10. Variational methods

Gibbs free energy

@ Naive mean field

Bethe free energy

Region-based approximation

Tree-based convexification
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Loopy belief propagation
o directed edges on G: E
o messages: v(t) = {Viﬁj(-)}(i’j)eé
o loopy belief propagation: v(t+1) = F(v(t))

W w TT{ X vale mon ()

k€di\j mEX

-

F-MX)E = M(x)E
v — F(v)
where M(X) is the set of probability measures on X
o if loopy BP converges, it eventually conerges to a fixed point of F
vt = F(Y)

1. does F have a fixed point?
2. if F has one or more fixed points, what are they?
3. does BP converge to a fixed point?
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Existence of a fixed point

e Theorem. (Hadamard 1910, Brouwer 1912) Any continuous function
mapping from a convex compact set to the same convex compact set
has a fixed point.

@ existence of at least one fixed point of F follows from

» F is continuous
» the set of normalized messages is convex and compact

@ but what do these fixed points correspond to?
@ and how do they relate to BP?

@ variational approach tries to answer these questions by formulating
the inference problem as an optimization problem
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Gibbs variational principle

» start with a hard optimization problem

» approximate the solution by imposing constraints and searching in a
smaller feasible set

» relate the solutions of the relaxation to BP

@ ‘actual’ probability
1 1
wz) = - [T %z z) = ot (2)
(i,§)€E
@ we know 9ot but not Z
o ‘trial’ probability (‘belief’) b(z) € M(x!"1

we focus on characterizing log partition function

¢ = logZz = |0g{ > 11 '¢ij($i:$j)}

zeX!Vl (1,5)€EE

@ variational characterization of the log partition function

d= sup G(b)

beEM(X1V])
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o define Gibbs free energy Gy (b)

Gy(b) = Z (b(z) log Yot (z)) — Z (b(z) log b(z))
zeXxIVl zeXIVI
= —Eb[— |0g1/’tot(X)] +Eb[— log b(X)]
expected energy w.r.t. b entropy of b
such that

» strictly concave

» sup Gy(b)=9¢
beM(XIVI)

> u=arg mbaxG,/,(b)

@ interpretation

» the optimal solution b*(z) = u(z) minimizes average energy while
maximizing entropy
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Proof of ® = sup, Gy(d)

@ rearranging terms,

Gy(b) = > (b(z)logret(z)) — > (b(z)logb(z))

zex!Vl cc X!V
= Z b(a:)(logZ—Hog%l/Jtot(m)) - Z (b(z) log b(z))
zeXIVI zeXx!VI
= logZ — Z b(z)(log b(z) — log p(z))
zexIVl
= & — Dki(bl|p)

where Dki,(+||-) is the Kullback-Leibler divergence
@ from information theory, it is known that

> Dgp(b||n) >0
» Dki(bllu) =0if and only if b = p
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@ good news: we can compute partition function Z by solving a convex
optimization
o bad news: M(x!"V1)is | x|Vl — 1 dimensional

@ next strategy: solve the optimization over a low-dimensional subset S

S

b*

o=

@ this give a lower bound on the log partition function, because we are
maximizing over a smaller set

O > supGy(bd)
besS
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Naive mean field

@ define a subset of distributions that can be factorized according to
naive mean field factorization

S = {b € M(X™) : b(z) = by(21) X ba(22) X -+ X b ()}
e slight abuse of notation: b = {b;}icv
o let Fur : Sur — R
b = Gy(b)
@ we can compute it explicitly, after some algebra
Fur(b) = Z Zb z;) b (z;) log ¥4 (i, z;) Z bi(z;) log bi(z;)
(i.7)€E 70,2, E€V,m

@ mean field variational inference problem

max  Fyr(d)

bESMF
subject to  b;(z;) > 0 forallie V,z; €¢ X
Z bi(z;)=1 forallze V
T, eEX
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@ consider b;'s as approximate node marginals

@ although Fyr(-) is not concave, we can search for local maxima
@ characterizing the local maxima

» the stationary points of a constrained optimization satisfy that the
derivatives of the Lagrangian are zero

L(b,A) = ]FMF(b)—ZAl{sz(mz)—l}

1EV T, €EX

22 e Y w@egwsmn)} - 3 bz ogh(s)

i€V, €X JEOI,T;EX 1€V,z;
SPRUPILIOEY
1€V T, EX

» define a Lagrangian multiplier ), for each constraint ) b;(z;) =1
> non-negativity constraints are implicit from the log

%Z();S) = 3757 by log pi(mi, ) — 1~ log bi() — A
' JEBizEX
=0
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e solving for b;(z;) we get naive mean field equations:

bi(xi) X exp{ Z Z |Og1/)¢j($¢,$j)bj($j)}
jEdL T;EX
b = Fur(d)

@ a fixed point can be searched by iteration:

p(t+1) — FMF(b(t))
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Bethe free energy

@ one dimensional marginals give a very poor approximation

e example: z;,z; € {0,1}

I(z; ® 2 = 0) and

NN

]I(:El D T = 1)

e would like to define a parameterization of b(z) such that

» account exactly for the pairwise correlations induced by edges
» exact on distribution u defined over a tree
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Locally consistent marginals

@ consider a parametrization
» b;(z;): an approximation of the marginal u(z;)
» by(z,x;): as an approximation of the marginal u(z;, z;)
o let b= {bi, bij}
@ b is a set of globally consistent marginals of a distribution on X™
if there exists a P(-) € M(X!V1) such that

bi(zi) = Z P(z) , for all %
Ty\{i}
by(zi, zj) = Z P(z) , for all 7,5
TV\{i g}

@ denote the set of all valid marginals by
MARG(G) = {b = {b;, b;;} : marginals of a distribution on X'V‘}

@ in general, checking b € MARG(G) is NP-hard
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o b= {b;, b} is a set of locally consistent marginals if
Z bi(z;) = 1 , for all <
-

> bz, z) = bi(x) , forall 4,7
Zj

» not all locally consistent marginals correspond to a valid joint
probability distribution

» example. three nodes with X = {0, 1}

by = by = bs = (0.5,0.5)

0.49 0.01
bia = bos = {0.01 0.49}

b — 001 049
317 10.49 0.01

@ denote the set of all locally consistent marginals by

LOC(G) = {b = {b;, b;} : locally consistent marginals }
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10-13



r"

Polytopes

LOC(G)

@ when G is not a tree
» locally consistent {b;, b; } might not be marginals of any distribution
@ when G is a tree
» for any locally consistent {b;, b;;}, there exists a unique measure
p € M(X!") whose marginals are given by {b;, b;;}
» the measure p(z) is given by

1] IZ, $]
H b a:, H b )
eV (t,J)EE
> (we did not define Bethe free energy F({b;, b;}) yet, but) the Gibbs
free energy is equal to the Bethe free energy, i.e. G(p) = F({bs, b;;}),
and hence
logZ = F({b;, by
°8 (.} e10C(C) ({b:, b5})
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Locally consistent marginals on a tree

e given a tree G = (V, E) with n nodes and {b;, b;} € LOC(G)
@ prove (by induction) that

- [l T1
b

eV

is a unique measure on X" with marglnals p(z;) = bi(z;) for all 2
and p(z;, zj) = by(z;, z;) for all (¢,5) € E

o for n =1, it is trivial

@ assume it is true for n and add a new vertex 7 = n + 1, connected to

j=n
p(zv,Tot1) = p(zv) 0(Tnti|zv)
= p(zv) p(zn+1|zn) [Markov property]
— _P(n, Tns1)
= p(av) (@) P (@it ):D(mnﬂ) [Bayes rule]
blj T, Ty H p(:rn, $n+1)
= ¢ 1l bi(@) | o L pen)
{(i,j)#(n,nﬂ) bi(2:)b(2, } (zn)p(2n+1)
ED
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Bethe free energy

e variational inference on locally consistent marginals b = {b;, b;;}
» want to define an objective function

F : LOC(G) - R
b ={by, be}isep.Lev — F(b)
such that
arg mbax]F(b) N,
mbaxIE‘(b) ~ b,

@ recall that for a valid distribution b, Gibbs free energy is defined as

Gy(b) = —E[—logttot(X)] + Ep[—log b(X)]

energy entropy

@ when G is a tree, the first and second order marginals fully describe
the joint distribution:

b(z) = H bi(z:) H bbij(xi’xj)

eV (iJ)eE i(2i)b(z7)
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o Bethe free energy on a tree
> energy

Eo[—log$rot(X)] = — > Eyllogy(m, )]
(2.9)eE

— _ Z Ebn[log'l//zj(a;i:x])]

(i,)€EE

_ Z Z bij (zi, ;) log ¥4 (i, z;)

(1,J)EE z;,z;

> entropy

T
=
S
=
I

Eo[~ log b(X)]

= > —Eyllogh(X)] = Y —Es,[logby(Xi, X;) — log bi(X:) — log b;(X;)]
N e’

eV = H(b;) (.0)€B = I(by)
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e in general, define Bethe free energy of b = {b;, b;} € LOC(G) as

F(b) = — energy + entropy

— Z sz‘j(%,mj)loglpﬂ(mﬁzj)

(4,3)EE =i,z

BRI L DB BLICLELICY

(1,J)EE ;,3; €V oz
= > > byl z) log vy (e, 3)
(1,j)EE T;,T;
Z wa z;, z;) log by (i, mj)—Z(l—deg Zb(zl)logb z;)
(1,J)EE z;,z; 1€V

@ one justification of using F(+) is that if G is a tree then
sup F({b,bs}) = sup G(b) = o
{00y} bEM(G)
where M(G) is the set of distributions that decompose according to G
@ the above optimization problem is called Bethe variational problem

@ for general graphs, the solution to the above maximization approximates the log
partition function, and it is known as Bethe approximation
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Connections between Bethe free energy and belief
propagation

@ maximizing Bethe free energy
max  F(b)
beLOC(G)
@ Theorem. (Yedidia, Freeman, Weiss 2003) Fixed points of BP are in
one-to-one correspondence with stationary points of Bethe free energy.

@ Also, fixed point BP messages v* are (exponentials of) the dual
parameters A* at the fixed points

10-190
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Fixed point condition for BP messages

@ BP fixed point messages v* satisfy

vi(z) o [] {Z"/Jik(miamk)VZ—)i(xk)}

kEdi\j Tk

@ define a set of marginals (which are exact on a tree)

bi(z) o [ {3 panlaimn) viila)}

ke€di zpeX
1
. { Vi (a)) T
ke@z
bl](zliz]) o ( ) (T”L!xj)vj—)l(zj)

/A\

e exercise. show {b;, b;} is locally consistent
@ claim. b* corresponds to a stationary point of Bethe free energy
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Stationarity condition for Bethe free energy
Lagrangian with A; for condition 37, b;(z;) = 1, and A;;(z;) for
condition sz bi]‘(.’lli, .’Ej) = bi(:I}L‘)

LA = F(B) - A {Zb x,)—l}

eV
= 3 A @) { X bl m) - (@)
(i.J)EE @i z

taking the derivative
vbi](zzyzj)c(bl >\)
vbl(xz)‘c(b) )\)

—1 — log by (i, 7;) + log ¥y (Ti, 7)) — Aimsj (@) — Ajsi(z))
—(1 — deg(2)) log[bs(z:) €] — Ai + Z Xissj (i)

jEB
setting the derivatives to zero
by(zi,z) = Yy(m, eXP{ — 1= Xiss(m) — Noa(m) }
bi(z)" o exp{ deg Z)\zﬂj(wl }

JEDI
D obi(enm) = bf(w)
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@ changing variables: v;,;(z;) e i (3)
bz, z) o viny (@) ¥y (@i, 4) visa(ay)

bi(m) o [T { (vims(m)) =7 |

JjEDT

@ imposing locally consistency constraints 2 by (i, 7)) = bf (i), we
can show that the v;_,;'s are at BP fixed point. Start with the identity

H { Z by (zi, Tx) } = b (@)% | substitute v's

kedi\j Tk
—_————
)
H {I/i_,k(:ri)Zuk_,i(zk)z/)m(zl,zk)} (o H {uz_)k(zz)} , after a division
k€BI\] TR kEdI
H {ZVk—)i(mk)'l/Jik(xz;zk)} o Visj(mi)
k€di\j Ty

@ we have established that each of the BP fixed points correspond to a
stationary point of the Bethe free energy
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@ Alternative algorithms to find fixed points (e.g. gradient ascent)
[e.g. Heskes 2002]

Include higher order marginals
[Yedidia, Freeman, Weiss 2003]

Convexify Bethe free energy
[Wainwright, Jaakkola, Willsky 2005]

Asymptotically tight estimates on log Z for graph sequences
[e.g. Dembo, Montanari 2010]
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@ Historically, statistical physics study systems in thermal equilibrium,
whose state is given by Boltzmann'’s law

ue) = e 57

where T is the temperature, E(z) is the energy at a state z, and
Z(T) is the partition function given by

— Z e EB(@)/T
ze8S
Helmholtz free energy (log partition function) is an important quantity
for understanding how the system and statistical physicists have
devoted significant energy to find good approximations to it:
Fy=—InZ(T)

An important technique is based on variational approaches, where the
maximum of Gibbs free energy is studied

= > b(z)E(z)+ ) b(z)logb(z
z€S zeS
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Region-based approximation

Consistency on Vertices — Edges — Regions
Naive Mean Field —  Bethe Free Energy —  Region-Based Free Energy
MF Equations —  Belief Propagation — Generalized BP

[Cluster variational method, Kikuchi 1951]

@ Idea: decompose the system into sub-systems (regions) and
approximate the free energy by combining the free energies of the
sub-systems
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Region

e Definitions.
» aregion R = (Vg, Eg) is a subgraph such that if (¢,7) € Er then
iaj € VR
» region free energy Fr : M(XV2) —» R

Fr(br) = Eu,log¥iet,r(zr) + H(bR)
= - Z Z —br(zgr)log ¥y (z;, ;) + Z —br(zr) log br(zr)
zZr (1,j)€ER ZR
region energy region entropy

» can be evaluated for small regions (complexity |X|!%l)
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Region-based approximation

@ collection of regions
R = {Ri,Rs,...,Rn}.
e coefficients
cR = {CR,,CRsy---»CRn},» CR, €R.
@ marginals
bR = {bm;bRss.--»bR,}, br, € M(XVR).
o region-based free energy approximation:

Fr(br) = > crFr(br)
RER
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Example: Bethe Free Energy

@ regions

R = {Ri:iE V}U{Rij:(i,j)GE}
R, = ({1,0)
Rij = ({7':.7}:{(7‘:.7)})

o coefficients
ci =1 —deg(7), c; =1.

@ Bethe free energy as a special case of the region based free energy

Fr(b) = Y {1 —deg()} H(b)+ > {H(by)+Es, log¥y(m, )}

eV (4,J)EE
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@ main questions
1. What about domain/consistency of bg(zg)?
2. How to choose coefficients?
3. How to choose regions?
o valid region-based approximations [Yedidia, Freeman, Weiss, 2003]
» condition 1: local consistency

ReR,RRCR = REeR.

Z bR(CER) = bR/(mR/) for all R’ g R.

wR\R’

let LOC(G;R) be a set of marginals b = {bg : R € R} that are
locally consistent w.r.t. a collection of regions R
» condition 2: vertex counting

Y crl(ie R)=1 forallie V.
RER
» condition 3: edge counting
> crl((4,5) € R)=1 forall (4,5) € E
RER
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Geometric picture

Polytopes
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Justification of condition #2

Y crl(ie R)=1 forallie V.
ReR

e consider a special case of uniform distribution: u(z) = 1/|X|/V| and
Pij(2i, 2j) = 1

o suppose br(zg) are true marginals, i.e. b%(zg) = 1/|&|! V&l

@ then for any graph, the region based approximation is exact:
Fr(b*) =log Z

since log 1;i(z;, zj) = 0, energy terms are zeros

> crFr(by) = Y cpH(b})
RER RER

= Y cr |Va| logl|X|
RER

5 .cr 166R)

_ Z{Z crl(i € R)}Iogl?d

iev Lrer
= |V|log|X| 10.21

\/ariational inference



Justification of condition #3

> cerl((i,5) € R)=1 forall (4,5) € E.
ReR

@ neglect entropy (e.g. suppose ¥;;(z;, ;) = efs(@m) B o0)

@ suppose bg(zg) are true marginals, i.e. b%(zr) = DD b*(X)
@ then the region based approximation correctly recovers the energy
Y crFr(br) = B cry bi(zr) Y fule,z)+ Op(1)

RER RER zR ()EE(R)
B cr > Ey: [65(X:, X5)] + Op(1)

RER (iy)EE(R)

B Z {Z crl((z,7) € R)}Eb:‘]‘[eij(xixxj)] + Op(1)

(y)EE RER

B Ewl8s(Xi, X;)] + Op(1)

(¥)eE
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How should the regions be chosen?

o Cluster variational method (Kikuchi approximations):
» First, choose a basic set of clusters (with cg = 1)
» Then, add all intersections of those basic clusters with

crR=1- E ch
R!Eancestor of R

» Continue until all intersections are included

» the above choice of cg ensures that the vertex counting condition is
satisfied, i.e. Yo g (1 € R) =1

» an example with a choice of a basic set of
{(xly T2, Ty, 125), (132, 3, Ts, x6)7 (1:4, s, T7, (Eg), (275, Tg, Tg, xg)}
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» larger basic regions give better approximations

» for pairwise MRFs, Bethe free energy has the correct energy term

» Region based methods improve in giving the increasingly accurate
entropy term as clusters become larger
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The Region Graph

@ given a collection of regions R, how do you compute the (consistent)
coefficients?

@ region graph is a directed acyclic graph where an edge from R to R’
may exist if R C R

@ child, parent, ancestor, descendant

@ region graph is not unique
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The Region Graph

@ given a region graph, the weights of the regions can be computed
according to

CR:].— Z CRr

R'€ANCESTORS(R)
O 0O [ -

><><><1

Cvert = +1

@ region based free energy is exact if the corresponding region graph has
no (undirected) cycles and the weights cg are valid

@ in general, how to generate a good region graph is still open
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Generalized belief propagation

maximize Fr(br) = Z crFr(br)
RER

subject to > br(er) = bu(z1), VE— R

Tp\R!

@ we form the Lagrangian

£({ba} Pron}) = Fr(or) = > > {nor(@m)( D balen) - balen) ) |

R—R' zp TR\R/
@ setting derivative to zero

Vore) L({br}, {Arsr}) = 0
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o setting Vi, (o) L({br}, {A\rRr'}) = O gives an marginal computation
rule for generalized belief propagation algorithm

H Y (i, T H vp_r(Zr) H H vpr_p(zp)

(4,J)€EER PEP(R) DeD(R) P'€P(D)\R,D(R)

@ each consistency constraint bg(zg) = 2izpn bp(zr, Zp\R) gives
message update rule

ZzP\RnweER Py (i, x])l—l(” PR)VI—U(xJ)

H(I,J)ED(P,R) viei(2))

VP-»R(GZR)

P(R) = { parent of R}

D(R) = { all descendants of R}

£(R) = RUD(R)

N(P,R)={I = J: Jc&P)\ER),I¢EP)}
D(P,R)={I = J : J€&(R),I € £(P)\ £(R)}

o GBP fixed points are region-based free energy stationary points

vV vy vy VvYy
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Was it worth it?

1
S 05
iy } mBP
SR AL mGee
E 1 2 4 6 7 8 9 10||dExact
o
& -0.5
-1
variable node
10 x 10 Ising model with random potentials [Yedidia et al. 2003]

2 x 2 overlapping clusters are used with clustering variational method
GBP improves over BP significantly
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Upper bound using tree-reweighted belief propagation

@ consider all spanning trees of G
@ each spanning tree 7, = (V, E}) has its own compatibility functions
{wgf)}(i’j)egk and a weight cx such that

ch = 1
k

log ¥45(zi, zj) = Z%'Og?ﬁg)(ﬂ%,mj)
k

@ decomposing the energy

Eb[— Z Iog'tﬁl](a:i,mj)] = Eb[_ Z ZCHOgiPU T, Ta)]

(i.)€EE (i,J)EE Kk

ZCkEb[— Z |0g1/)¢j (l'z’zj)}

k (4.7)€EEy

expectation over a tree Ej
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e from Gibbs variational principle

logZ =  sup ){]Eb[ > |og¢zj(mz,m])] +H(b)}

v
bem(x (i9)EE

sup {ch{m[ > |og¢§j)(m“mj)]+H(b)}}
k

bEMY) (4,5) E By,

Z cr  sup {Eb(k) [ Z Iogd;g“)(mi, :z,‘])] + H(b)}
k

oem(x) (.§) E B

= ch sup {Eb<k)[ Z |0€¢’§Jk)($ﬁ%)] +H(b)}

p o dMeroc) (1)€ B

IN

can be solved exactly using BP

@ to get the tightest upper bound, we want to minimize the right-hand
side over {cx} and {qu‘:)}
@ the number of spanning trees can explode

@ all these loose ends are resolved in [Wainwright, Jaakkola, Willsky,
2003]
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Exponential families

e given a finite space XV and a collection of functions

T:xV - R™,
z = T(z)=(Ti(z),..., Tn(z)).

@ the corresponding exponential family is a family of distributions
parametrized by a vector 8 such that {ug : 8 € R™} where

po(z) = 5 o0 {0, TN}, F(O) =log Z(6)

where (z,y) = >, ;y; denotes the inner product
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Basic properties of exponential families

F(8) = log (Z ey b Tz(Z))

(1) 6— F(8)is on\/ee;( [log-sum-exps are convex]
(2) VeF(H) Y S5 L T1(2), -, Tm(2)]T = Bo{ T(2)} = 7(6)
(3) V5F(6) = COVe{T( ); (ff«‘)}

(4) defme a polytope

MARG(T) = conv({T(m): a:EXV}>
- {E,,[T(m)] ve M(XV)}, and
Tmage(r) = c10sure<{IEg[T(x)] NS Rm}>

then exponential families allow to realize any point in the interior of
MARG(T)

Image(7) = MARG(T)
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Proofs

(1), (2), (3): exercises
(4): a bit more difficult

Claim 1: A closed convex set is the closure of its relative interior. [Hint:
Assume the set has full dimension. Each point has a cone of full dimension

around it.]

Claim 2: Let 7, € relint(MARG(T')). Then 7« = E,,{T(z)} for some v,
s.t. ve(z) >0 forall z € XV [Hint: Consider the set of signed weigths v
such that )" v(z) T(z) = 7. If the claim was false, it would be tangent to the
simplex.]

Claim 3: There exists 8, € R™ such that Eg,{T(z)} = E,,{T(z)}.
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Proof of Claim 3

Wilog {1, T4, ..., T} linearly independent. Consider
F;,17.) = F(8)—(14,0)
= log{ Y e ((6, T(2))} - E.{(6, T(z))}

zexV

@ F(-;7):R™ — R is differentiable and convex.
e If 8, is a stationary point, then Eq,{T'(z)} = E, . {T(2)}.
@ As 8 — oo, F(8;71,) — 00.

Implies the thesis.
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As 8 — o0, F. () — o0

Let 6= Bv, B ER,

F(;7) = log{ Y exp ({8, T(2))} - E..{(6, T(2))}

zexXV
> B max(v, T(2)) - Eu.{{v, T(2))}]

and [...] > O strictly because v,(z) > 0 for all z.
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Duality structure

F(r) = inf {F(O)~(r,6),
F,: MARG(T) — R, concave.
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Duality structure

Fi(r) = inf {F(6)~(r,0)},

F,: MARG(T) — R, concave.
F) = sup  {Fu(7)+(1,0)},
TEMARG(T)
F: R™ - R, convex.

\/ariational inference 10-47



Let's apply all this

T’L,f(z) = H((I)lzf), 1€ V1E€X1
Tij:fl,@(x) = H(ml = f]_)]l("E] = £2)7 (7’1.7) € E:E1762 € X;

overcomplete!
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The exponential family

(=) = 575 exp{(m > 8 Taaa(@) + Y ei@mf(z)}

J)EE£1,62€X 1EV EEX

:Z()exp{ Z 8 (z;, ;) +Z€ :cl}

(13)€E eV

(General pairwise model)
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The exponential family

pe(z) = A0) exp{(”) > 05(é18) Thas(z) + Gi(fﬂ"if(fc)}

,J)EE§1,62€X IEV (X

:Z()exp{ Z 8 (z;, ;) +Z€ :cl}

(t7)eE eV

(General pairwise model)

The 7 parameters

bi(€) = Ee{Ti(&)} = pe(zi = §), forie V,
bij(€1,€2) = Eo{Ti(é1,82)} = me(z = 1,7 = &2), for (4,7) € E.
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The duality structure

F(8) & F.(b),
F.: MARG(G)—R.
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The duality structure

F(8) & F.(b),
F.: MARG(G)—R.

We want to evaluate at ® = F'(6, = log9)":

o = sip {F(b)+(6.,0)}
bEMARG(G)

= Entropy + Energy
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The duality structure

F(8) & F.(b),
F.: MARG(G)—R.

We want to evaluate at ® = F'(6, = log9)":

¢ = sup {F.(b)+(6.,0)}
bEMARG(G)

= Entropy + Energy

New interpretation

Bethe entropy is an approximate expression for Fy(b).

\/ariational inference
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Interpretation works fine on trees

Proposition
If G is a tree, then MARG(G) = LOC(G) and

Fu(b)= > H(b)— >, I(by)

i€V (i,§)€E
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Interpretation works fine on trees

Proposition
If G is a tree, then MARG(G) = LOC(G) and

Fu(d)= > H(b:)— > I(by)=TFy=(b)

i€V (i,§)€E

As a consequence, F : LOC(G) — R is concave.
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Interpretation works fine on trees

Proposition
If G is a tree, then MARG(G) = LOC(G) and

Fu(d)= > H(b:)— > I(by)=TFy=(b)

i€V (i,§)€E

As a consequence, F : LOC(G) — R is concave.

Proof: Exercise.
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What about general graphs?

Write G as a convex combination of trees.
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Abuse: | will use T' to denote trees, not functions.
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Convex combinations

T(G) = {spanningtreesin G },
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Convex combinations

T(G) = {spanningtreesin G },

p:T(G) — [0, 1],
T = o7, weights ,
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Convex combinations

T(G) = {spanningtreesin G },

p:T(G) — [0, 1],
T = o7, weights ,

> pr=1,

TeT(G)

Z pr87 =

TeT(G)
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Convex combinations

¢ = ( > pro")
TeT( )

< Z pr F(6

TET(G)

AN
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Convex combinations

o = ( > pro")
TeT( )

< Z pr F(6

TET(G)

AN

e Fix weigths pr.

o Minimize over 87 (convex!)
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Convex combinations

¢ = ( > pro")
TeT( )

< Z pr F(6

TET(G)

AN

e Fix weigths pr.

o Minimize over 87 (convex!)

Problem: Exponentially many spanning trees.
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Minimization over (87) rer(a)

minimize Z T F(HT);

TeT(G)
subject to Y. prbi(zi,z) = 65(zi, z7),
TET(G)
> prb] (z) = 0i(=:) .
TET(G)

\/ariational inference 10-56



Minimization over (87) rer(a)

minimize Z T F(HT);

TeT(G)
subject to Y. prbi(zi,z) = 65(zi, z7),
TET(G)
> prb] (z) = 0i(=:) .
TET(G)

Convex Problem
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Lagrangian

L((67),0) =) _pr F(67)
T

- > Zbij(xi,xj){Zpng(xi»xj)_eij(xi’xj)}
T

(4)€E TirT

- Y n(e)| X prbl(w) - 6i(a)
T

eV T

\/ariational inference 10-57



Lagrangian

L((67),0) =) _pr F(67)
T

- > Zbij(xi,xj){Zpng(xi»xj)_eij(xi’xj)}
T

(4)€E TirT

- Y n(e)| X prbl(w) - 6i(a)
T

eV T

=>"pr{F(67) — (6,67)} + (b,6)

T
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Lagrangian

L((67),0) =) _pr F(67)
T

- > Zbij(xi,xj){Zpng(xi»xj)_eij(xi’xj)}
T

(4)€E TirT

=3 Y bue){ 3 prb? (@) bi(z)
T

eV T
=>"pr{F(67) — (6,67)} + (b,6)
T

Separable in §7
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Lagrangian

min[,((eT), b) = ZPTF*(b; 0) + (b,0)
(o7) —
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Lagrangian

Egy;ﬁ((@T ZpTF b; 8) + (b, 6)

_Z,,T{ ZH b)— > I(by)}+(b,0)

eV (i)EE(T)
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Lagrangian

Eg;r;ﬁ((eT ZpTF b; 8) + (b, 6)

_ZpT{ ZH b)— > I(by)}+(b,0)

eV (4)eE(T)

— 3" H( bi{ S pT} ST I U{ > pT}+(b,9)

eV T:1eV (1,9)eV T:(4,5)€E(T)
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Lagrangian

[Q'T’}L((HT ZpTF b;6) + (b, 6)
—ZPT{ STH(b)- Y. (b)) +(b,6)
eV (9)EE(T)
eV T:i€V zj)EV T:(4,5)€E(T)
:ZH(bi)— Z ,0 ’L] zj <b10>
1€V (1,9)eV
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Tree-reweighted free energy

Frew(b) = > H(b:)) — > p(17)I(byg) + (b,06)

eV (wi)eV
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Tree-reweighted free energy

Frrw(d) = Z H(b Z p(’ij).[(bij) + (b, 6)

eV (i4)eV

Compare with Bethe free energy

b) > H(b)— > I(by)+(b,06)

eV (i,J)EV
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Tree-reweighted free energy

Frew(b) = > H(b:)) — > p(17)I(byg) + (b,06)

eV (wi)eV

Compare with Bethe free energy

b) > H(b:i)— > I(by)+(b,6)

eV (i,J)EV

p(2,7) = 0 Obviously concave upper bound.
p(2,7) = 1 Bethe free energy.
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Edge weights
p=(ple) : ec E)
Intepretation

ple) =F,{e € B(T)},  Py(T)=pr.
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Edge weights

p=(ple) : ec E)
Intepretation

ple) =F,{e € B(T)},  Py(T)=pr.

Spanning-Tree polytope
Z ,0(71,_7) = ‘V‘ - 17
(iJ)EE

> p(i,5) < |UI-1, forall U C V.
(1.0)€B(U)
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Example

k-regular graph

nk
Vi=n,  |Bl="0
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Example

k-regular graph

nk
Vi=n,  |Bl="0

Take all the weights equal (not necessarily ok, but. . .)

o 2(n -1 2
P(%J):(nk)%k

For (some) models on locally tree-like graphs, p(¢,7) = 1 is approximately
correct — ©(n) error.
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