8. Restricted Boltzmann machines

@ Restricted Boltzmann machines

Learning RBMs

Deep Boltzmann machines

Learning DBMs
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@ Unsupervised learning

o Given i.i.d. samples {v(™), ..., v(M} learn the joint distribution u(v)
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Restricted Boltzmann machines

@ motivation for studying deep learning
» concrete example of parameter leaning
» applications in dimensionality reduction, classification, collaborative
filtering, feature learning, topic modeling
» successful in vision, language, speech
» unsupervised learning: learn a generative model or a distribution
@ running example: learn distribution over hand-written digits
(cf. character recognition)
» 32 x 32 binary images v ¢ {0, 1}32%32
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Graphical model

e grid

w(v) —exp{ze v; + Z szvlvj}

(1.J)EE

a sample v
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Restricted Boltzmann machine [Smolensky 1986]
“harmoniums”

» undirected graphical model
two layers: visible layer v € {0,1}" and hidden layer h € {0,1}¥
fully connected bipartite graph

v

v

hidden
layer

visible
layer

» RBMs represented by parameters a € RY, b € R¥ and W € RV*M
such that

1
u(v, h) = A exp{aT'U +bTh 4+ o7 Wh}
» consider the marginal distribution p(v) of the visible nodes, then any
distribution on v can be modeled arbitrarily well by RBM with k£ — 1

hidden nodes, where & is the cardinality of the support of the target
distribution
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Restricted Boltzmann machine

visible
layer

define energy

1
p(v,h) = Eexp{_E(’Uih)}
— % H e &Y H ebjhj H eUinjhj
1€[N] JE[M] (1J)€E

note that RBM has no intra-layer edges (hence the name restricted)
(cf. Boltzmann machine [Hinton,Sejnowski 1985])
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Restricted Boltzmann machine
hidden

layer

visible
layer

it follows from the Markov property of MRF that the conditional
distribution a product distribution

p(vlh) o exp{(a+ Wh)Tv} = Hexp{(ai—i—(Wi.,h))w}

=[] w(uln)

1€[N]

p(hlv) =TT w(hlv)

je[M]

hence, inference in the conditional distribution is efficient
e.g. compute a conditional marginal p(h;|v)
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since u(h|v) = [] u(hy o),

u(h, = 0fo)
u(h; =0|v) =
Py =01) = by = o) + (k= 110)
_ 1
1 + ebi+(W;,v)
1
ulhy = 1) =

1 + e_(bj+<W-]?U>)

L0 (bj+(W;,v)) is a sigmiod

similarly,
p(vi = 1|h) = o(a; + (Wi, h))

where W;. and W; are i-th row and j-th column of W resepectively,
and (-, -) denotes the inner product
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Restricted

one interpretation of RBM is to think of it as a stochastic version of a
neural network, where nodes and edges correspond to neurons and
synaptic connections, and a single node fires (i.e. v; = +1)
stochastically from a sigmoid activation function o(z) =1/(1 + e %),

eai+<Wi-,h>

w(v; = +1|h) = o(a;, + (W, h))

1+ e (Wihy
another interpretation is to think of the bias a and the components
W.; connected to a hidden node h; encode higher level structure

a w
t pECEEEDEEESERZNE
0101100011010110 A

if the goal is to sample from this distribution (perhaps to generate
images that resemble hand-written digits), the lack of inter-layer
connection makes Gibbs sampling particularly easy, since one can apply
block Gibbs sampling for each layer all together from p(v|h) and
wu(h|v) iteratively

Roltzmann machines .0



@ What about computing the marginal p(v)?

W) = w(v,h)

he{0,1}M

— ;;exp{—mh)}

M
_ 1 T b+ W5,0)
= Eexp{a v+j§10g(1—|—eﬂ J )}
because
Z ea vtbThtvTWh  _ oaTv Z b htvT Wh
he{0,1}M he{0,13M

M
— o'V Z Hebjhjﬂv,an)hj

hE{O 13M j=1

_ a v I‘I 2{: ebi hi+(v,W. ;) hy
j=1h;c{0,1}
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1 M _
wv) = Eexp{aTU+Zlog(1+ebj+<W-],v>)}
j=1

1 r X
= 5 exXp {a v +jz::1softplus(bj + (W, v))}
a; is the bias in v;, b; is the bias in hj, and W,; is the output "image" v
resulting from the hidden node h;

' ! !
—  Softplus
4~ — Reclifier
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@ in the spirit of unsupervised learning, how do we extract features such
that we achieve, dimensionality reduction?
» suppose we have learned the RBM, and have a, b, W at our disposal
» we want to compute features of a new sample v(®)
» we use the conditional distribution of the hidden layers as features

u(hlv®) = [u(ha|v®), -, u(hae v )]

a sample v(®

PR EN S ENENE
0,.20,-30,0,0,0,0,8,0,0,0,4,1,0]

extracted features
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Parameter learning

> given i.i.d. samples v(), ..., v(™ from the marginal u(v), we want to
learn the RBM using maximum likelihood estimator
u(v) = % Z exp {aT'u +b6"h+ vTWh}
he{0,1}M
_ 1y @
E(a'l b: W) - n ;IOgM(U )

» Gradient ascent (although not concave, and multi-modal)
* consider a single sample likelihood

log }I.(U(e)) = log E exp(aTU(z) +0Th+ (u(z))TWh) —log Z
h
T (&), ,T (O\T TysbThtvT wn
log u(v®) B thea v 4T ht (o)) T wh Zw’h Ry e@ b v
8b; Zh eaTv®) 46T hi(v(O)T wh z
= ]Eu(hly(l))[hz] = Eu,n)lhil
——
data-depend B : model expectation
dlog p(v(®) ©
~om v — By, n)lvil
dlog u(v(®)

(€)
= E w9n] - E [v;hs]
V(@)% Y (v, %Yy
Rectricted Roltzm % imachines B(h|v™) i .14



» once we have the gradient update a, b, and W as

t+1 t
Wi = W+ a (Bugui) e [vihs] — Bum[vihs])
8log p
oW,
q(v) is the empirical distribution of the training samples v(}), ... v(%)

» to compute the gradient, we need to compute the second term
E,(v,n)[vi hj] requires inference
* one approach is to approximately compute the expectation using
samples from MCMC, but in general can be quite slow for large network
* custom algorithms designed for RBMs: contrastive divergence,
persistent contrastive divergence, parallel tempering
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MCMC (block Gibbs sampling)

for computing
Ep(o,m[vihi]

where g is defined by given current parameters a(), p(1), (%)
@ MCMC (block Gibbs sampling)

» start with samples V = {v(1), ... v(E)} € {0,1}"*X drawn from the
data (i.i.d. uniformly at random with replacement)

> repeat
* sample H = {hM ... A5} € {0, 1}M*X each from u(h®|v®) for
k€ [K]
* sample V = {v™, ..., v} € {0,1}"*¥ each from u(v®|r*)) for
k€ [K]

(4) ®)

i Y
e eventually, if repeated long enough (longer than mixing time), this
converges to an unbiased estimate of E,,(, )[vih;].

» compute the estimate + Zszl v

@ how does it compare to BP?
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Contrastive Divergence [IPAM tutorial, Hinton 2002]

a standard approach for learning RBMs

start sampling chain at v from each of the training sample
run Gibbs sampling for k steps to get (v(k), h(k))

large k reduces bias, but in practice k = 1 works well

vV vy VvYyy

v

k-step contrastive divergence
* Input: Graph G over v, h, training samples S = {v(l), R v(")}
* Output: gradient {Awy }ien) e, {Aai}ien), {Ab; }em)

1. initialize Awg;, Aa;, Ab; =0

2. Repeat

3. forall w9 e S

4. v(0) « v

5. fort=0,...,k—1do

6. for i =1,..., N do sample h(%); ~ p(hi|v(t))

7. for j =1,..., M do sample v(t + 1); ~ pu(v;|h(t))
8. for i=1,...,N,7=1,...,M do

9. Awy — Dwy + By o(0) (R v (0)e] = Epnyoey) [hi v (k)i
10. Aa; + Aa; + v(0); — v(k):
11. Ab; = Ab; + Epny (o)) [As] = Enry oy []
12. End for.

Restricted Roltzmann machines

.17



Persistent MCMC/Persistent CD [Teleman 2008]

OQO OoPO
0]
<v[hj>" <vih,>30
(X N ) ! a/famasy
[@0] @WOo] WO @O
t=0 t=1 t=2 t = infinity

@ practical parameter learning algorithms for RBM use heuristics to
approximate the log-likelihood gradient to speed up
@ use persistent Markov chains to speed up the Markov chain
> jointly update fantasy partic/es S® = {(h,v)®D}ic(x] and
parameters 8(1) = (a(®, b(), W(*)) by repeating
* fix (a®, b t), w t)) and sample the next fantasy particles

9 = {(h, v)k,(t+1) }re(x] according to a Markov chain
* update (a®, b, W®)

t+1 t
Wi = W+ s (B [viki] = Epqun [vihi])

by computing the model expectation (the second term) via
K kyt41) . (k,t+1
Epqumlvib] = £ 3085 (oD pBeD)
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» since the Markov chain is run for finite k& (often k=1 in practice), the
resulting approximation of the gradient is biased (is dependent on the
training samples {v(¥})

» Theorem.

log u(v(0))

aw. = Bt Eugr [V (k)ik] — By m[vihi]
i

> the gap vanishes as k — oo and p(v(k)) = u(v)
» in general for finite k, the bias can distort learning procedure and
converge to a solution that is not the maximume-likelihood

e

o0

log-likelihood
—es0 150

? (| | [ e W | N | HEEN
[ [ [ T [ [ [ I T[] I_M_l l\ [ [ [ []

= e = . HEEE [[[[] NN LI
iferations HEEE EEEE N Em IIII l\ EEEN

contrastive divergence with k = 1,2, 5, 10, 20, 100 (bottom to up) and
16 _hidden nodes and training data from 4 x 4 bars-and-stripes !

'[“An Introduction to Restricted Boltzmann Machines”, Fischer, Igel | [“Training
Restricted Baltzmann machines ,, —. . 4 Q



Example: collaborative filtering

@ Restricted Boltzmann machines for collaborative filtering
[Salakhutdinov, Mnih, Hinton '07]
» suppose there are M movies and N users
» each user provides 5-star ratings for a subset of movies

[e———18,000 movies —

Tt X 1 1 X X

X X X 5 X

X X 3 X X

480,000 4 3 X 2
users

X X X X

X 5 X 1 X

X X 3 3 X

b x 1 X X 2

» model each user as a restricted Boltzmann machine with different
hidden variables
» equivalently, treat each user as an independent sample from RBM

Restricted Roltzmann machines



Binary hidden
features
h Q
/ E \ Visible movie

ratings

o for a user who rated m movies let V € {0,1}**™ be observed
ratings where v® = 1 if the user gave rating k to movie 4

o let h; be the binary valued hidden variables for j = {1,..., J}
o users have different RBM's but share the same weights Wg
e RBM

5 5
w(V,h) = %exp { STVHTWER+ S (aF)TVE ¢ bTh}
k=1 k=1

@ learning: compute the gradient for each user and average over all users
W (t+1) = Wi(t) + at(Bu(hl Vaamp) [ Vi ] = Ep(v,m [V g])
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o RBM
1 5 5
W(V,h) = Eexp{Z(Vk)Tth—i—Z(ak)TVk—i—bTh}
k=1 k=1

@ prediction
» predicting a single movie v, is easy

p(vmir =1|V) Z p(vmin =1, ’U:z+1 =0,V,h)

he{o,1}7
X Z SXP{Z(V) Wh+am+1vm+1+zwm+ljh7+b h}
he{o, 1}J k=1

o CTH > exp{z VEWER + Wiy b + bjhj}

7=1 h;e{0,1}’

» however, predicting L movies require 5% evaluations
» instead approximate it by computing u(h| V') and using it to evaluate
p(ve|h)
@ on 17,770 x 480, 189 Netflix dataset, J = 100 works well
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Deep Boltzmann machine

@ deep Boltzmann machine

1
w(v,h,s) = — €XP {aTv +b0Th+cTs+vTWih + hTVst}

@ capable of learning higher level and more complex representations

Restricted Roltzmann machines



Deep Boltzmann machine [Salakhutdinov, Hinton '09]

@ MNIST dataset with 60,000 training set
» Samples generated by running Gibbs sampler for 100,000 steps

! 1000 units )

Training Samples

( 1000 units ] (500 units )

2
3
500 units ) (soounits) |2
3
¢

28x28 2828
pixel pixel é
image image e

o NORB dataset with 24,300 stereo image pairs training set
» 25 toy objects in 5 classes (car, truck, plane, animal, human)

Training Samples Generated Samples

4000 units ‘/é ol S \' == f

! ] & e | =

£ ===
I SER 1R BTN ¢
AN H|r | {|X|>2|d
st i Seropic [ m J U v W TR
G #L R H(NE
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@ (stochastic) gradient ascent (drop a, b, c for simplicity)

LW, W?) = logu(v®)

= logZexp{ 1/[/h+hTI/I/2 }—logZ
@ gradient
Blogu(v'®) _
owr
Z (O\T 171 TW2g vNT T 1172
Eh,s e(’U(Z))TW]'h-f—hT W2s Z
¢
= Ey(h|v(‘))[vi( )hj] - E,u(u,h)['uihj]
dlog u(v®)
w2~ Buthslo@)[his] = Eyns) his]
U]

@ problem: now even the data-dependent expectation is difficult to
compute
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Variational method

@ use naive mean-field approximation to get a lower bound on the
objective function

LW, w?) = logu(v?)
log u(v')) — Dxr (b(R, 5) || u(h, s|v®))
Z b(h, s)log u(h, s, v(l)) + H(b)
h,s
= G(b, W, W2 v¥9)
o instead of maximizing £L(W?, W?), maximize G(b, W1, W2, v(®) to
get approximately optimal W' and W2
o constrain b(h, s) =[], pi(h:) [1; g;(s;) for simplicity
e and let p; = p;(h; = 1) and g = qj(sj =1)

G=Y Wiv'p+) Wipg-logZ+) H(p)+ )y H(g)
ki i i j

(A%

> fix (W?, W?) and find maximizers {p;},{q;}
» fix {p¥},{q’} and update (W?, W?) according to gradient ascent
Wit +1) = WH(t) + a(p} ¢ — Eun,s)[hisy])
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G = Z v,c pz+ZWUplqj 10gZ+Zsz +ZH

e how do we find {p;} and {g'}?

o gradient
0% S w3 Wig +logp — log(1— p) = 0
Op; - ;
oG
9 = ZWprlJrlogq,—log(l—qj):O

%

1

*
D = 1,,(8) 2
1+ e_Zk Wi % _Ej Wi e
R S—
7 - 2 %
R
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