
Course Overview

1. Probabilistic graphical models
We study joint probability distribution over n variables:

µ(x1, . . . , xn)

(a) Factorization according to graph

i. Markov random field (MRF)

A. Undirected graph

µ(x) =
1

Z

∏
c∈C

ψc(xc)

ii. Factor graph (FG)

A. Directed acyclic graph

µ(x) =
∏
i∈V

µ(xi|xπ(i))

iii. Bayesian network (BN)

A. Bipartite undirected graph

µ(x) =
1

Z

∏
a∈F

ψa(x∂a)

(b) Conditional independencies implied from a graphical model

i. Markov random field (MRF)

A. pairwise, local, global Markov property

B. graph separation

C. Markov blanket: neighbors of xi

D. Hammersley-Clifford: if µ is positive and satisfy conditional independencies according to
G then µ factorizes over G

ii. Factor graph (FG)

A. graph separation

iii. Bayesian network (BN)

A. local, ordered, global Markov property

B. d-separation, Bayes’ ball algorithm

(c) Representing µ(x) using graphical models

i. I-map, P-map

ii. conversion between graphical models

A. from BN to MRF: moralization

B. from MRF to BN, from FG to pairwise MRF

iii. relationship between graphical models
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2. Inference

(a) Inference task

i. Marginals

µ(xA) =
∑
xV \A

µ(x)

ii. MAP estimation

arg max
x

µ(x)

iii. Partition function

Z =
∑
x

∏
c∈C

ψc(xc)

iv. Sampling

(b) Belief Propagation (BP)

i. computing marginals

A. elimination algorithm

B. sum-product algorithm

C. relationship between computing marginals, computing partition function, and sampling

ii. computing MAP estimate

A. elimination algorithm

B. max-product algorithm

iii. Gaussian graphical models

A. Gaussian belief propagation

B. Gaussian HMM and Kalman filtering

iv. analysis of belief propagation

A. computation tree

B. correctness of Gaussian BP

C. (correctness of BP with a single loop)

D. (correctness of BP with log-concave µ(x))

E. (planar graph with binary variables)

F. (associative potentials)

G. (convergence of max-product)

H. density evolution: asymptotic analysis of BP on random graphs

(c) Variational methods

i. Gibbs free energy

logZ = max
b

Eb[ψ(x)] +H(b)

ii. naive mean field approximation

logZ ≥ max
b:b(x)=

∏
i bi(xi)

Eb[ψ(x)] +H(b)

iii. Bethe approximation

logZ ≈ max
b∈LOC(G)

Eb[ψ(x)] +HBethe(b)
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iv. Region-based approximation

v. Tree-based approximation

vi. (variational MAP using Linear Programming)

(d) Monte Carlo Markov Chain (MCMC)

i. Metropolis-Hastings algorithm

A. Gibbs sampling

ii. bounding mixing time via spectral analysis

iii. bounding mixing time via coupling

3. Learning

(a) Parameter estimation

i. maximum likelihood estimation

max
θ

∑
(i,j)∈E

ψij(xi, xj)− logZ(θ)

ii. convex in θ

iii. gradient requires inference (efficient on trees)

iv. moment matching, iterative proportional fitting

v. sample complexity of Hammersely-Clifford construction

(b) Structure learning

i. Bayesian approach: MAP estimate = ML + regularization

ii. local independence tests

(c) Restricted Boltzmann machines

4. Computational challenge

(a) computing marginal is #P-complete

(b) MAP estimation is NP-complete

(c) approximate inference with bounded error is also NP-hard
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