe approximation**

Connections between Bethe free energy and belief propagation

• maximizing Bethe free energy

$$\max_{b \in \text{LOC}(G)} \mathbb{F}(b)$$

- Theorem. (Yedidia, Freeman, Weiss 2003) Fixed points of BP are in one-to-one correspondence with stationary points of Bethe free energy.
- Also, fixed point BP messages ν^* are (exponentials of) the dual parameters λ^* at the fixed points

Fixed point condition for BP messages

ullet BP fixed point messages u^* satisfy

$$u_{i o j}^*(x_i) \propto \prod_{k\in\partial i\setminus j} ig\{ \sum_{x_k} \psi_{ik}(x_i,x_k)
u_{k o i}^*(x_k) ig\}$$

• define a set of marginals (which are exact on a tree)

$$egin{array}{lll} b_i^*(x_i) & \propto & \prod\limits_{k \in \partial i} \left\{ \sum\limits_{x_k \in \mathcal{X}} \psi_{ik}(x_i,x_k) \,
u_{k
ightarrow i}^*(x_k)
ight\} \ & \propto & \prod\limits_{k \in \partial i} \left\{ \left(
u_{i
ightarrow k}^*(x_i)
ight)^{rac{1}{\deg(i)-1}}
ight\} \ & b_{ij}^*(x_i,x_j) & \propto &
u_{i
ightarrow j}^*(x_i) \, \psi_{ij}(x_i,x_j) \,
u_{j
ightarrow i}^*(x_j) \end{array}$$

• exercise. show $\{b_i, b_{ij}\}$ is locally consistent

Variational inference

• claim. b^* corresponds to a stationary point of Bethe free energy

Stationarity condition for Bethe free energy

Lagrangian with λ_i for condition $\sum_{x_i} b_i(x_i) = 1$, and $\lambda_{i \to j}(x_i)$ for condition $\sum_{x_i} b_{ij}(x_i, x_j) = b_i(x_i)$

$$egin{array}{lcl} \mathcal{L}(b,\lambda) & = & \mathbb{F}(b) - \sum_{i \in V} \lambda_i \Big\{ \sum_{x_i} b_i(x_i) - 1 \Big\} \ & - \sum_{(i,j) \in ar{E}} \sum_{x_i} \lambda_{i
ightarrow j}(x_i) \Big\{ \sum_{x_j} b_{ij}(x_i,x_j) - b_i(x_i) \Big\} \end{array}$$

taking the derivative

$$egin{array}{lll}
abla_{b_{ij}(x_i,x_j)}\mathcal{L}(b,\lambda) &=& -1-\log b_{ij}(x_i,x_j)+\log \psi_{ij}(x_i,x_j)-\lambda_{i
ightarrow j}(x_i)-\lambda_{j
ightarrow i}(x_j) \
abla_{b_i(x_i)}\mathcal{L}(b,\lambda) &=& -(1-\deg(i))\log[b_i(x_i)\ e]-\lambda_i+\sum_{i\in\mathcal{I}}\lambda_{i
ightarrow j}(x_i) \end{array}$$

setting the derivatives to zero

setting the derivatives to zero
$$b_{ij}^*(x_i,x_j) = \psi_{ij}(x_i,x_j) \exp\left\{-1-\lambda_{i o j}(x_i)-\lambda_{j o i}(x_j)
ight\},$$
 $b_i(x_i)^* \propto \exp\left\{-rac{1}{\deg(i)-1}\sum_{j\in\partial i}\lambda_{i o j}(x_i)
ight\}$ $\sum_{z}b_{ij}^*(x_i,x_j) = b_i^*(x_i)$

Variational inference

ullet changing variables: $u_{i o j}(x_i) \propto e^{-\lambda_{i o j}(x_i)}$

$$egin{array}{ll} b_{ij}^*(x_i,x_j) & \propto &
u_{i
ightarrow j}(x_i)\,\psi_{ij}(x_i,x_j)\,
u_{j
ightarrow i}(x_j) \ b_i^*(x_i) & \propto & \prod\limits_{i\in\partial i}\left\{\left(
u_{i
ightarrow j}(x_i)
ight)^{rac{1}{\deg(i)-1}}
ight\} \end{array}$$

• imposing locally consistency constraints $\sum_{x_j} b_{ij}^*(x_i, x_j) = b_i^*(x_i)$, we can show that the $\nu_{i \to j}$'s are at BP fixed point. Start with the identity

$$\prod_{k\in\partial i\setminus j} \bigg\{\underbrace{\sum_{x_k} b_{ik}^*(x_i,x_k)}_{=b_i^*(x_i)}\bigg\} \quad = \quad b_i^*(x_i)^{\deg(i)-1} \text{ , substitute } \nu'\text{s}$$

$$\prod_{k\in\partial i\setminus j} \bigg\{\nu_{i\to k}(x_i)\sum_{x_k} \nu_{k\to i}(x_k)\psi_{ik}(x_i,x_k)\bigg\} \quad \propto \quad \prod_{k\in\partial i} \bigg\{\nu_{i\to k}(x_i)\bigg\} \text{ , after a division}$$

$$\prod \ \bigg\{\sum \nu_{k\to i}(x_k)\psi_{ik}(x_i,x_k)\bigg\} \quad \propto \quad \nu_{i\to j}(x_i)$$

 we have established that each of the BP fixed points correspond to a stationary point of the Bethe free energy

- Alternative algorithms to find fixed points (e.g. gradient ascent)
 [e.g. Heskes 2002]
- Include higher order marginals

[Yedidia, Freeman, Weiss 2003]

• Convexify Bethe free energy

[Wainwright, Jaakkola, Willsky 2005]

• Asymptotically tight estimates on $\log Z$ for graph sequences [e.g. Dembo, Montanari 2010]

 Historically, statistical physics study systems in thermal equilibrium, whose state is given by Boltzmann's law

$$\mu(x) = rac{1}{Z(T)} e^{-E(x)/T}$$

where T is the temperature, E(x) is the energy at a state x, and Z(T) is the partition function given by

$$Z(T) = \sum_{x \in S} e^{-E(x)/T}$$

Helmholtz free energy (log partition function) is an important quantity for understanding how the system and statistical physicists have devoted significant energy to find good approximations to it:

$$F_{H} = -\ln Z(T)$$

An important technique is based on variational approaches, where the maximum of Gibbs free energy is studied

$$\mathbb{G}(b) = \sum_{x \in S} b(x)E(x) + \sum_{x \in S} b(x)\log b(x)$$

Region-based approximation

[Cluster variational method, Kikuchi 1951]

 Idea: decompose the system into sub-systems (regions) and approximate the free energy by combining the free energies of the sub-systems

Region

- Definitions.
 - ▶ a **region** $R = (V_R, E_R)$ is a subgraph such that if $(i, j) \in E_R$ then $i, j \in V_R$
 - ▶ region free energy $\mathbb{F}_R : \mathsf{M}(\mathcal{X}^{V_R}) \to \mathbb{R}$

$$egin{array}{lcl} \mathbb{F}_R(b_R) & = & \mathbb{E}_{b_R} \log \psi_{ ext{tot},R}(x_R) + H(b_R) \ & = & -\sum_{x_R} \sum_{(i,j) \in E_R} -b_R(x_R) \log \psi_{ij}(x_i,x_j) + \sum_{x_R} -b_R(x_R) \log b_R(x_R) \ & ext{region energy} \end{array}$$

ightharpoonup can be evaluated for small regions (complexity $|\mathcal{X}|^{|R|}$)

Region-based approximation

• collection of regions

$$\mathbf{R} = \{R_1, R_2, \dots, R_m\}.$$

coefficients

$$c_{\mathbf{R}} = \{c_{R_1}, c_{R_2}, \ldots, c_{R_m}\}, \quad c_{R_i} \in \mathbb{R}.$$

marginals

$$b_{\mathbf{R}} = \{b_{R_1}, b_{R_2}, \dots, b_{R_m}\}, \quad b_{R_i} \in \mathsf{M}(\mathcal{X}^{V_{R_i}}).$$

• region-based free energy approximation:

$$\mathbb{F}_{\mathbf{R}}(b_{\mathbf{R}}) \;\; = \;\; \sum_{R \in \mathbf{R}} c_R \, \mathbb{F}_R(b_R)$$

Example: Bethe Free Energy

regions

$$egin{array}{lcl} \mathbf{R} &=& \left\{ R_i: \ i \in V
ight\} \cup \left\{ R_{ij}: \ (i,j) \in E
ight\} \ R_i &=& (\{i\},\emptyset) \ R_{ij} &=& (\{i,j\},\{(i,j)\}) \end{array}$$

coefficients

$$c_i = 1 - \deg(i)$$
, $c_{ii} = 1$.

• Bethe free energy as a special case of the region based free energy

$$\mathbb{F}_{\mathbf{R}}(b) = \sum_{i \in V} \{1 - \mathsf{deg}(i)\} \, H(b_i) + \sum_{(i,j) \in E} \left\{ H(b_{ij}) + \mathbb{E}_{b_{ij}} \log \psi_{ij}(x_i, x_j)
ight\}$$

- main questions
 - 1. What about domain/consistency of $b_R(x_R)$?
 - 2. How to choose coefficients?
 - 3. How to choose regions?
- valid region-based approximations [Yedidia, Freeman, Weiss, 2003]
 condition 1: local consistency

$$R \in \mathbf{R}, R' \subseteq R \quad \Rightarrow \quad R' \in \mathbf{R}$$

$$\sum_{x_{R \setminus R'}} b_R(x_R) = b_{R'}(x_{R'}) \qquad ext{ for all } R' \subseteq R$$
 .

let LOC(G; \mathbf{R}) be a set of marginals $b = \{b_R : R \in \mathbf{R}\}$ that are locally consistent w.r.t. a collection of regions \mathbf{R}

condition 2: vertex counting

$$\sum_{R\in\mathbf{R}} c_R \, \mathbb{I}(i\in R) = 1 \qquad ext{for all } i\in V \, .$$

condition 3: edge counting

$$\sum_{R \in \mathbf{R}} c_R \, \mathbb{I}((i,j) \in R) = 1$$
 for all $(i,j) \in E$

Geometric picture

Polytopes

Justification of condition #2

$$\sum_{R \in \mathbf{R}} c_R \, \mathbb{I}(i \in R) = 1 \qquad ext{for all } i \in \mathit{V} \, .$$

- ullet consider a special case of uniform distribution: $\mu(x)=1/|\mathcal{X}|^{|V|}$ and $\psi_{ij}(x_i,x_j)=1$
- ullet suppose $b_R(x_R)$ are true marginals, i.e. $b_R^*(x_R) = 1/|\mathcal{X}|^{|V_R|}$
- then for any graph, the region based approximation is exact: $\mathbb{F}_{\mathbf{R}}(b^*) = \log Z$

since $\log \psi_{ij}(x_i, x_j) = 0$, energy terms are zeros

$$egin{array}{lcl} \sum_{R \in \mathbf{R}} c_R \mathbb{F}_R(b_R^*) & = & \sum_{R \in \mathbf{R}} c_R \, H(b_R^*) \ & = & \sum_{R \in \mathbf{R}} c_R \, \underbrace{|V_R|}_{\sum_{i \in V} \mathbb{I}(i \in R)} \log |\mathcal{X}| \ & = & \sum_{i \in V} \left\{ \sum_{R \in \mathbf{R}} c_R \, \mathbb{I}(i \in R)
ight\} \log |\mathcal{X}| \end{array}$$

Variational inference

 $= |V| \log |\mathcal{X}|$

10-31

Justification of condition #3

$$\sum_{R \in \mathbf{R}} c_R \, \mathbb{I}((i,j) \in R) = 1 \qquad ext{for all } (i,j) \in \mathit{E} \, .$$

- ullet neglect entropy (e.g. suppose $\psi_{ij}(x_i,x_j)=e^{eta\, heta_{ij}(x_i,x_j)},\ eta
 ightarrow\infty)$
- ullet suppose $b_R^*(x_R)$ are true marginals, i.e. $b_R^*(x_R) = \sum_{x_{V\setminus V(R)}} b^*(X)$
- then the region based approximation correctly recovers the energy

$$egin{array}{lcl} \sum_{R \in \mathbf{R}} c_R \mathbb{F}_R(b_R^*) &=& eta \sum_{R \in \mathbf{R}} c_R \sum_{x_R} b_R^*(x_R) \sum_{(ij) \in E(R)} heta_{ij}(x_i, x_j) + O_eta(1) \ &=& eta \sum_{R \in \mathbf{R}} c_R \sum_{(ij) \in E(R)} \mathbb{E}_{b_{ij}^*}[heta_{ij}(X_i, X_j)] + O_eta(1) \ &=& eta \sum_{(ij) \in E} \left\{ \sum_{R \in \mathbf{R}} c_R \, \mathbb{I}((i,j) \in R)
ight\} \mathbb{E}_{b_{ij}^*}[heta_{ij}(X_i, X_j)] + O_eta(1) \ &=& eta \sum_{(ij) \in E} \mathbb{E}_{b_{ij}^*}[heta_{ij}(X_i, X_j)] + O_eta(1) \end{array}$$

How should the regions be chosen?

- Cluster variational method (Kikuchi approximations):
 - First, choose a basic set of clusters (with $c_R = 1$)
 - ▶ Then, add all intersections of those basic clusters with

$$c_R = 1 - \sum_{R' \in \mathsf{ancestor} \; \mathsf{of} \; \mathsf{R}} c_R'$$

- Continue until all intersections are included
- ▶ the above choice of c_R ensures that the **vertex counting condition** is satisfied, i.e. $\sum_{R \in \mathbf{R}} \mathbb{I}(i \in R) = 1$
- ▶ an example with a choice of a basic set of $\{(x_1, x_2, x_4, x_5), (x_2, x_3, x_5, x_6), (x_4, x_5, x_7, x_8), (x_5, x_6, x_8, x_9)\}$

- larger basic regions give better approximations
- ▶ for pairwise MRFs, Bethe free energy has the correct energy term
- ► Region based methods improve in giving the increasingly accurate entropy term as clusters become larger

The Region Graph

- given a collection of regions **R**, how do you compute the (consistent) coefficients?
- region graph is a directed acyclic graph where an edge from R to R' may exist if $R' \subseteq R$
- child, parent, ancestor, descendant
- region graph is not unique

The Region Graph

 given a region graph, the weights of the regions can be computed according to

- region based free energy is exact if the corresponding region graph has no (undirected) cycles and the weights c_R are valid
- in general, how to generate a good region graph is still open

Generalized belief propagation

maximize
$$\mathbb{F}_{\mathbf{R}}(b_{\mathbf{R}}) = \sum_{R \in \mathbf{R}} c_R \, \mathbb{F}_R(b_R)$$
 subject to $\sum_{x_{R \setminus R'}} b_R(x_R) = b_{R'}(x_{R'}), \quad orall R o R'$

• we form the Lagrangian

$$\mathcal{L}(\{b_R\},\{\lambda_{R
ightarrow R'}\}) = \mathbb{F}_{\mathbf{R}}(b_{\mathbf{R}}) - \sum_{R
ightarrow R'} \sum_{x_{R'}} \left\{ \lambda_{R
ightarrow R'}(x_{R'}) \Big(\sum_{x_{R'} > r_{l'}} b_R(x_R) - b_{R'}(x_{R'}) \Big)
ight\}$$

setting derivative to zero

$$\nabla_{b_R(x_R)} \mathcal{L}(\{b_R\}, \{\lambda_{R \to R'}\}) = 0$$

• setting $\nabla_{b_R(x_R)} \mathcal{L}(\{b_R\}, \{\lambda_{R \to R'}\}) = 0$ gives an marginal computation rule for **generalized belief propagation** algorithm

$$b_R(x_R) \propto \prod_{(i,j) \in E_R} \psi_{ij}(x_i,x_j) \prod_{P \in \mathcal{P}(R)}
u_{P o R}(x_R) \prod_{D \in \mathcal{D}(R)} \prod_{P' \in \mathcal{P}(D) \setminus R, \mathcal{D}(R)}
u_{P' o D}(x_D)$$

ullet each consistency constraint $b_R(x_R) = \sum_{x_{P\setminus R}} b_P(x_R,x_{P\setminus R})$ gives message update rule

$$u_{P
ightarrow R}(x_R) \propto rac{\sum_{x_{P \setminus R}} \prod_{(i,j) \in E_R} \psi_{ij}(x_i,x_j) \prod_{(I,J) \in \mathcal{N}(P,R)}
u_{I
ightarrow J}(x_J)}{\prod_{(I,J) \in \mathcal{D}(P,R)}
u_{I
ightarrow J}(x_J)}$$

- $\triangleright \mathcal{P}(R) = \{ \text{ parent of } R \}$
- $\mathcal{D}(R) = \{$ all descendants of $R\}$
- $\mathcal{E}(R) = R \cup \mathcal{D}(R)$
- $\triangleright \ \mathcal{N}(P,R) = \{I \rightarrow J : J \in \mathcal{E}(P) \setminus \mathcal{E}(R), I \notin \mathcal{E}(P)\}$
- $\mathcal{D}(P,R) = \{I \to J : J \in \mathcal{E}(R), I \in \mathcal{E}(P) \setminus \mathcal{E}(R)\}$
- GBP fixed points are region-based free energy stationary points

Was it worth it?

 10×10 Ising model with random potentials [Yedidia et al. 2003] 2×2 overlapping clusters are used with clustering variational method GBP improves over BP significantly

Upper bound using tree-reweighted belief propagation

- consider all spanning trees of G
- each spanning tree $au_k=(V,E_k)$ has its own compatibility functions $\{\psi_{ij}^{(k)}\}_{(i,j)\in E_k}$ and a weight c_k such that

$$egin{array}{lcl} \sum_k c_k &=& 1 \ &\log \psi_{ij}(x_i,x_j) &=& \sum_k c_k \log \psi_{ij}^{(k)}(x_i,x_j) \end{array}$$

decomposing the energy

$$egin{array}{lll} \mathbb{E}_b \left[\, - \sum_{(i,j) \in E} \log \psi_{ij}(x_i,x_j)
ight] & = & \mathbb{E}_b \left[\, - \sum_{(i,j) \in E} \sum_k c_k \log \psi_{ij}^{(k)}(x_i,x_j)
ight] \ & = & \sum_k c_k \left[\, - \sum_{(i,j) \in E_k} \log \psi_{ij}^{(k)}(x_i,x_j)
ight] \end{array}$$

expectation over a tree E_{i}

• from Gibbs variational principle

$$\begin{split} \log Z &= \sup_{b \in \mathsf{M}(\mathcal{X}^V)} \Big\{ \mathbb{E}_b \Big[\sum_{(i,j) \in E} \log \psi_{ij}(x_i, x_j) \Big] + H(b) \Big\} \\ &= \sup_{b \in \mathsf{M}(\mathcal{X}^V)} \Big\{ \sum_k c_k \Big\{ \mathbb{E}_b \Big[\sum_{(i,j) \in E_k} \log \psi_{ij}^{(k)}(x_i, x_j) \Big] + H(b) \Big\} \Big\} \\ &\leq \sum_k c_k \sup_{b^{(k)} \in \mathsf{M}(\mathcal{X}^V)} \Big\{ \mathbb{E}_{b^{(k)}} \Big[\sum_{(i,j) \in E_k} \log \psi_{ij}^{(k)}(x_i, x_j) \Big] + H(b) \Big\} \\ &= \sum_k c_k \sup_{b^{(k)} \in \mathsf{LOC}(\tau_k)} \Big\{ \mathbb{E}_{b^{(k)}} \Big[\sum_{(i,j) \in E_k} \log \psi_{ij}^{(k)}(x_i, x_j) \Big] + H(b) \Big\} \end{split}$$

can be solved exactly using BP

- to get the tightest upper bound, we want to minimize the right-hand side over $\{c_k\}$ and $\{\psi_{ii}^{(k)}\}$
- the number of spanning trees can explode
- all these loose ends are resolved in [Wainwright, Jaakkola, Willsky, 2003]

Exponential families

ullet given a *finite* space \mathcal{X}^V and a collection of functions

$$egin{array}{cccc} T &: \mathcal{X}^{\,V} &
ightarrow & \mathbb{R}^m\,, \ & x & \mapsto & T(x) = (\,T_1(x), \ldots, \,T_m(x))\,. \end{array}$$

• the corresponding **exponential family** is a family of distributions parametrized by a vector θ such that $\{\mu_{\theta}: \theta \in \mathbb{R}^m\}$ where

$$\mu_{ heta}(x) = rac{1}{Z(heta)} \, \exp \left\{ \langle heta, \, T(x)
angle
ight\}, \qquad F(heta) = \log Z(heta)$$

where $\langle x,y\rangle=\sum_i x_iy_i$ denotes the inner product

Basic properties of exponential families

$$F(\theta) = \log \left(\sum_{x} e^{\sum_{i=1}^{m} \theta_i T_i(x)} \right)$$

- (1) $\theta \mapsto F(\theta)$ is convex [log-sum-exps are convex]
- $(2) \ \
 abla_{ heta} F(heta) = \sum_x rac{e^{\langle heta, T(x)
 angle}}{Z(heta)} [T_1(x), \ldots, T_m(x)]^T = \mathbb{E}_{ heta} \{T(x)\} \equiv au(heta)$
- (3) $\nabla^2_{\theta} F(\theta) = \operatorname{Cov}_{\theta} \{ T(x); T(x) \}$
- (4) define a polytope

$$egin{array}{lll} ext{MARG}(T) &\equiv & \operatorname{conv}\Bigl(\{\, T(x) : \, x \in \mathcal{X}^{\, V} \} \Bigr) \ &= & \Big\{ \mathbb{E}_{
u}[\, T(x)] : \,
u \in \mathsf{M}(\mathcal{X}^{\, V}) \Big\}, \, ext{and} \ &\overline{\operatorname{Image}}(au) &= & \operatorname{closure}\Bigl(\big\{ \mathbb{E}_{ heta}[\, T(x)] : \,
heta \in \mathbb{R}^m \big\} \Bigr) \end{array}$$

then exponential families allow to realize any point in the interior of MARG(T)

$$\overline{\mathrm{Image}(au)} = \mathrm{MARG}(T)$$

Proofs

- (1), (2), (3): exercises(4): a bit more difficult
- Claim 1: A closed convex set is the closure of its relative interior. [Hint: Assume the set has full dimension. Each point has a cone of full dimension around it.]
- Claim 2: Let $\tau_* \in \operatorname{relint}(\operatorname{MARG}(T))$. Then $\tau_* = \mathbb{E}_{\nu_*}\{T(x)\}$ for some ν_* s.t. $\nu_*(x) > 0$ for all $x \in \mathcal{X}^V$. [Hint: Consider the set of signed weights ν such that $\sum_x \nu(x) T(x) = \tau_*$. If the claim was false, it would be tangent to the simplex.]
- Claim 3: There exists $\theta_* \in \mathbb{R}^m$ such that $\mathbb{E}_{\theta_*} \{ T(x) \} = \mathbb{E}_{\nu_*} \{ T(x) \}$.

Proof of Claim 3

Wlog $\{1, T_1, \ldots, T_m\}$ linearly independent. Consider

$$egin{array}{lll} F(heta; au_*) &\equiv & F(heta) - \langle au_*, heta
angle \ &= & \log \Big\{ \sum_{x \in \mathcal{X}^V} \expig(\langle heta, \, T(x)
angle ig) \Big\} - \mathbb{E}_{
u_*} \{ \langle heta, \, T(x)
angle \} \end{array}$$

- $F(\cdot; \tau_*): \mathbb{R}^m \to \mathbb{R}$ is differentiable and convex.
- ullet If $heta_*$ is a stationary point, then $\mathbb{E}_{ heta_*} \set{T(x)} = \mathbb{E}_{
 u_*} \set{T(x)}.$
- ullet As $heta o\infty$, $F(heta; au_*) o\infty$.

Implies the thesis.

As
$$heta o \infty$$
 , $F_{ au_*}(heta) o \infty$

Let $\theta = \beta v$, $\beta \in \mathbb{R}_+$

$$egin{array}{lll} F(heta; au_*) &=& \log \Big\{ \sum_{x \in \mathcal{X}^V} \expig(\langle heta,\, T(x)
angle ig) \Big\} - \mathbb{E}_{
u_*} \{ \langle heta,\, T(x)
angle \} \\ &\geq& eta \Big[\max_x \langle heta,\, T(x)
angle - \mathbb{E}_{
u_*} \{ \langle heta,\, T(x)
angle \} \Big] \end{array}$$

and $[\ldots] > 0$ strictly because $\nu_*(x) > 0$ for all x.

Duality structure

$$egin{array}{ll} F_*(au) &\equiv & \inf_{ heta \in \mathbb{R}^m} ig\{ F(heta) - \langle au, heta
angle ig\} \,, \ & F_*: & \operatorname{MARG}(T)
ightarrow \mathbb{R} \,, & \operatorname{concave}. \end{array}$$

$$egin{array}{ll} F(heta) &\equiv& \sup_{ au \in \mathrm{MARG}(\,T)} \left\{ F_*(au) + \langle au, heta
angle
ight\}, \ F: &\mathbb{R}^m o \mathbb{R}\,, & \mathsf{convex}. \end{array}$$

Duality structure

$$egin{array}{ll} F_*(au) &\equiv & \inf_{ heta \in \mathbb{R}^m} \left\{ F(heta) - \langle au, heta
angle
ight\}, \ & F_*: & \operatorname{MARG}(T)
ightarrow \mathbb{R}\,, & \operatorname{concave}. \end{array}$$

$$egin{array}{ll} F(heta) &\equiv& \sup_{ au \in \mathrm{MARG}(\,T)} \left\{ F_*(au) + \langle au, heta
angle
ight\}, \ F: &\mathbb{R}^m o \mathbb{R}\,, & \mathrm{convex}. \end{array}$$

Let's apply all this

$$G = (V, E), V = [n], x = (x_1, ..., x_n), x_i \in \mathcal{X},$$

$$egin{array}{lcl} T_{i,\xi}(x) &=& \mathbb{I}(x_i=\xi)\,, & i\in V, \xi\in \mathcal{X}, \ T_{ij,\xi_1,\xi_2}(x) &=& \mathbb{I}(x_i=\xi_1)\,\mathbb{I}(x_j=\xi_2)\,, & (i,j)\in E, \xi_1, \xi_2\in \mathcal{X}, \end{array}$$

overcomplete!

10-48

The exponential family

$$egin{aligned} \mu_{ heta}(x) &= rac{1}{Z(heta)} \, \exp\left\{ \sum_{(i,j) \in E, \xi_1, \xi_2 \in \mathcal{X}} & heta_{ij}(\xi_1, \xi_2) \, T_{ij \, \xi_1 \xi_2}(x) + \sum_{i \in V, \xi \in \mathcal{X}} & heta_i(\xi) T_{i \xi}(x)
ight\} \ &= rac{1}{Z(heta)} \, \exp\left\{ \sum_{(i,j) \in E} & heta_{ij}(x_i, x_j) + \sum_{i \in V} & heta_i(x_i)
ight\} \end{aligned}$$

(General pairwise model)

The τ parameters

$$egin{array}{lcl} b_i(\xi) &=& \mathbb{E}_{ heta}\{\,T_i(\xi)\} = \mu_{ heta}(x_i = \xi), & ext{for } i \in V\,, \ b_{ij}(\xi_1, \xi_2) &=& \mathbb{E}_{ heta}\{\,T_{ij}(\xi_1, \xi_2)\} = \mu_{ heta}(x_i = \xi_1, x_j = \xi_2)\,, & ext{for } (i,j) \in E. \end{array}$$

The exponential family

$$egin{aligned} \mu_{ heta}(x) &= rac{1}{Z(heta)} \, \exp\left\{ \sum_{(i,j) \in E, \, \xi_1, \, \xi_2 \in \mathcal{X}} & heta_{ij}(\xi_1, \xi_2) \, T_{ij\, \xi_1 \xi_2}(x) + \sum_{i \in V, \, \xi \in \mathcal{X}} & heta_i(\xi) T_{i \xi}(x)
ight\} \ &= rac{1}{Z(heta)} \, \exp\left\{ \sum_{(i,j) \in E} & heta_{ij}(x_i, x_j) + \sum_{i \in V} & heta_i(x_i)
ight\} \end{aligned}$$

The
$$au$$
 parameters

 $b_{ij}(\xi_1,\xi_2) = \mathbb{E}_{\theta}\{T_{ij}(\xi_1,\xi_2)\} = \mu_{\theta}(x_i = \xi_1,x_j = \xi_2), \quad \text{for } (i,j) \in E.$

 $b_i(\xi) = \mathbb{E}_{\theta} \{ T_i(\xi) \} = \mu_{\theta}(x_i = \xi), \quad \text{for } i \in V,$

(General pairwise model)

The duality structure

$$F(heta) \leftrightarrow F_*(b)\,,$$
 $F_*: \operatorname{\mathsf{MARG}}(G) o \mathbb{R}\,.$

We want to evaluate at $\Phi = F(\theta_* = \log \psi)$ ':

$$\Phi = \sup_{b \in MARG(G)} \left\{ F_*(b) + \langle \theta_*, b \rangle \right\}$$

$$= Entropy + Energy$$

New interpretation

Bethe entropy is an approximate expression for $F_*(b)$

The duality structure

$$F(heta) \leftrightarrow F_*(b)\,,$$
 $F_*: \operatorname{\mathsf{MARG}}(G) o \mathbb{R}\,.$

We want to evaluate at $\Phi = F(\theta_* = \log \psi)$ ':

$$egin{array}{ll} \Phi &=& \sup_{b \in \mathrm{MARG}(G)} \left\{ F_*(b) + \langle heta_*, b
angle
ight\} \ &=& \mathrm{Entropy} + \mathrm{Energy} \end{array}$$

New interpretation

Bethe entropy is an approximate expression for $F_*(b)$

The duality structure

$$F(heta) \leftrightarrow F_*(b)\,,$$
 $F_*: \operatorname{\mathsf{MARG}}(G) o \mathbb{R}\,.$

We want to evaluate at $\Phi = F(\theta_* = \log \psi)$ ':

$$egin{array}{ll} \Phi &=& \sup_{b \in \mathrm{MARG}(G)} \left\{ F_*(b) + \langle heta_*, b
angle
ight\} \ &=& \mathrm{Entropy} + \mathrm{Energy} \end{array}$$

New interpretation

Bethe entropy is an approximate expression for $F_*(b)$.

Interpretation works fine on trees

Proposition

If G is a tree, then MARG(G) = LOC(G) and

$$F_*(b) = \sum_{i \in V} H(b_i) - \sum_{(i,j) \in E} I(b_{ij}) = \mathbb{F}_{\psi=1}(b)$$

As a consequence, $\mathbb F: \mathrm{LOC}(G) o \mathbb R$ is concave

Proof: Evercise

Interpretation works fine on trees

Proposition

If G is a tree, then MARG(G) = LOC(G) and

$$F_*(b) = \sum_{i \in V} H(b_i) - \sum_{(i,j) \in E} I(b_{ij}) = \mathbb{F}_{\psi=1}(b)$$

As a consequence, $\mathbb{F}: \mathrm{LOC}(G) \to \mathbb{R}$ is concave.

Proof: Evercise

Interpretation works fine on trees

Proposition

If G is a tree, then $\mathrm{MARG}(G) = \mathrm{LOC}(G)$ and

$$F_*(b) = \sum_{i \in V} H(b_i) - \sum_{(i,j) \in E} I(b_{ij}) = \mathbb{F}_{\psi=1}(b)$$

As a consequence, $\mathbb{F}: \mathrm{LOC}(G) \to \mathbb{R}$ is concave.

Proof: Exercise.

What about general graphs?

Write ${\it G}$ as a convex combination of trees.

Abuse: I will use T to denote trees, not functions.

$$\mathcal{T}(G) = \{ ext{ spanning trees in } G \},$$
 $ho: \mathcal{T}(G)
ightarrow [0,1],$ $ho:
ho_T, ext{ weights},$ $ho_T = 1,$ $ho_T = 0.$

$$\mathcal{T}(G) = ig\{ ext{ spanning trees in } G ig\},$$
 $ho: \mathcal{T}(G) \longrightarrow [0,1],$ $F \mapsto
ho_T, \qquad ext{weights},$ $\sum_{T \in \mathcal{T}(G)}
ho_T = 1,$

$$\mathcal{T}(G) = ig\{ ext{ spanning trees in } G ig\},$$
 $ho: \mathcal{T}(G)
ightarrow [0,1],$ $F
ho:
ho_T, \qquad ext{weights},$ $\sum_{T \in \mathcal{T}(G)}
ho_T = 1,$ $\sum_{T \in \mathcal{T}(G)}
ho_T \, heta^T = heta \, .$

$$egin{array}{lll} \Phi & = & F(heta) = Fig(\sum_{T \in \mathcal{T}(G)}
ho_T heta^Tig) \ & \leq & \sum_{T \in \mathcal{T}(G)}
ho_T \, F(heta^T) \end{array}$$

- Fix weigths ρ_T .
- Minimize over θ^T (convex!)

Problem: Exponentially many spanning trees.

$$egin{array}{lll} \Phi & = & F(heta) = Fig(\sum_{T \in \mathcal{T}(G)}
ho_T heta^Tig) \ & \leq & \sum_{T \in \mathcal{T}(G)}
ho_T \, Fig(heta^Tig) \end{array}$$

- Fix weigths ρ_T .
- Minimize over θ^T (convex!)

Problem: Exponentially many spanning trees.

$$egin{array}{lll} \Phi & = & F(heta) = Fig(\sum_{T \in \mathcal{T}(G)}
ho_T heta^Tig) \ & \leq & \sum_{T \in \mathcal{T}(G)}
ho_T \, Fig(heta^Tig) \end{array}$$

- Fix weigths ρ_T.
- Minimize over θ^T (convex!)

Problem: Exponentially many spanning trees.

Minimization over $(\theta^T)_{T \in \mathcal{T}(G)}$

minimize
$$\sum_{T \in \mathcal{T}(G)}
ho_T \, F(heta^T)$$
, subject to $\sum_{T \in \mathcal{T}(G)}
ho_T heta_{ij}^T(x_i, x_j) = heta_{ij}(x_i, x_j)$, $\sum_{T \in \mathcal{T}(G)}
ho_T heta_i^T(x_i) = heta_i(x_i)$.

Convex Problem

Minimization over $(\theta^T)_{T \in \mathcal{T}(G)}$

minimize
$$\sum_{T \in \mathcal{T}(G)}
ho_T \, F(heta^T)$$
, subject to $\sum_{T \in \mathcal{T}(G)}
ho_T heta_{ij}^T(x_i, x_j) = heta_{ij}(x_i, x_j)$, $\sum_{T \in \mathcal{T}(G)}
ho_T heta_i^T(x_i) = heta_i(x_i)$.

Convex Problem

$$egin{aligned} \mathcal{L}((heta^T),b) &= \sum_{T}
ho_T \, F(heta^T) \ &- \sum_{(ij) \in E} \sum_{x_i,x_j} b_{ij}(x_i,x_j) \Big\{ \sum_{T}
ho_T heta_{ij}^T(x_i,x_j) - heta_{ij}(x_i,x_j) \Big\} \ &- \sum_{i \in V} \sum_{x_i} b_i(x_i) \Big\{ \sum_{T}
ho_T heta_i^T(x_i) - heta_i(x_i) \Big\} \ &= \sum_{T}
ho_T \Big\{ F(heta^T) - \langle b, heta^T
angle \Big\} + \langle b, heta
angle \end{aligned}$$

Separable in θ^T

$$egin{aligned} \mathcal{L}((heta^T),b) &= \sum_T
ho_T \, F(heta^T) \ &- \sum_{(ij) \in E} \sum_{x_i,x_j} b_{ij}(x_i,x_j) \Big\{ \sum_T
ho_T heta_{ij}^T(x_i,x_j) - heta_{ij}(x_i,x_j) \Big\} \ &- \sum_{i \in V} \sum_{x_i} b_i(x_i) \Big\{ \sum_T
ho_T heta_i^T(x_i) - heta_i(x_i) \Big\} \ &= \sum_T
ho_T \Big\{ F(heta^T) - \langle b, heta^T
angle \Big\} + \langle b, heta
angle \end{aligned}$$

Separable in θ^T

$$egin{aligned} \mathcal{L}((m{ heta}^T),b) &= \sum_T
ho_T \, F(m{ heta}^T) \ &- \sum_{(ij) \in E} \sum_{x_i, x_j} b_{ij}(x_i, x_j) igg\{ \sum_T
ho_T m{ heta}_{ij}^T(x_i, x_j) - m{ heta}_{ij}(x_i, x_j) igg\} \ &- \sum_{i \in V} \sum_{x_i} b_i(x_i) igg\{ \sum_T
ho_T m{ heta}_i^T(x_i) - m{ heta}_i(x_i) igg\} \ &= \sum_T
ho_T igg\{ F(m{ heta}^T) - \langle b, m{ heta}^T
angle igg\} + \langle b, m{ heta}
angle \end{aligned}$$

Separable in θ^T

$$egin{aligned} \min_{oldsymbol{(heta^T)}} & \mathcal{L}((oldsymbol{(heta^T)}, b) = \sum_{T}
ho_T F_*(b; heta) + \langle b, heta
angle \\ & = \sum_{T}
ho_T \Big\{ \sum_{i \in V} H(b_i) - \sum_{(ij) \in E(T)} I(b_{ij}) \Big\} + \langle b, heta
angle \\ & = \sum_{i \in V} H(b_i) \Big\{ \sum_{T: i \in V}
ho_T \Big\} - \sum_{(i,j) \in V} I(b_{ij}) \Big\{ \sum_{T: (i,j) \in E(T)}
ho_T \Big\} + \langle b, heta
angle \\ & = \sum_{i \in V} H(b_i) - \sum_{(i,j) \in V}
ho(ij) I(b_{ij}) + \langle b, heta
angle \end{aligned}$$

$$egin{aligned} \min_{(heta^T)} & \mathcal{L}((heta^T), b) = \sum_T
ho_T F_*(b; heta) + \langle b, heta
angle \\ & = \sum_T
ho_T \Big\{ \sum_{i \in V} H(b_i) - \sum_{(ij) \in E(T)} I(b_{ij}) \Big\} + \langle b, heta
angle \\ & = \sum_{i \in V} H(b_i) \Big\{ \sum_{T: i \in V}
ho_T \Big\} - \sum_{(i,j) \in V} I(b_{ij}) \Big\{ \sum_{T: (i,j) \in E(T)}
ho_T \Big\} + \langle b, heta
angle \\ & = \sum_{i \in V} H(b_i) - \sum_{(i,j) \in V}
ho(ij) I(b_{ij}) + \langle b, heta
angle \end{aligned}$$

$$egin{aligned} \min_{(heta^T)} & \mathcal{L}((heta^T), b) = \sum_T
ho_T F_*(b; heta) + \langle b, heta
angle \ & = \sum_T
ho_T igg\{ \sum_{i \in V} H(b_i) - \sum_{(ij) \in E(T)} I(b_{ij}) igg\} + \langle b, heta
angle \ & = \sum_{i \in V} H(b_i) igg\{ \sum_{T: \, i \in V}
ho_T igg\} - \sum_{(i,j) \in V} I(b_{ij}) igg\{ \sum_{T: \, (i,j) \in E(T)}
ho_T igg\} + \langle b, heta
angle \ & = \sum_{i \in V} H(b_i) - \sum_{(i,j) \in V}
ho(ij) I(b_{ij}) + \langle b, heta
angle \ \end{aligned}$$

$$egin{aligned} \min_{(heta^T)} & \mathcal{L}((heta^T), b) = \sum_T
ho_T F_*(b; heta) + \langle b, heta
angle \ & = \sum_T
ho_T igg\{ \sum_{i \in V} H(b_i) - \sum_{(ij) \in E(T)} I(b_{ij}) igg\} + \langle b, heta
angle \ & = \sum_{i \in V} H(b_i) igg\{ \sum_{T: \, i \in V}
ho_T igg\} - \sum_{(i,j) \in V} I(b_{ij}) igg\{ \sum_{T: \, (i,j) \in E(T)}
ho_T igg\} + \langle b, heta
angle \ & = \sum_{i \in V} H(b_i) - \sum_{(i,j) \in V}
ho(ij) I(b_{ij}) + \langle b, heta
angle \end{aligned}$$

Tree-reweighted free energy

$$\mathbb{F}_{\mathsf{TRW}}(b) = \sum_{i \in V} H(b_i) - \sum_{(i,j) \in V} {\color{red} oldsymbol{
ho}(ij)} I(b_{ij}) + \langle \, b, heta
angle$$

Compare with Bethe free energy

$$\mathbb{F}(b) \sum_{i \in V} H(b_i) - \sum_{(i,j) \in V} I(b_{ij}) + \langle b, heta
angle$$

$$\rho(i,j) = 0$$
 Obviously concave upper bound

 $\rho(i,j) = 1$ Bethe free energy

Tree-reweighted free energy

$$\mathbb{F}_{\mathsf{TRW}}(b) = \sum_{i \in V} H(b_i) - \sum_{(i,j) \in V} {\color{red} oldsymbol{
ho}(ij)} I(b_{ij}) + \langle \, b, heta
angle$$

Compare with Bethe free energy

$$\mathbb{F}(b) \sum_{i \in V} H(b_i) - \sum_{(i,j) \in V} I(b_{ij}) + \langle b, heta
angle$$

$$ho(i,j)=0$$
 Obviously concave upper bound

 $\rho(i,j) = 1$ Bethe free energy

Tree-reweighted free energy

$$\mathbb{F}_{\mathsf{TRW}}(b) = \sum_{i \in V} H(b_i) - \sum_{(i,j) \in V} {\color{red} oldsymbol{
ho}(ij)} I(b_{ij}) + \langle \, b, heta
angle$$

Compare with Bethe free energy

$$\mathbb{F}(b)\sum_{i\in V}H(b_i)-\sum_{(i,j)\in V}I(b_{ij})+\langle b, heta
angle$$

$$\rho(i,j) = 0$$
 Obviously concave upper bound.

$$\rho(i,j) = 1$$
 Bethe free energy.

Edge weights

$$ho = (
ho(e): e \in E)$$

Intepretation

$$ho(\mathit{e}) = \mathbb{P}_{
ho}\{\mathit{e} \in \mathit{E}(\mathit{T})\}\,, \qquad \mathbb{P}_{
ho}(\mathit{T}) = \mathit{
ho}_\mathit{T}\,.$$

Spanning-Tree polytope

$$egin{array}{lll} \sum\limits_{(i,j)\in E}
ho(i,j)&=&|V|-1\,,\ \sum\limits_{j)\in E(U)}
ho(i,j)&\leq&|U|-1\,, \end{array} \qquad ext{for all } U\subseteq V$$

Edge weights

$$ho = (
ho(e) : e \in E)$$

Intepretation

$$ho(e) = \mathbb{P}_
ho\{e \in E(T)\}\,, \qquad \mathbb{P}_
ho(T) =
ho_T\,.$$

Spanning-Tree polytope

$$egin{array}{lll} \sum_{(i,j)\in E}
ho(i,j)&=&|V|-1\,,\ \sum_{(i,j)\in E(U)}
ho(i,j)&\leq&|U|-1\,, & ext{for all }U\subseteq V. \end{array}$$

Example

k-regular graph

$$|V|=n, \qquad |E|=rac{nk}{2}\,.$$

Take all the weights equal (not necessarily ok, but...)

$$ho(i,j) = rac{2(n-1)}{nk} pprox rac{2}{k}$$

For (some) models on locally tree-like graphs, $\rho(i,j)=1$ is approximately correct $\to \Theta(n)$ error.

Example

k-regular graph

$$|V|=n, \qquad |E|=rac{nk}{2}\,.$$

Take all the weights equal (not necessarily ok, but...)

$$ho(i,j) = rac{2(n-1)}{nk} pprox rac{2}{k}$$

For (some) models on locally tree-like graphs, $\rho(i,j)=1$ is approximately correct $\rightarrow \Theta(n)$ error.