8. Restricted Boltzmann machines

- Restricted Boltzmann machines
- Learning RBMs
- Deep Boltzmann machines
- Learning DBMs
- Unsupervised learning
- Given i.i.d. samples $\left\{v^{(1)}, \ldots, v^{(n)}\right\}$, learn the joint distribution $\mu(v)$

Restricted Boltzmann machines

- motivation for studying deep learning
- concrete example of parameter leaning
- applications in dimensionality reduction, classification, collaborative filtering, feature learning, topic modeling
- successful in vision, language, speech
- unsupervised learning: learn a generative model or a distribution
- running example: learn distribution over hand-written digits (cf. character recognition)
- 32×32 binary images $v^{(\ell)} \in\{0,1\}^{32 \times 32}$

Graphical model

- grid

$$
\mu(v)=\frac{1}{Z} \exp \left\{\sum_{i} \theta_{i} v_{i}+\sum_{(i, j) \in E} \theta_{i j} v_{i} v_{j}\right\}
$$

Restricted Boltzmann machine [Smolensky 1986] "harmoniums"

- undirected graphical model
- two layers: visible layer $v \in\{0,1\}^{N}$ and hidden layer $h \in\{0,1\}^{M}$
- fully connected bipartite graph

- RBMs represented by parameters $a \in \mathbb{R}^{N}, b \in \mathbb{R}^{M}$, and $W \in \mathbb{R}^{N \times M}$ such that

$$
\mu(v, h)=\frac{1}{Z} \exp \left\{a^{T} v+b^{T} h+v^{T} W h\right\}
$$

- consider the marginal distribution $\mu(v)$ of the visible nodes, then any distribution on v can be modeled arbitrarily well by RBM with $k-1$ hidden nodes, where k is the cardinality of the support of the target distribution

Restricted Boltzmann machine

define energy

$$
\begin{aligned}
& E(v, h)=-a^{T} v-b^{T} h-v^{T} W h \\
& \mu(v, h)=\frac{1}{Z} \exp \{-E(v, h)\} \\
&=\frac{1}{Z} \prod_{i \in[N]} e^{a_{i} v_{i}} \prod_{j \in[M]} e^{b_{j} h_{j}} \prod_{(i, j) \in E} e^{v_{i} W_{i j} h_{j}}
\end{aligned}
$$

note that RBM has no intra-layer edges (hence the name restricted) (cf. Boltzmann machine [Hinton,Sejnowski 1985])

Restricted Boltzmann machine

it follows from the Markov property of MRF that the conditional distribution a product distribution

$$
\begin{aligned}
\mu(v \mid h) & \propto \exp \left\{(a+W h)^{T} v\right\}=\prod_{i} \exp \left\{\left(a_{i}+\left\langle W_{i .}, h\right\rangle\right) v_{i}\right\} \\
& =\prod_{i \in[N]} \mu\left(v_{i} \mid h\right) \\
\mu(h \mid v) & =\prod_{j \in[M]} \mu\left(h_{j} \mid v\right)
\end{aligned}
$$

hence, inference in the conditional distribution is efficient e.g. compute a conditional marginal $\mu\left(h_{i} \mid v\right)$
since $\mu(h \mid v)=\prod \mu\left(h_{j} \mid v\right)$,

$$
\begin{aligned}
\mu\left(h_{j}=0 \mid v\right) & =\frac{\mu\left(h_{j}=0 \mid v\right)}{\mu\left(h_{j}=0 \mid v\right)+\mu\left(h_{j}=1 \mid v\right)} \\
& =\frac{1}{1+e^{b_{j}+\left\langle W_{\cdot j}, v\right\rangle}} \\
\mu\left(h_{j}=1 \mid v\right) & =\underbrace{\frac{1}{1+e^{-\left(b_{j}+\left\langle W_{\cdot j}, v\right\rangle\right.}}}_{\triangleq \sigma\left(b_{j}+\left\langle W_{\cdot j}, v\right\rangle\right) \text { is a sigmiod }}
\end{aligned}
$$

similarly,

$$
\mu\left(v_{i}=1 \mid h\right)=\sigma\left(a_{i}+\left\langle W_{i .}, h\right\rangle\right)
$$

where W_{i}. and $W_{\cdot j}$ are i-th row and j-th column of W resepectively, and $\langle\cdot, \cdot\rangle$ denotes the inner product

- one interpretation of RBM is to think of it as a stochastic version of a neural network, where nodes and edges correspond to neurons and synaptic connections, and a single node fires (i.e. $v_{i}=+1$) stochastically from a sigmoid activation function $\sigma(x)=1 /\left(1+e^{-x}\right)$,

$$
\mu\left(v_{i}=+1 \mid h\right)=\frac{e^{a_{i}+\left\langle W_{i .}, h\right\rangle}}{1+e^{a_{i}+\left\langle W_{i .}, h\right\rangle}}=\sigma\left(a_{i}+\left\langle W_{i .}, h\right\rangle\right)
$$

- another interpretation is to think of the bias a and the components $W_{\cdot j}$ connected to a hidden node h_{j} encode higher level structure

- if the goal is to sample from this distribution (perhaps to generate images that resemble hand-written digits), the lack of inter-layer connection makes Gibbs sampling particularly easy, since one can apply block Gibbs sampling for each layer all together from $\mu(v \mid h)$ and $\mu(h \mid v)$ iteratively
- What about computing the marginal $\mu(v)$?

$$
\begin{aligned}
\mu(v) & =\sum_{h \in\{0,1\}^{M}} \mu(v, h) \\
& =\frac{1}{Z} \sum_{h} \exp \{-E(v, h)\} \\
& =\frac{1}{Z} \exp \left\{a^{T} v+\sum_{j=1}^{M} \log \left(1+e^{b_{j}+\left\langle W_{\cdot j}, v\right\rangle}\right)\right\}
\end{aligned}
$$

because

$$
\begin{aligned}
\sum_{h \in\{0,1\}^{M}} e^{a^{T} v+b^{T} h+v^{T} W h} & =e^{a^{T} v} \sum_{h \in\{0,1\}^{M}} e^{b^{T} h+v^{T} W h} \\
& =e^{a^{T} v} \sum_{h \in\{0,1\}^{M}} \prod_{j=1}^{M} e^{b_{j} h_{j}+\left\langle v, W_{\cdot, j}\right\rangle h_{j}} \\
& =e^{a^{T} v} \prod_{j=1}^{M} \sum_{h_{j} \in\{0,1\}} e^{b_{j} h_{j}+\left\langle v, W_{\cdot, j}\right\rangle h_{j}}
\end{aligned}
$$

$$
\begin{aligned}
\mu(v) & =\frac{1}{Z} \exp \left\{a^{T} v+\sum_{j=1}^{M} \log \left(1+e^{b_{j}+\left\langle W_{\cdot j}, v\right\rangle}\right)\right\} \\
& =\frac{1}{Z} \exp \left\{a^{T} v+\sum_{j=1}^{M} \operatorname{softplus}\left(b_{j}+\left\langle W_{\cdot j}, v\right\rangle\right)\right\}
\end{aligned}
$$

a_{i} is the bias in v_{i}, b_{j} is the bias in h_{j}, and $W_{\cdot j}$ is the output "image" v resulting from the hidden node h_{j}

Restricted Boltzmann machines

- in the spirit of unsupervised learning, how do we extract features such that we achieve, dimensionality reduction?
- suppose we have learned the RBM, and have a, b, W at our disposal
- we want to compute features of a new sample $v^{(\ell)}$
- we use the conditional distribution of the hidden layers as features

$$
\mu\left(h \mid v^{(\ell)}\right)=\left[\mu\left(h_{1} \mid v^{(\ell)}\right), \cdots, \mu\left(h_{M} \mid v^{(\ell)}\right)\right]
$$

extracted features

Parameter learning

- given i.i.d. samples $v^{(1)}, \ldots, v^{(n)}$ from the marginal $\mu(v)$, we want to learn the RBM using maximum likelihood estimator

$$
\begin{aligned}
\mu(v) & =\frac{1}{Z} \sum_{h \in\{0,1\}^{M}} \exp \left\{a^{T} v+b^{T} h+v^{T} W h\right\} \\
\mathcal{L}(a, b, W) & =\frac{1}{n} \sum_{\ell=1}^{n} \log \mu\left(v^{(\ell)}\right)
\end{aligned}
$$

- Gradient ascent (although not concave, and multi-modal)
* consider a single sample likelihood

$$
\begin{aligned}
& \log \mu\left(v^{(\ell)}\right)=\log \sum_{h} \exp \left(a^{T} v^{(\ell)}+b^{T} h+\left(v^{(\ell)}\right)^{T} W h\right)-\log Z \\
& \frac{\partial \log \mu\left(v^{(\ell)}\right)}{\partial b_{i}}=\frac{\sum_{h} h_{i} e^{a^{T} v^{(\ell)}+b^{T} h+\left(v^{(\ell)}\right)^{T} W h}}{\sum_{h} e^{a^{T} v^{(}(\ell)}+b^{T} h+\left(v^{(\ell)}\right)^{T} W h}-\frac{\sum_{v, h} h_{i} e^{a^{T} v_{v+b^{T} h+v^{T} W h}}}{Z} \\
& =\underbrace{\mathbb{E}_{\mu(h \mid v(\ell))}\left[h_{i}\right]}_{\text {model expectation }}-\underbrace{\mathbb{E}_{\mu(v, h)}\left[h_{i}\right]}_{\text {ment }} \\
& \frac{\partial \log \mu\left(v^{(\ell)}\right)}{\partial a_{i}}=v_{i}^{(\ell)}-\mathbb{E}_{\mu(v, h)}\left[v_{i}\right] \\
& \frac{\partial \log \mu\left(v^{(\ell)}\right)}{\partial W_{i j}}=\mathbb{E}_{\mu\left(h \mid v^{(\ell)}\right)}\left[v_{i}^{(\ell)} h_{j}\right]-\mathbb{E}_{\mu(v, h)}\left[v_{i} h_{j}\right]
\end{aligned}
$$

- once we have the gradient update a, b, and W as

$$
W_{i j}^{(t+1)}=W_{i j}^{(t)}+\alpha \underbrace{\left(\mathbb{E}_{\mu(h \mid v) q(v)}\left[v_{i} h_{j}\right]-\mathbb{E}_{\mu(v, h)}\left[v_{i} h_{j}\right]\right)}_{\frac{\partial \log \mu}{\partial W_{i j}}}
$$

$q(v)$ is the empirical distribution of the training samples $v^{(1)}, \ldots, v^{(n)}$

- to compute the gradient, we need to compute the second term $\mathbb{E}_{\mu(v, h)}\left[v_{i} h_{j}\right]$ requires inference
* one approach is to approximately compute the expectation using samples from MCMC, but in general can be quite slow for large network
* custom algorithms designed for RBMs: contrastive divergence, persistent contrastive divergence, parallel tempering

MCMC (block Gibbs sampling)

for computing

$$
\mathbb{E}_{\mu(v, h)}\left[v_{i} h_{j}\right]
$$

where μ is defined by given current parameters $a^{(t)}, b^{(t)}, W^{(t)}$

- MCMC (block Gibbs sampling)
- start with samples $\mathcal{V}=\left\{v^{(1)}, \ldots v^{(K)}\right\} \in\{0,1\}^{N \times K}$ drawn from the data (i.i.d. uniformly at random with replacement)
- repeat
* sample $\mathcal{H}=\left\{h^{(1)} \ldots, h^{(K)}\right\} \in\{0,1\}^{M \times K}$ each from $\mu\left(h^{(k)} \mid v^{(k)}\right)$ for $k \in[K]$
\star sample $\mathcal{V}=\left\{v^{(1)}, \ldots, v^{(K)}\right\} \in\{0,1\}^{N \times K}$ each from $\mu\left(v^{(k)} \mid h^{(k)}\right)$ for $k \in[K]$
- compute the estimate $\frac{1}{K} \sum_{k=1}^{K} v_{i}^{(k)} h_{j}^{(k)}$
- eventually, if repeated long enough (longer than mixing time), this converges to an unbiased estimate of $\mathbb{E}_{\mu(v, h)}\left[v_{i} h_{j}\right]$.
- how does it compare to BP?

Contrastive Divergence [IPAM tutorial, Hinton 2002]

- a standard approach for learning RBMs
- start sampling chain at $v^{(\ell)}$ from each of the training sample
- run Gibbs sampling for k steps to get $(v(k), h(k))$
- large k reduces bias, but in practice $k=1$ works well
- k-step contrastive divergence
\star Input: Graph G over v, h, training samples $S=\left\{v^{(1)}, \ldots, v^{(n)}\right\}$
\star Output: gradient $\left\{\Delta w_{i j}\right\}_{i \in[N], j \in[M]},\left\{\Delta a_{i}\right\}_{i \in[N]},\left\{\Delta b_{j}\right\}_{j \in[M]}$

1. initialize $\Delta w_{i j}, \Delta a_{i}, \Delta b_{j}=0$
2. Repeat
3. for all $v^{(\ell)} \in S$
4. $v(0) \leftarrow v^{(\ell)}$
5. for $t=0, \ldots, k-1$ do
6. \quad for $i=1, \ldots, N$ do sample $h(t)_{i} \sim \mu\left(h_{i} \mid v(t)\right)$
7. \quad for $j=1, \ldots, M$ do sample $v(t+1)_{j} \sim \mu\left(v_{j} \mid h(t)\right)$
8. for $i=1, \ldots, N, j=1, \ldots, M$ do
9. $\quad \Delta w_{i j} \leftarrow \Delta w_{i j}+\mathbb{E}_{\mu\left(h_{j} \mid v(0)\right)}\left[h_{j} v(0)_{i}\right]-\mathbb{E}_{\mu\left(h_{j} \mid v(k)\right)}\left[h_{j} v(k)_{i}\right]$
10. $\quad \Delta a_{i} \leftarrow \Delta a_{i}+v(0)_{i}-v(k)_{i}$
11. $\quad \Delta b_{j} \leftarrow \Delta b_{j}+\mathbb{E}_{\mu\left(h_{j} \mid v(0)\right)}\left[h_{j}\right]-\mathbb{E}_{\mu\left(h_{j} \mid v(k)\right)}\left[h_{j}\right]$

12. End for.

Persistent MCMC/Persistent CD [Teleman 2008]

- practical parameter learning algorithms for RBM use heuristics to approximate the log-likelihood gradient to speed up
- use persistent Markov chains to speed up the Markov chain
- jointly update fantasy particles $\mathcal{S}^{(t)}=\left\{(h, v)^{(k, t)}\right\}_{k \in[K]}$ and parameters $\theta^{(t)}=\left(a^{(t)}, b^{(t)}, W^{(t)}\right)$ by repeating
\star fix $\left(a^{(t)}, b^{(t)}, W^{(t)}\right)$ and sample the next fantasy particles $\mathcal{S}^{(t)}=\left\{(h, v)_{k,(t+1)}\right\}_{k \in[K]}$ according to a Markov chain
\star update $\left(a^{(t)}, b^{(t)}, W^{(t)}\right)$

$$
W_{i j}^{(t+1)}=W_{i j}^{(t)}+\alpha_{t}\left(\mathbb{E}_{\mu(h \mid v) q(v)}\left[v_{i} h_{j}\right]-\mathbb{E}_{\mu(v, h)}\left[v_{i} h_{j}\right]\right)
$$

by computing the model expectation (the second term) via

$$
\mathbb{E}_{\mu(v, h)}\left[v_{i} h_{j}\right] \simeq \frac{1}{K} \sum_{k=1}^{K}\left(v_{i}^{(k, t+1)} h_{j}^{(k, t+1)}\right)
$$

- since the Markov chain is run for finite k (often $\mathrm{k}=1$ in practice), the resulting approximation of the gradient is biased (is dependent on the training samples $\left\{v^{(\ell)}\right\}$)
- Theorem.

$$
\frac{\log \mu(v(0))}{\partial w_{i j}}=\Delta w_{i j}+\mathbb{E}_{\mu(h \mid v) P(v(k))}\left[v(k)_{i} h_{j}\right]-\mathbb{E}_{\mu(v, h)}\left[v_{i} h_{j}\right]
$$

- the gap vanishes as $k \rightarrow \infty$ and $p(v(k)) \rightarrow \mu(v)$
- in general for finite k, the bias can distort learning procedure and converge to a solution that is not the maximum-likelihood

contrastive divergence with $k=1,2,5,10,20,100$ (bottom to up) and 16 hidden nodes and training data from 4×4 bars-and-stripes ${ }^{1}$

[^0]
Example: collaborative filtering

- Restricted Boltzmann machines for collaborative filtering [Salakhutdinov, Mnih, Hinton '07]
- suppose there are M movies and N users
- each user provides 5 -star ratings for a subset of movies

- model each user as a restricted Boltzmann machine with different hidden variables
- equivalently, treat each user as an independent sample from RBM

- for a user who rated m movies let $V \in\{0,1\}^{K \times m}$ be observed ratings where $v_{i}^{k}=1$ if the user gave rating k to movie i
- let h_{j} be the binary valued hidden variables for $j=\{1, \ldots, J\}$
- users have different RBM's but share the same weights $W_{i j}^{k}$
- RBM

$$
\mu(V, h)=\frac{1}{Z} \exp \left\{\sum_{k=1}^{5}\left(V^{k}\right)^{T} W^{k} h+\sum_{k=1}^{5}\left(a^{k}\right)^{T} V^{k}+b^{T} h\right\}
$$

- learning: compute the gradient for each user and average over all users

$$
W_{i j}^{k}(t+1)=W_{i j}^{k}(t)+\alpha_{t}\left(\mathbb{E}_{\mu\left(h \mid V_{\text {sample }}\right)}\left[V_{i}^{k} h_{j}\right]-\mathbb{E}_{\mu(V, h)}\left[V_{i}^{k} h_{j}\right]\right)
$$

- RBM

$$
\mu(V, h)=\frac{1}{Z} \exp \left\{\sum_{k=1}^{5}\left(V^{k}\right)^{T} W^{k} h+\sum_{k=1}^{5}\left(a^{k}\right)^{T} V^{k}+b^{T} h\right\}
$$

- prediction
- predicting a single movie v_{m+1} is easy

$$
\begin{aligned}
\mu\left(v_{m+1}^{r}\right. & =1 \mid V) \propto \sum_{h \in\{0,1\}^{J}} \mu\left(v_{m+1}^{r}=1, v_{m+1}^{\bar{r}}=0, V, h\right) \\
& \propto \sum_{h \in\{0,1\}^{J}} \exp \left\{\sum_{k=1}^{5}\left(V^{k}\right)^{T} W^{k} h+a_{m+1}^{r} v_{m+1}^{r}+\sum_{j} W_{m+1, j}^{r} h_{j}+b^{T} h\right\} \\
& \propto C_{r} \prod_{j=1}^{J} \sum_{h_{j} \in\{0,1\}^{J}} \exp \left\{\sum_{i, k} V_{i}^{k} W_{i j}^{k} h_{j}+W_{m+1, j}^{r} h_{j}+b_{j} h_{j}\right\}
\end{aligned}
$$

- however, predicting L movies require 5^{L} evaluations
- instead approximate it by computing $\mu(h \mid V)$ and using it to evaluate $\mu\left(v_{\ell} \mid h\right)$
- on $17,770 \times 480,189$ Netflix dataset, $J=100$ works well

Deep Boltzmann machine

- deep Boltzmann machine

$$
\mu(v, h, s)=\frac{1}{Z} \exp \left\{a^{T} v+b^{T} h+c^{T} s+v^{T} W^{1} h+h^{T} W^{2} s\right\}
$$

- capable of learning higher level and more complex representations

Deep Boltzmann machine [Salakhutdinov, Hinton '09]

- MNIST dataset with 60,000 training set
- Samples generated by running Gibbs sampler for 100,000 steps

2-layer BM

3-layer BM

1	6	4	1	4	1	0
7	2	8	8	4	9	4
8	3	7	4	0	4	4
3	7	2	1	7	7	7
7	4	4	4	1	0	9
3	0	5	4	5	2	7
5	1	9	8	1	9	6

Training Samples

6	2	7	4	2	1	9
1	2	5	2	0	4	5
8	1	8	4	2	6	6
0	7	9	8	6	3	2
7	5	0	5	7	9	5
1	8	7	0	6	5	0
7	5	4	8	4	4	7

- NORB dataset with 24,300 stereo image pairs training set - 25 toy objects in 5 classes (car, truck, plane, animal, human)

Restricted Boltzmann machines

- (stochastic) gradient ascent (drop a, b, c for simplicity)

$$
\begin{aligned}
\mathcal{L}\left(W^{1}, W^{2}\right) & =\log \mu\left(v^{(\ell)}\right) \\
& =\log \sum_{h, s} \exp \left\{\left(v^{(\ell)}\right)^{T} W^{1} h+h^{T} W^{2} s\right\}-\log Z
\end{aligned}
$$

- gradient

$$
\begin{aligned}
& \frac{\partial \log \mu\left(v^{(\ell)}\right)}{\partial W_{i j}^{1}}= \\
& \frac{\sum_{h, s}\left(v_{i}^{(\ell)} h_{j}\right) e^{\left(v^{(\ell)}\right)^{T} W^{1} h+h^{T} W^{2} s}}{\sum_{h, s} e^{\left(v^{(\ell)}\right)^{T} W^{1} h+h^{T} W^{2} s}}-\frac{\sum_{v, h, s}\left(v_{i}^{(\ell)} h_{j}\right) e^{\left(v^{(\ell)}\right)^{T} W^{1} h+h^{T} W^{2} s}}{Z} \\
& =\mathbb{E}_{\mu\left(h \mid v^{(\ell)}\right)}\left[v_{i}^{(\ell)} h_{j}\right]-\mathbb{E}_{\mu(v, h)}\left[v_{i} h_{j}\right] \\
& \frac{\partial \log \mu\left(v^{(\ell)}\right)}{\partial W_{i j}^{2}}=\mathbb{E}_{\mu\left(h, s \mid v^{(\ell)}\right)}\left[h_{i} s_{j}\right]-\mathbb{E}_{\mu(h, s)}\left[h_{i} s_{j}\right]
\end{aligned}
$$

- problem: now even the data-dependent expectation is difficult to compute

Variational method

- use naive mean-field approximation to get a lower bound on the objective function

$$
\begin{aligned}
\mathcal{L}\left(W^{1}, W^{2}\right) & =\log \mu\left(v^{(\ell)}\right) \\
& \geq \log \mu\left(v^{(\ell)}\right)-D_{\mathrm{KL}}\left(b(h, s) \| \mu\left(h, s \mid v^{(\ell)}\right)\right) \\
& =\sum_{h, s} b(h, s) \log \mu\left(h, s, v^{(\ell)}\right)+H(b) \\
& \equiv \mathbb{G}\left(b, W^{1}, W^{2}, v^{(\ell)}\right)
\end{aligned}
$$

- instead of maximizing $\mathcal{L}\left(W^{1}, W^{2}\right)$, maximize $\mathbb{G}\left(b, W^{1}, W^{2}, v^{(\ell)}\right)$ to get approximately optimal W^{1} and W^{2}
- constrain $b(h, s)=\prod_{i} p_{i}\left(h_{i}\right) \prod_{j} q_{j}\left(s_{j}\right)$ for simplicity
- and let $p_{i}=p_{i}\left(h_{i}=1\right)$ and $q_{j}=q_{j}\left(s_{j}=1\right)$

$$
\mathbb{G}=\sum_{k, i} W_{k i}^{1} v_{k}^{(\ell)} p_{i}+\sum_{i, j} W_{i j}^{2} p_{i} q_{j}-\log Z+\sum_{i} H\left(p_{i}\right)+\sum_{j} H\left(q_{j}\right)
$$

- fix $\left(W^{1}, W^{2}\right)$ and find maximizers $\left\{p_{i}^{*}\right\},\left\{q_{j}^{*}\right\}$
- fix $\left\{p_{i}^{*}\right\},\left\{q_{i}^{*}\right\}$ and update $\left(W^{1}, W^{2}\right)$ according to gradient ascent

$$
W_{i j}^{2}(t+1)=W_{i j}^{2}(t)+\alpha\left(p_{i}^{*} q_{j}^{*}-\mathbb{E}_{\mu(h, s)}\left[h_{i} s_{j}\right]\right)
$$

$$
\mathbb{G}=\sum_{k, i} W_{k i}^{1} v_{k}^{(\ell)} p_{i}+\sum_{i, j} W_{i j}^{2} p_{i} q_{j}-\log Z+\sum_{i} H\left(p_{i}\right)+\sum_{j} H\left(q_{j}\right)
$$

- how do we find $\left\{p_{i}^{*}\right\}$ and $\left\{q_{j}^{*}\right\}$?
- gradient

$$
\begin{gathered}
\frac{\partial \mathbb{G}}{\partial p_{i}}=\sum_{k} W_{k i}^{1} v_{k}^{(\ell)}+\sum_{j} W_{i j}^{2} q_{j}+\log p_{i}-\log \left(1-p_{i}\right)=0 \\
\frac{\partial \mathbb{G}}{\partial q_{j}}=\sum_{i} W_{i j}^{2} p_{i}+\log q_{j}-\log \left(1-q_{j}\right)=0 \\
p_{i}^{*}=\frac{1}{1+e^{-\sum_{k} W_{k i}^{1} v_{k}^{(\ell)}-\sum_{j} W_{i j}^{2} q_{j}^{*}}} \\
q_{j}^{*}=\frac{1}{1+e^{-\sum_{i} W_{i j}^{2} p_{i}^{*}}}
\end{gathered}
$$

[^0]: ${ }^{1}$ ["An Introduction to Restricted Boltzmann Machines", Fischer, Igel] ["Training Restricted Baltzmann machines ,, r.

