Course Overview

1. Probabilistic graphical models We study joint probability distribution over *n* variables:

 $\mu(x_1,\ldots,x_n)$

- (a) Factorization according to graph
 - i. Markov random field (MRF) A. Undirected graph

$$\mu(x) = \frac{1}{Z} \prod_{c \in \mathcal{C}} \psi_c(x_c)$$

ii. Factor graph (FG)A. Directed acyclic graph

$$\mu(x) = \prod_{i \in V} \mu(x_i | x_{\pi(i)})$$

iii. Bayesian network (BN)A. Bipartite undirected graph

$$\mu(x) = \frac{1}{Z} \prod_{a \in F} \psi_a(x_{\partial a})$$

- (b) Conditional independencies implied from a graphical model
 - i. Markov random field (MRF)
 - A. pairwise, local, global Markov property
 - B. graph separation
 - C. Markov blanket: neighbors of x_i
 - D. Hammersley-Clifford: if μ is positive and satisfy conditional independencies according to G then μ factorizes over G
 - ii. Factor graph (FG)

A. graph separation

- iii. Bayesian network (BN)
 - A. local, ordered, global Markov property
 - B. d-separation, Bayes' ball algorithm
- (c) Representing $\mu(x)$ using graphical models
 - i. I-map, P-map
 - ii. conversion between graphical models
 - A. from BN to MRF: moralization
 - B. from MRF to BN, from FG to pairwise MRF
 - iii. relationship between graphical models

2. Inference

(a) Inference task

i. Marginals

$$\mu(x_A) = \sum_{x_{V \setminus A}} \mu(x)$$

ii. MAP estimation

$$\arg \max_{x} \mu(x)$$

iii. Partition function

$$Z = \sum_{x} \prod_{c \in \mathcal{C}} \psi_c(x_c)$$

iv. Sampling

- (b) Belief Propagation (BP)
 - i. computing marginals
 - A. elimination algorithm
 - B. sum-product algorithm
 - C. relationship between computing marginals, computing partition function, and sampling
 - ii. computing MAP estimate
 - A. elimination algorithm
 - B. max-product algorithm
 - iii. Gaussian graphical models
 - A. Gaussian belief propagation
 - B. Gaussian HMM and Kalman filtering
 - iv. analysis of belief propagation
 - A. computation tree
 - B. correctness of Gaussian BP
 - C. (correctness of BP with a single loop)
 - D. (correctness of BP with log-concave $\mu(x)$)
 - E. (planar graph with binary variables)
 - F. (associative potentials)
 - G. (convergence of max-product)
 - H. density evolution: asymptotic analysis of BP on random graphs
- (c) Variational methods
 - i. Gibbs free energy

$$\log Z = \max_{b} \mathbb{E}_{b}[\psi(x)] + H(b)$$

ii. naive mean field approximation

$$\log Z \geq \max_{b:b(x)=\prod_i b_i(x_i)} \mathbb{E}_b[\psi(x)] + H(b)$$

iii. Be he approximation

$$\log Z \approx \max_{b \in \text{LOC(G)}} \mathbb{E}_b[\psi(x)] + H_{\text{Bethe}}(b)$$

- iv. Region-based approximation
- v. Tree-based approximation
- vi. (variational MAP using Linear Programming)
- (d) Monte Carlo Markov Chain (MCMC)
 - i. Metropolis-Hastings algorithm

A. Gibbs sampling

- ii. bounding mixing time via spectral analysis
- iii. bounding mixing time via coupling
- 3. Learning
 - (a) Parameter estimation
 - i. maximum likelihood estimation

$$\max_{\theta} \sum_{(i,j)\in E} \psi_{ij}(x_i, x_j) - \log Z(\theta)$$

- ii. convex in θ
- iii. gradient requires inference (efficient on trees)
- iv. moment matching, iterative proportional fitting
- v. sample complexity of Hammersely-Clifford construction
- (b) Structure learning
 - i. Bayesian approach: MAP estimate = ML + regularization
 - ii. local independence tests
- (c) Restricted Boltzmann machines
- 4. Computational challenge
 - (a) computing marginal is #P-complete
 - (b) MAP estimation is NP-complete
 - (c) approximate inference with bounded error is also NP-hard