Statistical estimation

- consider a coin with outcome
- HEADS with a probability $\mu(H)=p$, and
- TAILS otherwise
- we don't know p (called a parameter), and want to estimate it from random trials
- Maximum Likelihood Principle:
- Choose the parameter that maximizes the probability of observed data
- say random trials gave an outcome $\omega=(\mathrm{H}, \mathrm{H}, \mathrm{T}, \mathrm{H}, \mathrm{T}, \mathrm{H}, \mathrm{H}, \mathrm{T}, \ldots, \mathrm{T})$

$$
\mu(\omega \mid p)=p^{\# H}(1-p)^{\# T}
$$

Maximum Likelihood (ML) estimation

- Formulate it as maximization of log-likelihood

$$
\begin{aligned}
p^{*} & =\arg \max _{p} \log (\mu(\omega)) \\
& =\arg \max _{p} \underbrace{\# H \log p+\# T \log (1-p)}_{\mathscr{L}(p)}
\end{aligned}
$$

- To solve this optimization problem analytically, (which can be done only for some special cases), we take the gradient of the objective function and set it to zero

$$
\frac{\partial \mathscr{L}(p)}{\partial p}=\frac{\# H}{p}-\frac{\# T}{1-p}=0
$$

- which gives $p^{*}=\frac{\# H}{\# H+\# T}$, which is consistent with our intuition

Sufficient statistics

- Sufficient statistics of an outcome ω is a function of ω that is compact and captures everything we need to know in order to compute $\mu(\omega)$
- in this example, recall that

$$
\mu(\omega)=p^{\# H}(1-p)^{\# T}
$$

- So sufficient statistics of $\omega=(H, H, T, H, T, T, T, T, H, \ldots, H)$ is ($\# H, \# T$)
- In particular the order of the H's and T's do not matter (because they are independent trials)
- When running the experiment, we do not have to keep track of all sequence of outcomes, but jus the counts

Bayesian estimation

- Bayes theorem
- $\mu\left(x_{1} \mid x_{2}\right)=\frac{\mu\left(x_{1}\right) \mu\left(x_{2} \mid x_{1}\right)}{\mu\left(x_{2}\right)}$
- proof: $\mu\left(x_{1}, x_{2}\right)=\mu\left(x_{2} \mid x_{1}\right) \mu\left(x_{1}\right)=\mu\left(x_{1} \mid x_{2}\right) \mu\left(x_{2}\right)$
- this is useful in assessing diagnostic probability from causal probability:
- $\mu($ cause \mid effect $)=\frac{\mu(\text { effect } \mid \text { cause }) \mu(\text { cause })}{\mu(e f f e c t)}$
usually, μ (effect \mid cause $)$ is known, whereas μ (cause |effect) is not
- For example, if m is meningitis, and s is stiff neck
$\mu(m=1 \mid s=1)=\frac{\mu(s=1 \mid m=1) \mu(m=1)}{\mu(s=1)}=\frac{0.8 \times 0.0001}{0.1}=0.0008$
which is very small (because $\mu(m=1)$ is small)
- prior: $\mu(m=1)$ is called a prior distribution, which is the marginal distribution of the cause without any observations
- posterior: $\mu(m=1 \mid s=1)$ is called posterior distribution, which is the conditional distribution of the cause given observation

Bayesian estimation

- True probability p of the coin is unknown but we know it comes from a known probability distribution $\mu(p)$ for example,

- note that p is a continuous random variable
- applying Bayes theorem, (p^{\prime} is just a variable that we integrate out)

$$
\mu(p \mid H)=\frac{\mu(p) \mu(H \mid p)}{\int_{0}^{1} \mu\left(p^{\prime}\right) \mu\left(H \mid p^{\prime}\right) d p^{\prime}}
$$

Bayesian estimation

$$
\mu(p \mid H)=\frac{\mu(p) \mu(H \mid p)}{\int_{0}^{1} \mu\left(p^{\prime}\right) \mu\left(H \mid p^{\prime}\right) d p^{\prime}} \propto \mu(p) \mu(H \mid p)
$$

as the denominator does not depend on p

$$
\mu(H \mid p)=p
$$

likelihood

$$
\mu(p \mid H)
$$

posterior

Inference task: Probability of HEADS on next toss

- Conditional independence makes solving inference task much more efficient
- consider the task of tossing the coin twice and let the outcome be $x=\left(x_{1}, x_{2}\right)$
- It is easy to see that the two trials are conditionally independent given p, i.e. $\mu\left(x_{1}, x_{2} \mid p\right)=\mu\left(x_{1} \mid p\right) \mu\left(x_{2} \mid p\right)$
- now, we consider the inference task of estimating the probability of HEADS on next toss
- Inference task is a task of making a prediction/decision based on some joint distribution, and we will make this notion mathematically precise later on
- First step is to write down what we want to know in terms of the joint distribution, because the joint distribution is well defined

$$
\mu\left(x_{n+1}=H \mid x_{1}^{n}=(H T H H T \ldots)\right)=\int_{0}^{1} \mu\left(x_{n+1}=H, p \mid x_{1}^{n}=(H T H H T \ldots)\right) d p
$$

which is marginalizing out p from the joint distribution,

- next, we apply chain rule to the term in the integral

$$
\mu\left(x_{n+1}=H, p \mid x_{1}^{n}=(H T \ldots)\right)=\mu\left(x_{n+1}=H \mid p, x_{1}^{n}\right) \mu\left(p \mid x_{1}^{n}\right)
$$

- and simplify using conditional independence

$$
=\mu\left(x_{n+1}=H \mid p\right) \mu\left(p \mid x_{1}^{n}\right)=p \mu\left(p \mid x_{1}^{n}\right)
$$

- Putting together we get
$\mu\left(x_{n+1}=H \mid x_{1}^{n}=(H T H H T \ldots)\right)=\int_{0}^{1} p \mu\left(p \mid x_{1}^{n}=(H T H H T \ldots)\right) d p=\mathbb{E}\left[p \mid x_{1}^{n}=(H T H H T \ldots)\right]$

Inference task: Probability of HEADS on next toss

- So, on order to solve this inference task rigorously, we want to compute

$$
\mu\left(x_{n+1}=H \mid x_{1}^{n}=(H T H H T \ldots)\right)=\mathbb{E}\left[p \mid x_{1}^{n}=(H T H H T \ldots)\right]
$$

but in many case, computing the integral (i.e. averaging) can be challenging

- instead we use Maximum a Posteriori (MAP) estimation:
choosing the value with the highest posterior probability

$$
\begin{gathered}
\text { MAP estimation } \\
p^{*}=\underset{p}{\arg \max _{p} \mu\left(p \mid x_{1}^{n}\right)}
\end{gathered}
$$

Maximum likelihood (ML) estimation

$$
p^{*}=\arg \max _{p} \mu\left(x_{1}^{n} \mid p\right)
$$

