
8. Restricted Boltzmann machines

Restricted Boltzmann machines

Learning RBMs

Deep Boltzmann machines

Learning DBMs
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Unsupervised learning
Given i.i.d. samples fv (1); : : : ; v (n)g, learn the joint distribution �(v)
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Restricted Boltzmann machines
motivation for studying deep learning

I concrete example of parameter leaning
I applications in dimensionality reduction, classification, collaborative

filtering, feature learning, topic modeling
I successful in vision, language, speech
I unsupervised learning: learn a generative model or a distribution

running example: learn distribution over hand-written digits
(cf. character recognition)

I 32� 32 binary images v (`) 2 f0; 1g32�32
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Graphical model

grid

�(v) =
1
Z

exp
nX

i

�ivi +
X

(i ;j )2E

�ij vivj

o

a sample v (`)
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Restricted Boltzmann machine [Smolensky 1986]
“harmoniums”

I undirected graphical model
I two layers: visible layer v 2 f0; 1gN and hidden layer h 2 f0; 1gM

I fully connected bipartite graph

I RBMs represented by parameters a 2 RN , b 2 RM , and W 2 RN�M

such that
�(v ; h) =

1
Z

exp
n
aTv + bTh + vTWh

o

I consider the marginal distribution �(v) of the visible nodes, then any
distribution on v can be modeled arbitrarily well by RBM with k � 1
hidden nodes, where k is the cardinality of the support of the target
distribution

Restricted Boltzmann machines 8-5



Restricted Boltzmann machine

define energy
E(v ; h) = �aTv � bTh � vTWh

�(v ; h) =
1
Z

expf�E(v ; h)g

=
1
Z

Y
i2[N ]

eaivi
Y

j2[M ]

ebj hj
Y

(i ;j )2E

eviWij hj

note that RBM has no intra-layer edges (hence the name restricted)
(cf. Boltzmann machine [Hinton,Sejnowski 1985])

Restricted Boltzmann machines 8-6



Restricted Boltzmann machine

it follows from the Markov property of MRF that the conditional
distribution a product distribution

�(v jh) / exp
n

(a + Wh)T v
o

=
Y
i

exp
n

(ai + hWi �; hi) vi

o

=
Y

i2[N ]

�(vi jh)

�(h jv) =
Y

j2[M ]

�(hj jv)

hence, inference in the conditional distribution is efficient
e.g. compute a conditional marginal �(hi jv)
Restricted Boltzmann machines 8-7



since �(h jv) =
Q

�(hj jv),

�(hj = 0jv) =
�(hj = 0jv)

�(hj = 0jv) + �(hj = 1jv)

=
1

1 + ebj +hW�j ;vi

�(hj = 1jv) =
1

1 + e�(bj +hW�j ;vi)| {z }
,�(bj +hW�j ;vi) is a sigmiod

similarly,
�(vi = 1jh) = �(ai + hWi �; hi)

where Wi � and W�j are i -th row and j -th column of W resepectively,
and h�; �i denotes the inner product
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I one interpretation of RBM is to think of it as a stochastic version of a
neural network, where nodes and edges correspond to neurons and
synaptic connections, and a single node fires (i.e. vi = +1)
stochastically from a sigmoid activation function �(x ) = 1=(1 + e�x ),

�(vi = +1jh) =
eai +hWi�;hi

1 + eai +hWi�;hi
= �(ai + hWi �; hi)

I another interpretation is to think of the bias a and the components
W�j connected to a hidden node hj encode higher level structure

a
+

W

0 1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 h
I if the goal is to sample from this distribution (perhaps to generate

images that resemble hand-written digits), the lack of inter-layer
connection makes Gibbs sampling particularly easy, since one can apply
block Gibbs sampling for each layer all together from �(v jh) and
�(h jv) iteratively
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What about computing the marginal �(v)?

�(v) =
X

h2f0;1gM

�(v ; h)

=
1
Z

X
h

expf�E(v ; h)g

=
1
Z

exp
n
aTv +

MX
j=1

log(1 + ebj +hW�j ;vi)
o

becauseX
h2f0;1gM

eaT v+bTh+vTWh = eaT v
X

h2f0;1gM

ebTh+vTWh

= eaT v
X

h2f0;1gM

MY
j=1

ebj hj +hv ;W�;j ihj

= eaT v
MY
j=1

X
hj2f0;1g

ebj hj +hv ;W�;j ihj

= � � �Restricted Boltzmann machines 8-10



�(v) =
1
Z

exp
n
aTv +

MX
j=1

log(1 + ebj +hW�j ;vi)
o

=
1
Z

exp
n
aTv +

MX
j=1

softplus(bj + hW�j ; vi)
o

ai is the bias in vi , bj is the bias in hj , and W�j is the output "image" v
resulting from the hidden node hj
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in the spirit of unsupervised learning, how do we extract features such
that we achieve, dimensionality reduction?

I suppose we have learned the RBM, and have a ; b;W at our disposal
I we want to compute features of a new sample v (`)

I we use the conditional distribution of the hidden layers as features

�(h jv (`)) = [�(h1jv (`)); � � � ; �(hM jv (`))]

a sample v (`)

extracted features
[0;:2;0;:3;0;0;0;0;0;:8;0;0;0;:4;:1;0]
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Parameter learning
I given i.i.d. samples v (1); : : : ; v (n) from the marginal �(v), we want to

learn the RBM using maximum likelihood estimator

�(v) =
1
Z

X
h2f0;1gM

exp
n
aTv + bTh + vTWh

o

L(a ; b;W ) =
1
n

nX
`=1

log�(v (`))

I Gradient ascent (although not concave, and multi-modal)
F consider a single sample likelihood

log�(v (`)) = log
X

h

exp(aT v (`) + bT h + (v (`))T Wh) � log Z

@ log�(v (`))

@bi
=

P
h

hi eaT v(`)+bT h+(v(`))T WhP
h

eaT v(`)+bT h+(v(`))T Wh
�

P
v;h

hi eaT v+bT h+vT Wh

Z

= E
�(hjv(`))

[hi ]| {z }
data-dependent expectation

� E�(v;h)[hi ]| {z }
model expectation

@ log�(v (`))

@ai
= v (`)

i � E�(v;h)[vi ]

@ log�(v (`))

@Wij
= E

�(hjv(`))
[v (`)

i hj ] � E�(v;h)[vi hj ]

F first term is easy, since conditional distribution factorize
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I once we have the gradient update a , b, and W as

W (t+1)
ij = W (t)

ij + �
�
E�(hjv)q(v)[vihj ]� E�(v ;h)[vihj ]

�
| {z }

@ log�
@Wij

q(v) is the empirical distribution of the training samples v (1); : : : ; v (n)

I to compute the gradient, we need to compute the second term
E�(v ;h)[vihj ] requires inference

F one approach is to approximately compute the expectation using
samples from MCMC, but in general can be quite slow for large network

F custom algorithms designed for RBMs: contrastive divergence,
persistent contrastive divergence, parallel tempering
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MCMC (block Gibbs sampling)

for computing
E�(v ;h)[vihj ]

where � is defined by given current parameters a (t); b(t);W (t)

MCMC (block Gibbs sampling)
I start with samples V = fv (1); : : : v (K )g 2 f0; 1gN�K drawn from the

data (i.i.d. uniformly at random with replacement)
I repeat

F sample H = fh (1) : : : ; h (K )g 2 f0; 1gM�K each from �(h (k)jv (k)) for
k 2 [K ]

F sample V = fv (1); : : : ; v (K )g 2 f0; 1gN�K each from �(v (k)jh (k)) for
k 2 [K ]

I compute the estimate 1
K

PK
k=1 v (k)

i h (k)
j

eventually, if repeated long enough (longer than mixing time), this
converges to an unbiased estimate of E�(v ;h)[vihj ].
how does it compare to BP?
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Contrastive Divergence [IPAM tutorial, Hinton 2002]
I a standard approach for learning RBMs
I start sampling chain at v (`) from each of the training sample
I run Gibbs sampling for k steps to get (v(k); h(k))
I large k reduces bias, but in practice k = 1 works well

I k -step contrastive divergence
F Input: Graph G over v ; h , training samples S = fv (1); : : : ; v (n)g
F Output: gradient f∆wij gi2[N ];j2[M ]; f∆aigi2[N ]; f∆bj gj2[M ]

1. initialize ∆wij ;∆ai ;∆bj = 0
2. Repeat
3. for all v (`) 2 S
4. v(0) v (`)

5. for t = 0; : : : ; k � 1 do
6. for i = 1; : : : ;N do sample h(t)i � �(hi jv(t))
7. for j = 1; : : : ;M do sample v(t + 1)j � �(vj jh(t))
8. for i = 1; : : : ;N ; j = 1; : : : ;M do
9. ∆wij  ∆wij + E�(hj jv(0))[hj v(0)i ]� E�(hj jv(k))[hj v(k)i ]

10. ∆ai  ∆ai + v(0)i � v(k)i

11. ∆bj  ∆bj + E�(hj jv(0))[hj ]� E�(hj jv(k))[hj ]
12. End for.
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Persistent MCMC/Persistent CD [Teleman 2008]

practical parameter learning algorithms for RBM use heuristics to
approximate the log-likelihood gradient to speed up
use persistent Markov chains to speed up the Markov chain

I jointly update fantasy particles S(t) = f(h ; v)(k ;t)gk2[K ] and
parameters �(t) = (a (t); b(t);W (t)) by repeating

F fix (a (t); b(t);W (t)) and sample the next fantasy particles
S(t) = f(h ; v)k ;(t+1)gk2[K ] according to a Markov chain

F update (a (t); b(t);W (t))

W (t+1)
ij = W (t)

ij + �t
�
E�(hjv)q(v)[vihj ]� E�(v ;h)[vihj ]

�

by computing the model expectation (the second term) via
E�(v ;h)[vihj ] ' 1

K

PK
k=1(v (k ;t+1)

i h (k ;t+1)
j )
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I since the Markov chain is run for finite k (often k=1 in practice), the
resulting approximation of the gradient is biased (is dependent on the
training samples fv (`)g)

I Theorem.
log�(v(0))

@wij
= ∆wij + E�(hjv)P(v(k))[v(k)ihj ] � E�(v ;h)[vihj ]

I the gap vanishes as k !1 and p(v(k)) ! �(v)
I in general for finite k , the bias can distort learning procedure and

converge to a solution that is not the maximum-likelihood

contrastive divergence with k = 1; 2; 5; 10; 20; 100 (bottom to up) and
16 hidden nodes and training data from 4� 4 bars-and-stripes 1

1[“An Introduction to Restricted Boltzmann Machines”, Fischer, Igel ] [“Training
restricted Boltzmann machines” Fischer]Restricted Boltzmann machines 8-19



Example: collaborative filtering

Restricted Boltzmann machines for collaborative filtering
[Salakhutdinov, Mnih, Hinton ’07]

I suppose there are M movies and N users
I each user provides 5-star ratings for a subset of movies

I model each user as a restricted Boltzmann machine with different
hidden variables

I equivalently, treat each user as an independent sample from RBM
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for a user who rated m movies let V 2 f0; 1gK�m be observed
ratings where v k

i = 1 if the user gave rating k to movie i
let hj be the binary valued hidden variables for j = f1; : : : ;Jg
users have different RBM’s but share the same weights W k

ij
RBM

�(V ; h) =
1
Z

exp
n 5X

k=1

(V k )TW kh +

5X
k=1

(ak )TV k + bTh
o

learning: compute the gradient for each user and average over all users
W k

ij (t + 1) = W k
ij (t) + �t (E�(h jVsample)[V k

i hj ] � E�(V ;h)[V k
i hj ])
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RBM

�(V ; h) =
1
Z

exp
n 5X

k=1

(V k )TW kh +

5X
k=1

(ak )TV k + bTh
o

prediction
I predicting a single movie vm+1 is easy

�(v r
m+1 = 1jV ) /

X
h2f0;1gJ

�(v r
m+1 = 1; v r̄

m+1 = 0;V ; h)

/
X

h2f0;1gJ

exp
n 5X

k=1

(V k )TW kh + a r
m+1v

r
m+1 +

X
j

W r
m+1;jhj + bTh

o

/ Cr

JY
j=1

X
hj2f0;1gJ

exp
nX

i;k

V k
i W k

ij hj + W r
m+1;jhj + bjhj

o

I however, predicting L movies require 5L evaluations
I instead approximate it by computing �(h jV ) and using it to evaluate

�(v`jh)

on 17; 770 � 480; 189 Netflix dataset, J = 100 works well
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Deep Boltzmann machine

deep Boltzmann machine

�(v ; h ; s) =
1
Z

exp
n
aTv + bTh + cT s + vTW 1h + hTW 2s

o

capable of learning higher level and more complex representations
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Deep Boltzmann machine [Salakhutdinov, Hinton ’09]
MNIST dataset with 60,000 training set

I Samples generated by running Gibbs sampler for 100,000 steps

NORB dataset with 24,300 stereo image pairs training set
I 25 toy objects in 5 classes (car, truck, plane, animal, human)
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(stochastic) gradient ascent (drop a , b, c for simplicity)

L(W 1;W 2) = log�(v (`))

= log
X
h ;s

exp
n

(v (`))TW 1h + hTW 2s
o
� log Z

gradient

@ log�(v (`))

@W 1
ij

=

P
h ;s(v (`)

i hj ) e(v (`))TW 1h+hTW 2s

P
h ;s e(v (`))TW 1h+hTW 2s

�

P
v ;h ;s(v (`)

i hj ) e(v (`))TW 1h+hTW 2s

Z

= E�(h jv (`))[v (`)
i hj ] � E�(v ;h)[vihj ]

@ log�(v (`))

@W 2
ij

= E�(h ;sjv (`))[hisj ] � E�(h ;s)[hisj ]

problem: now even the data-dependent expectation is difficult to
compute
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Variational method
use naive mean-field approximation to get a lower bound on the
objective function

L(W 1
;W 2) = log�(v (`))

� log�(v (`))�DKL
�
b(h ; s)



�(h ; s jv (`))
�

=
X
h;s

b(h ; s) log�(h ; s ; v (`)) + H (b)

� G(b;W 1
;W 2

; v (`))

instead of maximizing L(W 1;W 2), maximize G(b;W 1;W 2; v (`)) to
get approximately optimal W 1 and W 2

constrain b(h ; s) =
Q

i pi (hi )
Q

j qj (sj ) for simplicity
and let pi = pi (hi = 1) and qj = qj (sj = 1)

G =
X
k ;i

W 1
kiv

(`)
k pi +

X
i;j

W 2
ij piqj � log Z +

X
i

H (pi ) +
X

j

H (qj )

I fix (W 1;W 2) and find maximizers fp�
i g; fq

�
j g

I fix fp�
i g; fq

�
i g and update (W 1;W 2) according to gradient ascent

W 2
ij (t + 1) = W 2

ij (t) + �(p�
i q�j � E�(h;s)[hisj ])
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G =
X
k ;i

W 1
kiv

(`)
k pi +

X
i;j

W 2
ij piqj � log Z +

X
i

H (pi ) +
X

j

H (qj )

how do we find fp�
i g and fq�

j g?
gradient

@G
@pi

=
X

k

W 1
kiv

(`)
k +

X
j

W 2
ij qj + log pi � log(1� pi ) = 0

@G
@qj

=
X

i

W 2
ij pi + log qj � log(1� qj ) = 0

p�i =
1

1 + e
�
P

k
W 1

ki v
(`)

k �
P

j
W 2

ij q�j

q�j =
1

1 + e�
P

i
W 2

ij p�i
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