10. Variational methods

- Gibbs free energy
- Naive mean field
- Bethe free energy
- Region-based approximation
- Tree-based convexification

Loopy belief propagation

- directed edges on $G: \vec{E}$
- messages: $\nu^{(t)} \equiv\left\{\nu_{i \rightarrow j}(\cdot)\right\}_{(i, j) \in \vec{E}}$
- loopy belief propagation: $\nu^{(t+1)}=\mathrm{F}\left(\nu^{(t)}\right)$

$$
\begin{aligned}
& \nu_{i \rightarrow j}^{(t+1)} \propto \prod_{k \in \partial i \backslash j}\left\{\sum_{x_{k} \in \mathcal{X}} \psi_{i k}\left(x_{i}, x_{k}\right) \nu_{k \rightarrow i}^{(t)}\left(x_{k}\right)\right\} \\
& \mathrm{F}: \mathrm{M}(\mathcal{X})^{\vec{E}} \rightarrow \mathrm{M}(\mathcal{X})^{\vec{E}} \\
& \nu \mapsto \mathrm{~F}(\nu)
\end{aligned}
$$

where $\mathrm{M}(\mathcal{X})$ is the set of probability measures on \mathcal{X}

- if loopy BP converges, it eventually conerges to a fixed point of F

$$
\nu^{*}=\mathrm{F}\left(\nu^{*}\right)
$$

1. does F have a fixed point?
2. if F has one or more fixed points, what are they?
3. does BP converge to a fixed point?

Existence of a fixed point

- Theorem. (Hadamard 1910, Brouwer 1912) Any continuous function mapping from a convex compact set to the same convex compact set has a fixed point.
- existence of at least one fixed point of F follows from
- F is continuous
- the set of normalized messages is convex and compact
- but what do these fixed points correspond to?
- and how do they relate to BP?
- variational approach tries to answer these questions by formulating the inference problem as an optimization problem

Gibbs variational principle

- start with a hard optimization problem
- approximate the solution by imposing constraints and searching in a smaller feasible set
- relate the solutions of the relaxation to BP
- 'actual' probability

$$
\mu(x)=\frac{1}{Z} \prod_{(i, j) \in E} \psi_{i j}\left(x_{i}, x_{j}\right)=\frac{1}{Z} \psi_{\mathrm{tot}}(x)
$$

- we know $\psi_{\text {tot }}$ but not Z
- 'trial' probability ('belief') $b(x) \in \mathrm{M}\left(\mathcal{X}^{|V|}\right)$
we focus on characterizing log partition function

$$
\Phi \equiv \log Z=\log \left\{\sum_{x \in \mathcal{X}^{|V|}} \prod_{(i, j) \in E} \psi_{i j}\left(x_{i}, x_{j}\right)\right\}
$$

- variational characterization of the log partition function

$$
\Phi=\sup _{b \in M\left(\mathcal{X}^{|V|}\right)} \mathbb{G}(b)
$$

- define Gibbs free energy $\mathbb{G}_{\psi}(b)$

$$
\begin{aligned}
\mathbb{G}_{\psi}(b) & =\sum_{x \in \mathcal{X}|V|}\left(b(x) \log \psi_{\text {tot }}(x)\right)-\sum_{x \in \mathcal{X}|V|}(b(x) \log b(x)) \\
& =-\underbrace{\mathbb{E}_{b}\left[-\log \psi_{\text {tot }}(X)\right]}_{\text {expected energy w.r.t. } b}+\underbrace{\mathbb{E}_{b}[-\log b(X)]}_{\text {entropy of } b}
\end{aligned}
$$

such that

- strictly concave
- $\sup \mathbb{G}_{\psi}(b)=\Phi$ $b \in \mathrm{M}\left(\mathcal{X}^{|V|}\right)$
- $\mu=\arg \max _{b} \mathbb{G}_{\psi}(b)$
- interpretation
- the optimal solution $b^{*}(x)=\mu(x)$ minimizes average energy while maximizing entropy

Proof of $\Phi=\sup _{b} \mathbb{G}_{\psi}(b)$

- rearranging terms,

$$
\begin{aligned}
\mathbb{G}_{\psi}(b) & =\sum_{x \in \mathcal{X}|V|}\left(b(x) \log \psi_{\mathrm{tot}}(x)\right)-\sum_{x \in \mathcal{X}|V|}(b(x) \log b(x)) \\
& =\sum_{x \in \mathcal{X}|V|} b(x)\left(\log Z+\log \frac{1}{Z} \psi_{\mathrm{tot}}(x)\right)-\sum_{x \in \mathcal{X}|V|}(b(x) \log b(x)) \\
& =\log Z-\sum_{x \in \mathcal{X}|V|} b(x)(\log b(x)-\log \mu(x)) \\
& =\Phi-D_{\mathrm{KL}}(b| | \mu)
\end{aligned}
$$

where $D_{\mathrm{KL}}(\cdot \| \cdot)$ is the Kullback-Leibler divergence

- from information theory, it is known that
- $D_{\mathrm{KL}}(b| | \mu) \geq 0$
- $D_{\mathrm{KL}}(b| | \mu)=0$ if and only if $b=\mu$
- good news: we can compute partition function Z by solving a convex optimization
- bad news: $\mathrm{M}\left(\mathcal{X}^{|V|}\right)$ is $|\mathcal{X}|^{|V|}-1$ dimensional
- next strategy: solve the optimization over a low-dimensional subset S

- this give a lower bound on the log partition function, because we are maximizing over a smaller set

Naive mean field

- define a subset of distributions that can be factorized according to naive mean field factorization

$$
S_{\mathrm{MF}}=\left\{b \in \mathrm{M}\left(\mathcal{X}^{n}\right): b(x)=b_{1}\left(x_{1}\right) \times b_{2}\left(x_{2}\right) \times \cdots \times b_{n}\left(x_{n}\right)\right\}
$$

- slight abuse of notation: $b=\left\{b_{i}\right\}_{i \in V}$
- let

$$
\begin{aligned}
\mathbb{F}_{\mathrm{MF}}: S_{\mathrm{MF}} & \rightarrow \mathbb{R} \\
b & \mapsto \mathbb{G}_{\psi}(b)
\end{aligned}
$$

- we can compute it explicitly, after some algebra

$$
\mathbb{F}_{\mathrm{MF}}(b)=\sum_{(i, j) \in E} \sum_{x_{i}, x_{j}} b_{i}\left(x_{i}\right) b_{j}\left(x_{j}\right) \log \psi_{i j}\left(x_{i}, x_{j}\right)-\sum_{i \in V, x_{i}} b_{i}\left(x_{i}\right) \log b_{i}\left(x_{i}\right)
$$

- mean field variational inference problem

$$
\begin{aligned}
\max _{b \in S_{\mathrm{MF}}} & \mathbb{F}_{\mathrm{MF}}(b) \\
\text { subject to } & b_{i}\left(x_{i}\right) \geq 0 \quad \text { for all } i \in V, x_{i} \in \mathcal{X} \\
& \sum_{x_{i} \in \mathcal{X}} b_{i}\left(x_{i}\right)=1 \quad \text { for all } i \in V
\end{aligned}
$$

- consider b_{i} 's as approximate node marginals
- although $\mathbb{F}_{\mathrm{MF}}(\cdot)$ is not concave, we can search for local maxima
- characterizing the local maxima
- the stationary points of a constrained optimization satisfy that the derivatives of the Lagrangian are zero

$$
\begin{aligned}
L(b, \lambda)= & \mathbb{F}_{\mathrm{MF}}(b)-\sum_{i \in V} \lambda_{i}\left\{\sum_{x_{i} \in \mathcal{X}} b_{i}\left(x_{i}\right)-1\right\} \\
= & \frac{1}{2} \sum_{i \in V, x_{i} \in \mathcal{X}} b_{i}\left(x_{i}\right)\left\{\sum_{j \in \partial i, x_{j} \in \mathcal{X}} b_{j}\left(x_{j}\right) \log \psi_{i j}\left(x_{i}, x_{j}\right)\right\}-\sum_{i \in V, x_{i}} b_{i}\left(x_{i}\right) \log b_{i}\left(x_{i}\right) \\
& \quad-\sum_{i \in V} \lambda_{i}\left\{\sum_{x_{i} \in \mathcal{X}} b_{i}\left(x_{i}\right)-1\right\}
\end{aligned}
$$

- define a Lagrangian multiplier λ_{i} for each constraint $\sum b_{i}\left(x_{i}\right)=1$
- non-negativity constraints are implicit from the log

$$
\begin{aligned}
\frac{\partial L(b, \lambda)}{\partial b_{i}\left(x_{i}\right)} & =\sum_{j \in \partial i} \sum_{x_{j} \in \mathcal{X}} b_{j}\left(x_{j}\right) \log \psi_{i j}\left(x_{i}, x_{j}\right)-1-\log b_{i}\left(x_{i}\right)-\lambda_{i} \\
& =0
\end{aligned}
$$

- solving for $b_{i}\left(x_{i}\right)$ we get naive mean field equations:

$$
\begin{aligned}
b_{i}\left(x_{i}\right) & \propto \exp \left\{\sum_{j \in \partial i} \sum_{x_{j} \in \mathcal{X}} \log \psi_{i j}\left(x_{i}, x_{j}\right) b_{j}\left(x_{j}\right)\right\} \\
b & =\mathrm{F}_{\mathrm{MF}}(b)
\end{aligned}
$$

- a fixed point can be searched by iteration:

$$
b^{(t+1)}=\mathrm{F}_{\mathrm{MF}}\left(b^{(t)}\right)
$$

Bethe free energy

- one dimensional marginals give a very poor approximation
- example: $x_{1}, x_{2} \in\{0,1\}$

$$
\begin{aligned}
& \mu(x)=\frac{1}{2} \mathbb{I}\left(x_{1} \oplus x_{2}=0\right) \quad \text { and } \\
& \mu(x)=\frac{1}{2} \mathbb{I}\left(x_{1} \oplus x_{2}=1\right)
\end{aligned}
$$

- would like to define a parameterization of $b(x)$ such that
- account exactly for the pairwise correlations induced by edges
- exact on distribution μ defined over a tree

Locally consistent marginals

- consider a parametrization
- $b_{i}\left(x_{i}\right)$: an approximation of the marginal $\mu\left(x_{i}\right)$
- $b_{i j}\left(x_{i}, x_{j}\right)$: as an approximation of the marginal $\mu\left(x_{i}, x_{j}\right)$
- let $b=\left\{b_{i}, b_{i j}\right\}$
- b is a set of globally consistent marginals of a distribution on \mathcal{X}^{n} if there exists a $\mathbb{P}(\cdot) \in M\left(\mathcal{X}^{|V|}\right)$ such that

$$
\begin{aligned}
b_{i}\left(x_{i}\right) & =\sum_{x_{V \backslash\{i\}}} \mathbb{P}(x) & \text {, for all } i \\
b_{i j}\left(x_{i}, x_{j}\right) & =\sum_{x_{V \backslash\{i, j\}}} \mathbb{P}(x) & , \text { for all } i, j
\end{aligned}
$$

- denote the set of all valid marginals by
$\operatorname{MARG}(G)=\left\{b=\left\{b_{i}, b_{i j}\right\}\right.$: marginals of a distribution on $\left.\mathcal{X}^{|V|}\right\}$
- in general, checking $b \in \operatorname{MARG}(G)$ is NP-hard
- $b=\left\{b_{i}, b_{i j}\right\}$ is a set of locally consistent marginals if

$$
\begin{aligned}
\sum_{x_{i}} b_{i}\left(x_{i}\right) & =1 & , \text { for all } i \\
\sum_{x_{j}} b_{i j}\left(x_{i}, x_{j}\right) & =b_{i}\left(x_{i}\right) & , \text { for all } i, j
\end{aligned}
$$

- not all locally consistent marginals correspond to a valid joint probability distribution
- example. three nodes with $\mathcal{X}=\{0,1\}$

$$
\begin{aligned}
b_{1}=b_{2} & =b_{3}=(0.5,0.5) \\
b_{12}=b_{23} & =\left[\begin{array}{ll}
0.49 & 0.01 \\
0.01 & 0.49
\end{array}\right] \\
b_{31} & =\left[\begin{array}{ll}
0.01 & 0.49 \\
0.49 & 0.01
\end{array}\right]
\end{aligned}
$$

- denote the set of all locally consistent marginals by

$$
\operatorname{LOC}(G)=\left\{b=\left\{b_{i}, b_{i j}\right\}: \text { locally consistent marginals }\right\}
$$

- when G is not a tree
- locally consistent $\left\{b_{i}, b_{i j}\right\}$ might not be marginals of any distribution
- when G is a tree
- for any locally consistent $\left\{b_{i}, b_{i j}\right\}$, there exists a unique measure $p \in \mathrm{M}\left(\mathcal{X}^{|V|}\right)$ whose marginals are given by $\left\{b_{i}, b_{i j}\right\}$
- the measure $p(x)$ is given by

$$
p(x)=\prod_{i \in V} b_{i}\left(x_{i}\right) \prod_{(i, j) \in E} \frac{b_{i j}\left(x_{i}, x_{j}\right)}{b_{i}\left(x_{i}\right) b_{j}\left(x_{j}\right)}
$$

- (we did not define Bethe free energy $\mathbb{F}\left(\left\{b_{i}, b_{i j}\right\}\right)$ yet, but) the Gibbs free energy is equal to the Bethe free energy, i.e. $\mathbb{G}(p)=\mathbb{F}\left(\left\{b_{i}, b_{i j}\right\}\right)$, and hence

$$
\log Z=\max _{\left\{b_{i}, b_{i j}\right\} \in \operatorname{LOC}(G)} \mathbb{F}\left(\left\{b_{i}, b_{i j}\right\}\right)
$$

Locally consistent marginals on a tree

- given a tree $G=(V, E)$ with n nodes and $\left\{b_{i}, b_{i j}\right\} \in \operatorname{LOC}(G)$
- prove (by induction) that

$$
p(x)=\prod_{i \in V} b_{i}\left(x_{i}\right) \prod_{(i, j) \in E} \frac{b_{i j}\left(x_{i}, x_{j}\right)}{b_{i}\left(x_{i}\right) b_{j}\left(x_{j}\right)}
$$

is a unique measure on \mathcal{X}^{n} with marginals $p\left(x_{i}\right)=b_{i}\left(x_{i}\right)$ for all i and $p\left(x_{i}, x_{j}\right)=b_{i j}\left(x_{i}, x_{j}\right)$ for all $(i, j) \in E$

- for $n=1$, it is trivial
- assume it is true for n and add a new vertex $i=n+1$, connected to $j=n$

$$
\begin{array}{rlrl}
p\left(x_{V}, x_{n+1}\right) & =p\left(x_{V}\right) p\left(x_{n+1} \mid x_{V}\right) & \\
& =p\left(x_{V}\right) p\left(x_{n+1} \mid x_{n}\right) & \text { [Markov property] } \\
& =p\left(x_{V}\right) \frac{p\left(x_{n}, x_{n+1}\right)}{p\left(x_{n}\right) p\left(x_{n+1}\right)} p\left(x_{n+1}\right) & \text { [Bayes rule] } \\
& =\left\{\prod_{(i, j) \neq(n, n+1)} \frac{b_{i j}\left(x_{i}, x_{j}\right)}{b_{i}\left(x_{i}\right) b_{j}\left(x_{j}\right)} \prod_{i \in V} b_{i}\left(x_{i}\right)\right\} \frac{p\left(x_{n}, x_{n+1}\right)}{p\left(x_{n}\right) p\left(x_{n+1}\right)} p\left(x_{n+1}\right)
\end{array}
$$

Bethe free energy

- variational inference on locally consistent marginals $b=\left\{b_{i}, b_{i j}\right\}$
- want to define an objective function

$$
\begin{aligned}
\mathbb{F}: \operatorname{LOC}(G) & \rightarrow \mathbb{R} \\
b=\left\{b_{i j}, b_{\ell}\right\}_{(i, j) \in E, \ell \in V} & \mapsto \mathbb{F}(b)
\end{aligned}
$$

such that

$$
\begin{aligned}
\arg \max _{b} \mathbb{F}(b) & \approx \mu, \\
\max _{b} \mathbb{F}(b) & \approx \Phi,
\end{aligned}
$$

- recall that for a valid distribution b, Gibbs free energy is defined as

$$
\mathbb{G}_{\psi}(b)=-\underbrace{\mathbb{E}_{b}\left[-\log \psi_{\text {tot }}(X)\right]}_{\text {energy }}+\underbrace{\mathbb{E}_{b}[-\log b(X)]}_{\text {entropy }}
$$

- when G is a tree, the first and second order marginals fully describe the joint distribution:

$$
b(x)=\prod_{i \in V} b_{i}\left(x_{i}\right) \prod_{(i, j) \in E} \frac{b_{i j}\left(x_{i}, x_{j}\right)}{b_{i}\left(x_{i}\right) b_{j}\left(x_{j}\right)}
$$

- Bethe free energy on a tree
- energy

$$
\begin{aligned}
\mathbb{E}_{b}\left[-\log \psi_{\mathrm{tot}}(X)\right] & =-\sum_{(i, j) \in E} \mathbb{E}_{b}\left[\log \psi_{i j}\left(x_{i}, x_{j}\right)\right] \\
& =-\sum_{(i, j) \in E} \mathbb{E}_{b_{i j}}\left[\log \psi_{i j}\left(x_{i}, x_{j}\right)\right] \\
& =-\sum_{(i, j) \in E} \sum_{x_{i}, x_{j}} b_{i j}\left(x_{i}, x_{j}\right) \log \psi_{i j}\left(x_{i}, x_{j}\right)
\end{aligned}
$$

- entropy

$$
\begin{aligned}
H(b) & \equiv \mathbb{E}_{b}[-\log b(X)] \\
& =\sum_{i \in V} \underbrace{-\mathbb{E}_{b_{i}}\left[\log b_{i}\left(X_{i}\right)\right]}_{\equiv H\left(b_{i}\right)}-\sum_{(i, j) \in E} \underbrace{-\mathbb{E}_{b_{i j}}\left[\log b_{i j}\left(X_{i}, X_{j}\right)-\log b_{i}\left(X_{i}\right)-\log b_{j}\left(X_{j}\right)\right.}_{\equiv I\left(b_{i j}\right)}]
\end{aligned}
$$

- in general, define Bethe free energy of $b=\left\{b_{i}, b_{i j}\right\} \in \operatorname{LOC}(G)$ as $\mathbb{F}(b)=-$ energy + entropy

$$
=\sum_{(i, j) \in E} \sum_{x_{i}, x_{j}} b_{i j}\left(x_{i}, x_{j}\right) \log \psi_{i j}\left(x_{i}, x_{j}\right)
$$

$$
-\sum_{(i, j) \in E} \sum_{x_{i}, x_{j}} b_{i j}\left(x_{i}, x_{j}\right) \log \frac{b_{i j}\left(x_{i}, x_{j}\right)}{b_{i}\left(x_{i}\right) b_{j}\left(x_{j}\right)}-\sum_{i \in V} \sum_{x_{i}} b_{i}\left(x_{i}\right) \log b_{i}\left(x_{i}\right)
$$

$$
=\sum_{(i, j) \in E} \sum_{x_{i}, x_{j}} b_{i j}\left(x_{i}, x_{j}\right) \log \psi_{i j}\left(x_{i}, x_{j}\right)
$$

$$
-\sum_{(i, j) \in E} \sum_{x_{i}, x_{j}} b_{i j}\left(x_{i}, x_{j}\right) \log b_{i j}\left(x_{i}, x_{j}\right)-\sum_{i \in V}(1-\operatorname{deg}(i)) \sum_{x_{i}} b_{i}\left(x_{i}\right) \log b_{i}\left(x_{i}\right)
$$

- one justification of using $\mathbb{F}(\cdot)$ is that if G is a tree then

$$
\sup _{\left\{b_{i}, b_{i j}\right\}} \mathbb{F}\left(\left\{b_{i}, b_{i j}\right\}\right)=\sup _{b \in M(G)} \mathbb{G}(b)=\Phi
$$

where $\mathrm{M}(G)$ is the set of distributions that decompose according to G

- the above optimization problem is called Bethe variational problem
- for general graphs, the solution to the above maximization approximates the log partition function, and it is known as Bethe approximation

Connections between Bethe free energy and belief propagation

- maximizing Bethe free energy

$$
\max _{b \in \operatorname{LOC}(G)} \mathbb{F}(b)
$$

- Theorem. (Yedidia, Freeman, Weiss 2003) Fixed points of BP are in one-to-one correspondence with stationary points of Bethe free energy.
- Also, fixed point BP messages ν^{*} are (exponentials of) the dual parameters λ^{*} at the fixed points

Fixed point condition for BP messages

- BP fixed point messages ν^{*} satisfy

$$
\nu_{i \rightarrow j}^{*}\left(x_{i}\right) \propto \prod_{k \in \partial i \backslash j}\left\{\sum_{x_{k}} \psi_{i k}\left(x_{i}, x_{k}\right) \nu_{k \rightarrow i}^{*}\left(x_{k}\right)\right\}
$$

- define a set of marginals (which are exact on a tree)

$$
\begin{aligned}
& b_{i}^{*}\left(x_{i}\right) \propto \prod_{k \in \partial i}\left\{\sum_{x_{k} \in \mathcal{X}} \psi_{i k}\left(x_{i}, x_{k}\right) \nu_{k \rightarrow i}^{*}\left(x_{k}\right)\right\} \\
& \propto \prod_{k \in \partial i}\left\{\left(\nu_{i \rightarrow k}^{*}\left(x_{i}\right)\right)^{\frac{1}{\operatorname{deg}(i)-1}}\right\} \\
& b_{i j}^{*}\left(x_{i}, x_{j}\right) \propto \\
& \longrightarrow \longleftrightarrow \nu_{i \rightarrow j}^{*}\left(x_{i}\right) \psi_{i j}\left(x_{i}, x_{j}\right) \nu_{j \rightarrow i}^{*}\left(x_{j}\right)
\end{aligned}
$$

- exercise. show $\left\{b_{i}, b_{i j}\right\}$ is locally consistent
- claim. b^{*} corresponds to a stationary point of Bethe free energy

Stationarity condition for Bethe free energy

Lagrangian with λ_{i} for condition $\sum_{x_{i}} b_{i}\left(x_{i}\right)=1$, and $\lambda_{i \rightarrow j}\left(x_{i}\right)$ for condition $\sum_{x_{j}} b_{i j}\left(x_{i}, x_{j}\right)=b_{i}\left(x_{i}\right)$

$$
\begin{aligned}
\mathcal{L}(b, \lambda)= & \mathbb{F}(b)-\sum_{i \in V} \lambda_{i}\left\{\sum_{x_{i}} b_{i}\left(x_{i}\right)-1\right\} \\
& -\sum_{(i, j) \in \vec{E}} \sum_{x_{i}} \lambda_{i \rightarrow j}\left(x_{i}\right)\left\{\sum_{x_{j}} b_{i j}\left(x_{i}, x_{j}\right)-b_{i}\left(x_{i}\right)\right\}
\end{aligned}
$$

taking the derivative

$$
\begin{aligned}
\nabla_{b_{i j}\left(x_{i}, x_{j}\right)} \mathcal{L}(b, \lambda) & =-1-\log b_{i j}\left(x_{i}, x_{j}\right)+\log \psi_{i j}\left(x_{i}, x_{j}\right)-\lambda_{i \rightarrow j}\left(x_{i}\right)-\lambda_{j \rightarrow i}\left(x_{j}\right) \\
\nabla_{b_{i}\left(x_{i}\right)} \mathcal{L}(b, \lambda) & =-(1-\operatorname{deg}(i)) \log \left[b_{i}\left(x_{i}\right) e\right]-\lambda_{i}+\sum_{j \in \partial i} \lambda_{i \rightarrow j}\left(x_{i}\right)
\end{aligned}
$$

setting the derivatives to zero

$$
\begin{aligned}
b_{i j}^{*}\left(x_{i}, x_{j}\right) & =\psi_{i j}\left(x_{i}, x_{j}\right) \exp \left\{-1-\lambda_{i \rightarrow j}\left(x_{i}\right)-\lambda_{j \rightarrow i}\left(x_{j}\right)\right\}, \\
b_{i}\left(x_{i}\right)^{*} & \propto \exp \left\{-\frac{1}{\operatorname{deg}(i)-1} \sum_{j \in \partial i} \lambda_{i \rightarrow j}\left(x_{i}\right)\right\} \\
\sum_{x_{j}} b_{i j}^{*}\left(x_{i}, x_{j}\right) & =b_{i}^{*}\left(x_{i}\right)
\end{aligned}
$$

- changing variables: $\nu_{i \rightarrow j}\left(x_{i}\right) \propto e^{-\lambda_{i \rightarrow j}\left(x_{i}\right)}$

$$
\begin{aligned}
b_{i j}^{*}\left(x_{i}, x_{j}\right) & \propto \nu_{i \rightarrow j}\left(x_{i}\right) \psi_{i j}\left(x_{i}, x_{j}\right) \nu_{j \rightarrow i}\left(x_{j}\right) \\
b_{i}^{*}\left(x_{i}\right) & \propto \prod_{j \in \partial i}\left\{\left(\nu_{i \rightarrow j}\left(x_{i}\right)\right)^{\frac{1}{\operatorname{deg}(i)-1}}\right\}
\end{aligned}
$$

- imposing locally consistency constraints $\sum_{x_{j}} b_{i j}^{*}\left(x_{i}, x_{j}\right)=b_{i}^{*}\left(x_{i}\right)$, we can show that the $\nu_{i \rightarrow j}$'s are at BP fixed point. Start with the identity

$$
\prod_{k \in \partial i \backslash j}\{\underbrace{\sum_{x_{k}} b_{i k}^{*}\left(x_{i}, x_{k}\right)}_{=b_{i}^{*}\left(x_{i}\right)}\}=b_{i}^{*}\left(x_{i}\right)^{\operatorname{deg}(i)-1} \text {, substitute } \nu \text { 's }
$$

$$
\begin{aligned}
\prod_{k \in \partial i \backslash j}\left\{\nu_{i \rightarrow k}\left(x_{i}\right) \sum_{x_{k}} \nu_{k \rightarrow i}\left(x_{k}\right) \psi_{i k}\left(x_{i}, x_{k}\right)\right\} & \propto \prod_{k \in \partial i}\left\{\nu_{i \rightarrow k}\left(x_{i}\right)\right\}, \text { after a division } \\
\prod_{k \in \partial i \backslash j}\left\{\sum_{x_{k}} \nu_{k \rightarrow i}\left(x_{k}\right) \psi_{i k}\left(x_{i}, x_{k}\right)\right\} & \propto \nu_{i \rightarrow j}\left(x_{i}\right)
\end{aligned}
$$

- we have established that each of the BP fixed points correspond to a stationary point of the Bethe free energy
- Alternative algorithms to find fixed points (e.g. gradient ascent) [e.g. Heskes 2002]
- Include higher order marginals
[Yedidia, Freeman, Weiss 2003]
- Convexify Bethe free energy
[Wainwright, Jaakkola, Willsky 2005]
- Asymptotically tight estimates on $\log Z$ for graph sequences
[e.g. Dembo, Montanari 2010]
- Historically, statistical physics study systems in thermal equilibrium, whose state is given by Boltzmann's law

$$
\mu(x)=\frac{1}{Z(T)} e^{-E(x) / T}
$$

where T is the temperature, $E(x)$ is the energy at a state x, and $Z(T)$ is the partition function given by

$$
Z(T)=\sum_{x \in S} e^{-E(x) / T}
$$

Helmholtz free energy (log partition function) is an important quantity for understanding how the system and statistical physicists have devoted significant energy to find good approximations to it:

$$
F_{H}=-\ln Z(T)
$$

An important technique is based on variational approaches, where the maximum of Gibbs free energy is studied

$$
\mathbb{G}(b)=\sum_{x \in S} b(x) E(x)+\sum_{x \in S} b(x) \log b(x)
$$

Region-based approximation

Consistency on Vertices	\rightarrow	Edges	\rightarrow	Regions
Naive Mean Field	\rightarrow	Bethe Free Energy	\rightarrow	Region-Based Free Energy
MF Equations	\rightarrow	Belief Propagation	\rightarrow	Generalized BP

[Cluster variational method, Kikuchi 1951]

- Idea: decompose the system into sub-systems (regions) and approximate the free energy by combining the free energies of the sub-systems

Region

- Definitions.
- a region $R=\left(V_{R}, E_{R}\right)$ is a subgraph such that if $(i, j) \in E_{R}$ then $i, j \in V_{R}$
- region free energy $\mathbb{F}_{R}: \mathrm{M}\left(\mathcal{X}^{V_{R}}\right) \rightarrow \mathbb{R}$

$$
\begin{aligned}
\mathbb{F}_{R}\left(b_{R}\right) & =\mathbb{E}_{b_{R}} \log \psi_{\mathrm{tot}, R}\left(x_{R}\right)+H\left(b_{R}\right) \\
& =-\underbrace{\sum_{x_{R}} \sum_{(i, j) \in E_{R}}-b_{R}\left(x_{R}\right) \log \psi_{i j}\left(x_{i}, x_{j}\right)}_{\text {region energy }}+\underbrace{\sum_{x_{R}}-b_{R}\left(x_{R}\right) \log b_{R}\left(x_{R}\right)}_{\text {region entropy }}
\end{aligned}
$$

- can be evaluated for small regions (complexity $|\mathcal{X}|^{|R|}$)

Region-based approximation

- collection of regions

$$
\mathbf{R}=\left\{R_{1}, R_{2}, \ldots, R_{m}\right\}
$$

- coefficients

$$
c_{\mathbf{R}}=\left\{c_{R_{1}}, c_{R_{2}}, \ldots, c_{R_{m}}\right\}, \quad c_{R_{i}} \in \mathbb{R}
$$

- marginals

$$
b_{\mathbf{R}}=\left\{b_{R_{1}}, b_{R_{2}}, \ldots, b_{R_{m}}\right\}, \quad b_{R_{i}} \in \mathrm{M}\left(\mathcal{X}^{V_{R_{i}}}\right)
$$

- region-based free energy approximation:

$$
\mathbb{F}_{\mathbf{R}}\left(b_{\mathbf{R}}\right)=\sum_{R \in \mathbf{R}} c_{R} \mathbb{F}_{R}\left(b_{R}\right)
$$

Example: Bethe Free Energy

- regions

$$
\begin{aligned}
\mathbf{R} & =\left\{R_{i}: i \in V\right\} \cup\left\{R_{i j}:(i, j) \in E\right\} \\
R_{i} & =(\{i\}, \emptyset) \\
R_{i j} & =(\{i, j\},\{(i, j)\})
\end{aligned}
$$

- coefficients

$$
c_{i}=1-\operatorname{deg}(i), \quad c_{i j}=1
$$

- Bethe free energy as a special case of the region based free energy

$$
\mathbb{F}_{\mathbf{R}}(b)=\sum_{i \in V}\{1-\operatorname{deg}(i)\} H\left(b_{i}\right)+\sum_{(i, j) \in E}\left\{H\left(b_{i j}\right)+\mathbb{E}_{b_{i j}} \log \psi_{i j}\left(x_{i}, x_{j}\right)\right\}
$$

- main questions

1. What about domain/consistency of $b_{R}\left(x_{R}\right)$?
2. How to choose coefficients?
3. How to choose regions?

- valid region-based approximations
[Yedidia, Freeman, Weiss, 2003]
- condition 1: local consistency

$$
\begin{gathered}
R \in \mathbf{R}, R^{\prime} \subseteq R \quad \Rightarrow \quad R^{\prime} \in \mathbf{R} . \\
\sum_{x_{R \backslash R^{\prime}}} b_{R}\left(x_{R}\right)=b_{R^{\prime}}\left(x_{R^{\prime}}\right) \quad \text { for all } R^{\prime} \subseteq R .
\end{gathered}
$$

let $\operatorname{LOC}(G ; \mathbf{R})$ be a set of marginals $b=\left\{b_{R}: R \in \mathbf{R}\right\}$ that are locally consistent w.r.t. a collection of regions \mathbf{R}

- condition 2: vertex counting

$$
\sum_{R \in \mathbf{R}} c_{R} \mathbb{I}(i \in R)=1 \quad \text { for all } i \in V
$$

- condition 3: edge counting

$$
\sum_{R \in \mathbf{R}} c_{R} \mathbb{I}((i, j) \in R)=1 \quad \text { for all }(i, j) \in E
$$

Geometric picture

Polytopes

Justification of condition \#2

$$
\sum_{R \in \mathbf{R}} c_{R} \mathbb{I}(i \in R)=1 \quad \text { for all } i \in V
$$

- consider a special case of uniform distribution: $\mu(x)=1 /|\mathcal{X}|^{|V|}$ and $\psi_{i j}\left(x_{i}, x_{j}\right)=1$
- suppose $b_{R}\left(x_{R}\right)$ are true marginals, i.e. $b_{R}^{*}\left(x_{R}\right)=1 /|\mathcal{X}|^{\left|V_{R}\right|}$
- then for any graph, the region based approximation is exact:

$$
\mathbb{F}_{\mathbf{R}}\left(b^{*}\right)=\log Z
$$

since $\log \psi_{i j}\left(x_{i}, x_{j}\right)=0$, energy terms are zeros

$$
\begin{aligned}
\sum_{R \in \mathbf{R}} c_{R} \mathbb{F}_{R}\left(b_{R}^{*}\right) & =\sum_{R \in \mathbf{R}} c_{R} H\left(b_{R}^{*}\right) \\
& =\sum_{R \in \mathbf{R}} c_{R} \underbrace{\left|V_{R}\right|}_{\sum_{i \in V} \mathbb{I}(i \in R)} \log |\mathcal{X}| \\
& =\sum_{i \in V}\left\{\sum_{R \in \mathbf{R}} c_{R} \mathbb{I}(i \in R)\right\} \log |\mathcal{X}| \\
\text { rence } \quad & =|V| \log |\mathcal{X}|
\end{aligned}
$$

Justification of condition \#3

$$
\sum_{R \in \mathbf{R}} c_{R} \mathbb{I}((i, j) \in R)=1 \quad \text { for all }(i, j) \in E
$$

- neglect entropy (e.g. suppose $\left.\psi_{i j}\left(x_{i}, x_{j}\right)=e^{\beta \theta_{i j}\left(x_{i}, x_{j}\right)}, \beta \rightarrow \infty\right)$
- suppose $b_{R}^{*}\left(x_{R}\right)$ are true marginals, i.e. $b_{R}^{*}\left(x_{R}\right)=\sum_{x_{V \backslash V(R)}} b^{*}(X)$
- then the region based approximation correctly recovers the energy

$$
\begin{aligned}
\sum_{R \in \mathbf{R}} c_{R} \mathbb{F}_{R}\left(b_{R}^{*}\right) & =\beta \sum_{R \in \mathbf{R}} c_{R} \sum_{x_{R}} b_{R}^{*}\left(x_{R}\right) \sum_{(i j) \in E(R)} \theta_{i j}\left(x_{i}, x_{j}\right)+O_{\beta}(1) \\
& =\beta \sum_{R \in \mathbf{R}} c_{R} \sum_{(i j) \in E(R)} \mathbb{E}_{b_{i j}^{*}}\left[\theta_{i j}\left(X_{i}, X_{j}\right)\right]+O_{\beta}(1) \\
& =\beta \sum_{(i j) \in E}\left\{\sum_{R \in \mathbf{R}} c_{R} \mathbb{I}((i, j) \in R)\right\} \mathbb{E}_{b_{i j}^{*}}\left[\theta_{i j}\left(X_{i}, X_{j}\right)\right]+O_{\beta}(1) \\
& =\beta \sum_{(i j) \in E} \mathbb{E}_{b_{i j}^{*}}\left[\theta_{i j}\left(X_{i}, X_{j}\right)\right]+O_{\beta}(1)
\end{aligned}
$$

How should the regions be chosen?

- Cluster variational method (Kikuchi approximations):
- First, choose a basic set of clusters (with $c_{R}=1$)
- Then, add all intersections of those basic clusters with

$$
c_{R}=1-\sum_{R^{\prime} \in \text { ancestor of } \mathrm{R}} c_{R}^{\prime}
$$

- Continue until all intersections are included
- the above choice of c_{R} ensures that the vertex counting condition is satisfied, i.e. $\sum_{R \in \mathbf{R}} \mathbb{I}(i \in R)=1$
- an example with a choice of a basic set of $\left\{\left(x_{1}, x_{2}, x_{4}, x_{5}\right),\left(x_{2}, x_{3}, x_{5}, x_{6}\right),\left(x_{4}, x_{5}, x_{7}, x_{8}\right),\left(x_{5}, x_{6}, x_{8}, x_{9}\right)\right\}$

- larger basic regions give better approximations
- for pairwise MRFs, Bethe free energy has the correct energy term
- Region based methods improve in giving the increasingly accurate entropy term as clusters become larger

The Region Graph

- given a collection of regions \mathbf{R}, how do you compute the (consistent) coefficients?
- region graph is a directed acyclic graph where an edge from R to R^{\prime} may exist if $R^{\prime} \subseteq R$
- child, parent, ancestor, descendant
- region graph is not unique

The Region Graph

- given a region graph, the weights of the regions can be computed according to

- region based free energy is exact if the corresponding region graph has no (undirected) cycles and the weights c_{R} are valid
- in general, how to generate a good region graph is still open

Generalized belief propagation

$$
\begin{array}{ll}
\text { maximize } & \mathbb{F}_{\mathbf{R}}\left(b_{\mathbf{R}}\right)=\sum_{R \in \mathbf{R}} c_{R} \mathbb{F}_{R}\left(b_{R}\right) \\
\text { subject to } & \sum_{x_{R \backslash R^{\prime}}} b_{R}\left(x_{R}\right)=b_{R^{\prime}}\left(x_{R^{\prime}}\right), \quad \forall R \rightarrow R^{\prime}
\end{array}
$$

- we form the Lagrangian

$$
\mathcal{L}\left(\left\{b_{R}\right\},\left\{\lambda_{R \rightarrow R^{\prime}}\right\}\right)=\mathbb{F}_{\mathbf{R}}\left(b_{\mathbf{R}}\right)-\sum_{R \rightarrow R^{\prime}} \sum_{x_{R^{\prime}}}\left\{\lambda_{R \rightarrow R^{\prime}}\left(x_{R^{\prime}}\right)\left(\sum_{x_{R \backslash R^{\prime}}} b_{R}\left(x_{R}\right)-b_{R^{\prime}}\left(x_{R^{\prime}}\right)\right)\right\}
$$

- setting derivative to zero

$$
\nabla_{b_{R}\left(x_{R}\right)} \mathcal{L}\left(\left\{b_{R}\right\},\left\{\lambda_{R \rightarrow R^{\prime}}\right\}\right)=0
$$

- setting $\nabla_{b_{R}\left(x_{R}\right)} \mathcal{L}\left(\left\{b_{R}\right\},\left\{\lambda_{R \rightarrow R^{\prime}}\right\}\right)=0$ gives an marginal computation rule for generalized belief propagation algorithm

$$
b_{R}\left(x_{R}\right) \propto \prod_{(i, j) \in E_{R}} \psi_{i j}\left(x_{i}, x_{j}\right) \prod_{P \in \mathcal{P}(R)} \nu_{P \rightarrow R}\left(x_{R}\right) \prod_{D \in \mathcal{D}(R) P^{\prime} \in \mathcal{P}(D) \backslash R, \mathcal{D}(R)} \prod_{P^{\prime} \rightarrow D}\left(x_{D}\right)
$$

- each consistency constraint $b_{R}\left(x_{R}\right)=\sum_{x_{P \backslash R}} b_{P}\left(x_{R}, x_{P \backslash R}\right)$ gives message update rule

$$
\nu_{P \rightarrow R}\left(x_{R}\right) \propto \frac{\sum_{x_{P \backslash R}} \prod_{(i, j) \in E_{R}} \psi_{i j}\left(x_{i}, x_{j}\right) \prod_{(I, J) \in \mathcal{N}(P, R)} \nu_{I \rightarrow J}\left(x_{J}\right)}{\prod_{(I, J) \in \mathcal{D}(P, R)} \nu_{I \rightarrow J}\left(x_{J}\right)}
$$

- $\mathcal{P}(R)=\{$ parent of $R\}$
- $\mathcal{D}(R)=\{$ all descendants of $R\}$
- $\mathcal{E}(R)=R \cup \mathcal{D}(R)$
- $\mathcal{N}(P, R)=\{I \rightarrow J: J \in \mathcal{E}(P) \backslash \mathcal{E}(R), I \notin \mathcal{E}(P)\}$
- $\mathcal{D}(P, R)=\{I \rightarrow J: J \in \mathcal{E}(R), I \in \mathcal{E}(P) \backslash \mathcal{E}(R)\}$
- GBP fixed points are region-based free energy stationary points

Was it worth it?

10×10 Ising model with random potentials [Yedidia et al. 2003]
2×2 overlapping clusters are used with clustering variational method GBP improves over BP significantly

Upper bound using tree-reweighted belief propagation

- consider all spanning trees of G
- each spanning tree $\tau_{k}=\left(V, E_{k}\right)$ has its own compatibility functions $\left\{\psi_{i j}^{(k)}\right\}_{(i, j) \in E_{k}}$ and a weight c_{k} such that

$$
\begin{aligned}
\sum_{k} c_{k} & =1 \\
\log \psi_{i j}\left(x_{i}, x_{j}\right) & =\sum_{k} c_{k} \log \psi_{i j}^{(k)}\left(x_{i}, x_{j}\right)
\end{aligned}
$$

- decomposing the energy

$$
\begin{aligned}
\mathbb{E}_{b}\left[-\sum_{(i, j) \in E} \log \psi_{i j}\left(x_{i}, x_{j}\right)\right] & =\mathbb{E}_{b}\left[-\sum_{(i, j) \in E} \sum_{k} c_{k} \log \psi_{i j}^{(k)}\left(x_{i}, x_{j}\right)\right] \\
& =\sum_{k} c_{k} \underbrace{\mathbb{E}_{b}\left[-\sum_{(i, j) \in E_{k}} \log \psi_{i j}^{(k)}\left(x_{i}, x_{j}\right)\right]}_{\text {expectation over a tree } E_{k}}
\end{aligned}
$$

- from Gibbs variational principle

$$
\begin{aligned}
\log Z & =\sup _{b \in \mathrm{M}\left(\mathcal{X}^{V}\right)}\left\{\mathbb{E}_{b}\left[\sum_{(i, j) \in E} \log \psi_{i j}\left(x_{i}, x_{j}\right)\right]+H(b)\right\} \\
& =\sup _{b \in \mathrm{M}\left(\mathcal{X}^{V}\right)}\left\{\sum_{k} c_{k}\left\{\mathbb{E}_{b}\left[\sum_{(i, j) \in E_{k}} \log \psi_{i j}^{(k)}\left(x_{i}, x_{j}\right)\right]+H(b)\right\}\right\} \\
& \leq \sum_{k} c_{k} \sup _{b_{b}(k) \in \mathrm{M}\left(\mathcal{X}^{V}\right)}\left\{\mathbb{E}_{b^{(k)}}\left[\sum_{(i, j) \in E_{k}} \log \psi_{i j}^{(k)}\left(x_{i}, x_{j}\right)\right]+H(b)\right\} \\
& =\sum_{k} c_{k} \underbrace{\sup _{b^{(k)} \in \mathrm{LOC}\left(\tau_{k}\right)}\left\{\mathbb{E}_{b^{(k)}}\left[\sum_{(i, j) \in E_{k}} \log \psi_{i j}^{(k)}\left(x_{i}, x_{j}\right)\right]+H(b)\right\}}_{\text {can be solved exactly using BP }}
\end{aligned}
$$

- to get the tightest upper bound, we want to minimize the right-hand side over $\left\{c_{k}\right\}$ and $\left\{\psi_{i j}^{(k)}\right\}$
- the number of spanning trees can explode
- all these loose ends are resolved in [Wainwright, Jaakkola, Willsky, 2003]

Exponential families

- given a finite space \mathcal{X}^{V} and a collection of functions

$$
\begin{aligned}
T: \mathcal{X}^{V} & \rightarrow \mathbb{R}^{m}, \\
x & \mapsto T(x)=\left(T_{1}(x), \ldots, T_{m}(x)\right) .
\end{aligned}
$$

- the corresponding exponential family is a family of distributions parametrized by a vector θ such that $\left\{\mu_{\theta}: \theta \in \mathbb{R}^{m}\right\}$ where

$$
\mu_{\theta}(x)=\frac{1}{Z(\theta)} \exp \{\langle\theta, T(x)\rangle\}, \quad F(\theta)=\log Z(\theta)
$$

where $\langle x, y\rangle=\sum_{i} x_{i} y_{i}$ denotes the inner product

Basic properties of exponential families

$$
F(\theta)=\log \left(\sum_{x} e^{\sum_{i=1}^{m} \theta_{i} T_{i}(x)}\right)
$$

(1) $\theta \mapsto F(\theta)$ is convex [log-sum-exps are convex]
(2) $\nabla_{\theta} F(\theta)=\sum_{x} \frac{e^{(\theta, T(x)\rangle}}{Z(\theta)}\left[T_{1}(x), \ldots, T_{m}(x)\right]^{T}=\mathbb{E}_{\theta}\{T(x)\} \equiv \tau(\theta)$
(3) $\nabla_{\theta}^{2} F(\theta)=\operatorname{Cov}_{\theta}\{T(x) ; T(x)\}$
(4) define a polytope

$$
\begin{aligned}
\operatorname{MARG}(T) & \equiv \operatorname{conv}\left(\left\{T(x): x \in \mathcal{X}^{V}\right\}\right) \\
& =\left\{\mathbb{E}_{\nu}[T(x)]: \nu \in \mathrm{M}\left(\mathcal{X}^{V}\right)\right\}, \text { and } \\
\overline{\operatorname{Image}}(\tau) & =\operatorname{closure}\left(\left\{\mathbb{E}_{\theta}[T(x)]: \theta \in \mathbb{R}^{m}\right\}\right)
\end{aligned}
$$

then exponential families allow to realize any point in the interior of MARG(T)

$$
\overline{\operatorname{Image}(\tau)}=\operatorname{MARG}(T)
$$

Proofs

(1), (2), (3): exercises
(4): a bit more difficult

Claim 1: A closed convex set is the closure of its relative interior. [Hint: Assume the set has full dimension. Each point has a cone of full dimension around it.]

Claim 2: Let $\tau_{*} \in \operatorname{relint}(\operatorname{MARG}(T))$. Then $\tau_{*}=\mathbb{E}_{\nu_{*}}\{T(x)\}$ for some ν_{*} s.t. $\nu_{*}(x)>0$ for all $x \in \mathcal{X}^{V}$. [Hint: Consider the set of signed weigths ν such that $\sum_{x} \nu(x) T(x)=\tau_{*}$. If the claim was false, it would be tangent to the simplex.]

Claim 3: There exists $\theta_{*} \in \mathbb{R}^{m}$ such that $\mathbb{E}_{\theta_{*}}\{T(x)\}=\mathbb{E}_{\nu_{*}}\{T(x)\}$.

Proof of Claim 3

Wlog $\left\{1, T_{1}, \ldots, T_{m}\right\}$ linearly independent. Consider

$$
\begin{aligned}
F\left(\theta ; \tau_{*}\right) & \equiv F(\theta)-\left\langle\tau_{*}, \theta\right\rangle \\
& =\log \left\{\sum_{x \in \mathcal{X}^{V}} \exp (\langle\theta, T(x)\rangle)\right\}-\mathbb{E}_{\nu_{*}}\{\langle\theta, T(x)\rangle\}
\end{aligned}
$$

- $F\left(\cdot ; \tau_{*}\right): \mathbb{R}^{m} \rightarrow \mathbb{R}$ is differentiable and convex.
- If θ_{*} is a stationary point, then $\mathbb{E}_{\theta_{*}}\{T(x)\}=\mathbb{E}_{\nu_{*}}\{T(x)\}$.
- As $\theta \rightarrow \infty, F\left(\theta ; \tau_{*}\right) \rightarrow \infty$.

Implies the thesis.

As $\theta \rightarrow \infty, F_{\tau_{*}}(\theta) \rightarrow \infty$

Let $\theta=\beta v, \beta \in \mathbb{R}_{+}$

$$
\begin{aligned}
F\left(\theta ; \tau_{*}\right) & =\log \left\{\sum_{x \in \mathcal{X}^{V}} \exp (\langle\theta, T(x)\rangle)\right\}-\mathbb{E}_{\nu_{*}}\{\langle\theta, T(x)\rangle\} \\
& \geq \beta\left[\max _{x}\langle v, T(x)\rangle-\mathbb{E}_{\nu_{*}}\{\langle v, T(x)\rangle\}\right]
\end{aligned}
$$

and $[\ldots]>0$ strictly because $\nu_{*}(x)>0$ for all x.

Duality structure

$$
\begin{aligned}
& F_{*}(\tau) \equiv \\
& \inf _{\theta \in \mathbb{R}^{m}}\{F(\theta)-\langle\tau, \theta\rangle\}, \\
& F_{*}: \operatorname{MARG}(T) \rightarrow \mathbb{R}, \quad \text { concave. }
\end{aligned}
$$

Duality structure

$$
\begin{aligned}
F_{*}(\tau) \equiv & \inf _{\theta \in \mathbb{R}^{m}}\{F(\theta)-\langle\tau, \theta\rangle\}, \\
F_{*}: \quad & \operatorname{MARG}(T) \rightarrow \mathbb{R}, \quad \text { concave. }
\end{aligned}
$$

$$
\begin{aligned}
F(\theta) \equiv & \sup _{\tau \in \operatorname{MARG}(T)}\left\{F_{*}(\tau)+\langle\tau, \theta\rangle\right\}, \\
F: & \mathbb{R}^{m} \rightarrow \mathbb{R}, \quad \text { convex. }
\end{aligned}
$$

Let's apply all this

$$
G=(V, E), V=[n], x=\left(x_{1}, \ldots, x_{n}\right), x_{i} \in \mathcal{X}
$$

$$
T_{i, \xi}(x)=\mathbb{I}\left(x_{i}=\xi\right), \quad i \in V, \xi \in \mathcal{X}
$$

$$
T_{i j, \xi_{1}, \xi_{2}}(x)=\mathbb{I}\left(x_{i}=\xi_{1}\right) \mathbb{I}\left(x_{j}=\xi_{2}\right), \quad(i, j) \in E, \xi_{1}, \xi_{2} \in \mathcal{X}
$$

The exponential family

$$
\begin{aligned}
& \mu_{\theta}(x)=\frac{1}{Z(\theta)} \exp \left\{\sum_{(i, j) \in E, \xi_{1}, \xi_{2} \in \mathcal{X}} \theta_{i j}\left(\xi_{1}, \xi_{2}\right) T_{i j \xi_{1} \xi_{2}}(x)+\sum_{i \in V, \xi \in \mathcal{X}} \theta_{i}(\xi) T_{i \xi}(x)\right\} \\
&=\frac{1}{Z(\theta)} \exp \left\{\sum_{(i, j) \in E} \theta_{i j}\left(x_{i}, x_{j}\right)+\sum_{i \in V} \theta_{i}\left(x_{i}\right)\right\} \\
& \text { (General pairwise model) }
\end{aligned}
$$

The τ parameters

The exponential family

$$
\begin{aligned}
\mu_{\theta}(x) & =\frac{1}{Z(\theta)} \exp \left\{\sum_{(i, j) \in E, \xi_{1}, \xi_{2} \in \mathcal{X}} \theta_{i j}\left(\xi_{1}, \xi_{2}\right) T_{i j \xi_{1} \xi_{2}}(x)+\sum_{i \in V, \xi \in \mathcal{X}} \theta_{i}(\xi) T_{i \xi}(x)\right\} \\
& =\frac{1}{Z(\theta)} \exp \left\{\sum_{(i, j) \in E} \theta_{i j}\left(x_{i}, x_{j}\right)+\sum_{i \in V} \theta_{i}\left(x_{i}\right)\right\}
\end{aligned}
$$

(General pairwise model)

The τ parameters

$$
\begin{aligned}
b_{i}(\xi) & =\mathbb{E}_{\theta}\left\{T_{i}(\xi)\right\}=\mu_{\theta}\left(x_{i}=\xi\right), \quad \text { for } i \in V, \\
b_{i j}\left(\xi_{1}, \xi_{2}\right) & =\mathbb{E}_{\theta}\left\{T_{i j}\left(\xi_{1}, \xi_{2}\right)\right\}=\mu_{\theta}\left(x_{i}=\xi_{1}, x_{j}=\xi_{2}\right), \quad \text { for }(i, j) \in E .
\end{aligned}
$$

The duality structure

$$
\begin{array}{ll}
& F(\theta) \leftrightarrow F_{*}(b), \\
F_{*}: & \operatorname{MARG}(G) \rightarrow \mathbb{R}
\end{array}
$$

We want to evaluate at $\Phi=F\left(\theta_{*}=\log \psi\right)^{\prime}$:

$$
\begin{aligned}
\phi & =\sup _{b \in \operatorname{MARG}(G)}\left\{F_{*}(b)+\left\langle\theta_{*}, b\right\rangle\right\} \\
& =\text { Entropy }+ \text { Energy }
\end{aligned}
$$

New interpretation
 Bethe entrony is an anproximate expression for $F_{*}(b)$.

Variational inference

The duality structure

$$
\begin{aligned}
& F(\theta) \leftrightarrow F_{*}(b), \\
F_{*}: \quad & \operatorname{MARG}(G) \rightarrow \mathbb{R} .
\end{aligned}
$$

We want to evaluate at $\Phi=F\left(\theta_{*}=\log \psi\right)^{\prime}$:

$$
\begin{aligned}
\Phi & =\sup _{b \in \operatorname{MARG}(G)}\left\{F_{*}(b)+\left\langle\theta_{*}, b\right\rangle\right\} \\
& =\text { Entropy }+ \text { Energy }
\end{aligned}
$$

Bethe entropy is an approximate expression for $F_{*}(b)$.

The duality structure

$$
\begin{aligned}
& F(\theta) \leftrightarrow F_{*}(b), \\
F_{*}: \quad & \operatorname{MARG}(G) \rightarrow \mathbb{R} .
\end{aligned}
$$

We want to evaluate at $\Phi=F\left(\theta_{*}=\log \psi\right)^{\prime}$:

$$
\begin{aligned}
\Phi & =\sup _{b \in \operatorname{MARG}(G)}\left\{F_{*}(b)+\left\langle\theta_{*}, b\right\rangle\right\} \\
& =\text { Entropy }+ \text { Energy }
\end{aligned}
$$

New interpretation

Bethe entropy is an approximate expression for $F_{*}(b)$.

Interpretation works fine on trees

Proposition

If G is a tree, then $\operatorname{MARG}(G)=\operatorname{LOC}(G)$ and

$$
F_{*}(b)=\sum_{i \in V} H\left(b_{i}\right)-\sum_{(i, j) \in E} I\left(b_{i j}\right)=\mathbb{F}_{\psi=1}(b)
$$

Interpretation works fine on trees

Proposition

If G is a tree, then $\operatorname{MARG}(G)=\operatorname{LOC}(G)$ and

$$
F_{*}(b)=\sum_{i \in V} H\left(b_{i}\right)-\sum_{(i, j) \in E} I\left(b_{i j}\right)=\mathbb{F}_{\psi=1}(b)
$$

As a consequence, $\mathbb{F}: \operatorname{LOC}(G) \rightarrow \mathbb{R}$ is concave.

Interpretation works fine on trees

Proposition

If G is a tree, then $\operatorname{MARG}(G)=\operatorname{LOC}(G)$ and

$$
F_{*}(b)=\sum_{i \in V} H\left(b_{i}\right)-\sum_{(i, j) \in E} I\left(b_{i j}\right)=\mathbb{F}_{\psi=1}(b)
$$

As a consequence, $\mathbb{F}: \operatorname{LOC}(G) \rightarrow \mathbb{R}$ is concave.

Proof: Exercise.

What about general graphs?

Write G as a convex combination of trees.

Abuse: I will use T to denote trees, not functions.

Convex combinations

$$
\mathcal{T}(G)=\{\text { spanning trees in } G\},
$$

T

Convex combinations

$$
\begin{aligned}
\mathcal{T}(G)= & \{\text { spanning trees in } G\}, \\
\rho: \mathcal{T}(G) & \rightarrow[0,1], \\
T & \mapsto \rho_{T}, \quad \text { weights },
\end{aligned}
$$

Convex combinations

$$
\begin{aligned}
& \mathcal{T}(G)=\{\text { spanning trees in } G\}, \\
& \rho: \mathcal{T}(G) \rightarrow[0,1], \\
& T \mapsto \rho_{T}, \quad \text { weights, } \\
& \sum_{T \in \mathcal{T}(G)} \rho_{T}=1, \\
& \sum_{T \in \mathcal{T}(G)} \rho_{T} \theta^{T}=\theta .
\end{aligned}
$$

Convex combinations

$$
\begin{aligned}
\Phi & =F(\theta)=F\left(\sum_{T \in \mathcal{T}(G)} \rho_{T} \theta^{T}\right) \\
& \leq \sum_{T \in \mathcal{T}(G)} \rho_{T} F\left(\theta^{T}\right)
\end{aligned}
$$

- Fix weigths ρ_{T}.
- Minimize over θ^{T} (convex!)

Problem: Exponentially many spanning trees.

Convex combinations

$$
\begin{aligned}
\Phi & =F(\theta)=F\left(\sum_{T \in \mathcal{T}(G)} \rho_{T} \theta^{T}\right) \\
& \leq \sum_{T \in \mathcal{T}(G)} \rho_{T} F\left(\theta^{T}\right)
\end{aligned}
$$

- Fix weigths ρ_{T}.
- Minimize over θ^{T} (convex!)

Problem: Exponentially many spanning trees.

Convex combinations

$$
\begin{aligned}
\Phi & =F(\theta)=F\left(\sum_{T \in \mathcal{T}(G)} \rho_{T} \theta^{T}\right) \\
& \leq \sum_{T \in \mathcal{T}(G)} \rho_{T} F\left(\theta^{T}\right)
\end{aligned}
$$

- Fix weigths ρ_{T}.
- Minimize over θ^{T} (convex!)

Problem: Exponentially many spanning trees.

Minimization over $\left(\theta^{T}\right)_{T \in \mathcal{T}(G)}$

$$
\begin{array}{ll}
\text { minimize } & \sum_{T \in \mathcal{T}(G)} \rho_{T} F\left(\theta^{T}\right), \\
\text { subject to } & \sum_{T \in \mathcal{T}(G)} \rho_{T} \theta_{i j}^{T}\left(x_{i}, x_{j}\right)=\theta_{i j}\left(x_{i}, x_{j}\right), \\
& \sum_{T \in \mathcal{T}(G)} \rho_{T} \theta_{i}^{T}\left(x_{i}\right)=\theta_{i}\left(x_{i}\right)
\end{array}
$$

Minimization over $\left(\theta^{T}\right)_{T \in \mathcal{T}(G)}$

$$
\begin{array}{ll}
\text { minimize } & \sum_{T \in \mathcal{T}(G)} \rho_{T} F\left(\theta^{T}\right), \\
\text { subject to } & \sum_{T \in \mathcal{T}(G)} \rho_{T} \theta_{i j}^{T}\left(x_{i}, x_{j}\right)=\theta_{i j}\left(x_{i}, x_{j}\right), \\
& \sum_{T \in \mathcal{T}(G)} \rho_{T} \theta_{i}^{T}\left(x_{i}\right)=\theta_{i}\left(x_{i}\right)
\end{array}
$$

Convex Problem

Lagrangian

$$
\begin{aligned}
\mathcal{L}\left(\left(\theta^{T}\right), b\right)= & \sum_{T} \rho_{T} F\left(\theta^{T}\right) \\
& -\sum_{(i j) \in E} \sum_{x_{i}, x_{j}} b_{i j}\left(x_{i}, x_{j}\right)\left\{\sum_{T} \rho_{T} \theta_{i j}^{T}\left(x_{i}, x_{j}\right)-\theta_{i j}\left(x_{i}, x_{j}\right)\right\} \\
& -\sum_{i \in V} \sum_{x_{i}} b_{i}\left(x_{i}\right)\left\{\sum_{T} \rho_{T} \theta_{i}^{T}\left(x_{i}\right)-\theta_{i}\left(x_{i}\right)\right\}
\end{aligned}
$$

Lagrangian

$$
\begin{aligned}
\mathcal{L}\left(\left(\theta^{T}\right), b\right)= & \sum_{T} \rho_{T} F\left(\theta^{T}\right) \\
& -\sum_{(i j) \in E} \sum_{x_{i}, x_{j}} b_{i j}\left(x_{i}, x_{j}\right)\left\{\sum_{T} \rho_{T} \theta_{i j}^{T}\left(x_{i}, x_{j}\right)-\theta_{i j}\left(x_{i}, x_{j}\right)\right\} \\
& -\sum_{i \in V} \sum_{x_{i}} b_{i}\left(x_{i}\right)\left\{\sum_{T} \rho_{T} \theta_{i}^{T}\left(x_{i}\right)-\theta_{i}\left(x_{i}\right)\right\} \\
= & \sum_{T} \rho_{T}\left\{F\left(\theta^{T}\right)-\left\langle b, \theta^{T}\right\rangle\right\}+\langle b, \theta\rangle
\end{aligned}
$$

Lagrangian

$$
\begin{aligned}
\mathcal{L}\left(\left(\theta^{T}\right), b\right)= & \sum_{T} \rho_{T} F\left(\theta^{T}\right) \\
& -\sum_{(i j) \in E} \sum_{x_{i}, x_{j}} b_{i j}\left(x_{i}, x_{j}\right)\left\{\sum_{T} \rho_{T} \theta_{i j}^{T}\left(x_{i}, x_{j}\right)-\theta_{i j}\left(x_{i}, x_{j}\right)\right\} \\
& -\sum_{i \in V} \sum_{x_{i}} b_{i}\left(x_{i}\right)\left\{\sum_{T} \rho_{T} \theta_{i}^{T}\left(x_{i}\right)-\theta_{i}\left(x_{i}\right)\right\} \\
= & \sum_{T} \rho_{T}\left\{F\left(\theta^{T}\right)-\left\langle b, \theta^{T}\right\rangle\right\}+\langle b, \theta\rangle
\end{aligned}
$$

Separable in θ^{T}

Lagrangian

$$
\min _{\left(\theta^{T}\right)} \mathcal{L}\left(\left(\theta^{T}\right), b\right)=\sum_{T} \rho_{T} F_{*}(b ; \theta)+\langle b, \theta\rangle
$$

Lagrangian

$$
\begin{aligned}
& \min _{\left(\theta^{T}\right)} \mathcal{L}\left(\left(\theta^{T}\right), b\right)=\sum_{T} \rho_{T} F_{*}(b ; \theta)+\langle b, \theta\rangle \\
& \quad=\sum_{T} \rho_{T}\left\{\sum_{i \in V} H\left(b_{i}\right)-\sum_{(i j) \in E(T)} I\left(b_{i j}\right)\right\}+\langle b, \theta\rangle
\end{aligned}
$$

Lagrangian

$$
\begin{aligned}
& \min _{\left(\theta^{T}\right)} \mathcal{L}\left(\left(\theta^{T}\right), b\right)=\sum_{T} \rho_{T} F_{*}(b ; \theta)+\langle b, \theta\rangle \\
& =\sum_{T} \rho_{T}\left\{\sum_{i \in V} H\left(b_{i}\right)-\sum_{(i j) \in E(T)} I\left(b_{i j}\right)\right\}+\langle b, \theta\rangle \\
& =\sum_{i \in V} H\left(b_{i}\right)\left\{\sum_{T: i \in V} \rho_{T}\right\}-\sum_{(i, j) \in V} I\left(b_{i j}\right)\left\{\sum_{T:(i, j) \in E(T)} \rho_{T}\right\}+\langle b, \theta\rangle \\
& =\sum_{i \in V} H\left(b_{i}\right)-\sum_{(i, j) \in V} \rho(i j) I\left(b_{i j}\right)+\langle b, \theta\rangle
\end{aligned}
$$

Lagrangian

$$
\begin{aligned}
& \min _{\left(\theta^{T}\right)} \mathcal{L}\left(\left(\theta^{T}\right), b\right)=\sum_{T} \rho_{T} F_{*}(b ; \theta)+\langle b, \theta\rangle \\
& =\sum_{T} \rho_{T}\left\{\sum_{i \in V} H\left(b_{i}\right)-\sum_{(i j) \in E(T)} I\left(b_{i j}\right)\right\}+\langle b, \theta\rangle \\
& =\sum_{i \in V} H\left(b_{i}\right)\left\{\sum_{T: i \in V} \rho_{T}\right\}-\sum_{(i, j) \in V} I\left(b_{i j}\right)\left\{\sum_{T:(i, j) \in E(T)} \rho_{T}\right\}+\langle b, \theta\rangle \\
& =\sum_{i \in V} H\left(b_{i}\right)-\sum_{(i, j) \in V} \rho(i j) I\left(b_{i j}\right)+\langle b, \theta\rangle
\end{aligned}
$$

Tree-reweighted free energy

$$
\mathbb{F}_{\mathrm{TRW}}(b)=\sum_{i \in V} H\left(b_{i}\right)-\sum_{(i, j) \in V} \rho(i j) I\left(b_{i j}\right)+\langle b, \theta\rangle
$$

Compare with Bethe free energy

$\rho(i, j)=0$ Obviously concave upper bound.
$\rho(i, j)=1$ Bethe free energy

Tree-reweighted free energy

$$
\mathbb{F}_{\mathrm{TRW}}(b)=\sum_{i \in V} H\left(b_{i}\right)-\sum_{(i, j) \in V} \rho(i j) I\left(b_{i j}\right)+\langle b, \theta\rangle
$$

Compare with Bethe free energy

$$
\mathbb{F}(b) \sum_{i \in V} H\left(b_{i}\right)-\sum_{(i, j) \in V} I\left(b_{i j}\right)+\langle b, \theta\rangle
$$

Tree-reweighted free energy

$$
\mathbb{F}_{\mathrm{TRW}}(b)=\sum_{i \in V} H\left(b_{i}\right)-\sum_{(i, j) \in V} \rho(i j) I\left(b_{i j}\right)+\langle b, \theta\rangle
$$

Compare with Bethe free energy

$$
\mathbb{F}(b) \sum_{i \in V} H\left(b_{i}\right)-\sum_{(i, j) \in V} I\left(b_{i j}\right)+\langle b, \theta\rangle
$$

$\rho(i, j)=0$ Obviously concave upper bound.
$\rho(i, j)=1$ Bethe free energy.

Edge weights

$$
\rho=(\rho(e): e \in E)
$$

Intepretation

$$
\rho(e)=\mathbb{P}_{\rho}\{e \in E(T)\}, \quad \mathbb{P}_{\rho}(T)=\rho_{T} .
$$

Spanning-Tree polytope

Edge weights

$$
\rho=(\rho(e): e \in E)
$$

Intepretation

$$
\rho(e)=\mathbb{P}_{\rho}\{e \in E(T)\}, \quad \mathbb{P}_{\rho}(T)=\rho_{T} .
$$

Spanning-Tree polytope

$$
\begin{aligned}
& \sum_{(i, j) \in E} \rho(i, j)=|V|-1 \\
& \sum_{j) \in E(J)} \rho(i, j) \leq|U|-1, \quad \text { for all } U \subseteq V
\end{aligned}
$$

Example

k-regular graph

$$
|V|=n, \quad|E|=\frac{n k}{2} .
$$

Take all the weights equal (not necessarily ok, but...)

$$
\rho(i, j)=\frac{2(n-1)}{n k} \approx \frac{2}{k}
$$

For (some) models on locally tree-like graphs, $\rho(i, j)=1$ is approximately correct $\rightarrow \Theta(n)$ error.

Example

k-regular graph

$$
|V|=n, \quad|E|=\frac{n k}{2}
$$

Take all the weights equal (not necessarily ok, but. . .)

$$
\rho(i, j)=\frac{2(n-1)}{n k} \approx \frac{2}{k}
$$

For (some) models on locally tree-like graphs, $\rho(i, j)=1$ is approximately correct $\rightarrow \Theta(n)$ error.

