8. Restricted Boltzmann machines

- Restricted Boltzmann machines
- Learning RBMs
- Deep Boltzmann machines
- Learning DBMs

- Unsupervised learning
- Given i.i.d. samples $\{v^{(1)},\ldots,v^{(n)}\}$, learn the joint distribution $\mu(v)$

Restricted Boltzmann machines

- motivation for studying deep learning
 - concrete example of parameter leaning
 - applications in dimensionality reduction, classification, collaborative filtering, feature learning, topic modeling
 - successful in vision, language, speech
 - unsupervised learning: learn a generative model or a distribution
- running example: learn distribution over hand-written digits (cf. character recognition)
 - 32×32 binary images $v^{(\ell)} \in \{0,1\}^{32 \times 32}$

2520 4266 9 86

Graphical model

grid

$$\mu(v) = rac{1}{Z} \expig\{\sum_i heta_i v_i + \sum_{(i,j)\in E} heta_{ij} v_i v_jig\}$$

a sample $v^{(\ell)}$

Restricted Boltzmann machine [Smolensky 1986] "harmoniums"

- undirected graphical model
- two layers: visible layer $v \in \{0,1\}^N$ and hidden layer $h \in \{0,1\}^M$
- fully connected bipartite graph

▶ RBMs represented by parameters $a \in \mathbb{R}^N$, $b \in \mathbb{R}^M$, and $W \in \mathbb{R}^{N \times M}$ such that

$$\mu(v,h) = rac{1}{Z} \exp\left\{a^T v + b^T h + v^T W h
ight\}$$

• consider the marginal distribution $\mu(v)$ of the visible nodes, then any distribution on v can be modeled arbitrarily well by RBM with k-1 hidden nodes, where k is the cardinality of the support of the target distribution

Restricted Boltzmann machine

define energy

$$E(v,h) = -a^T v - b^T h - v^T W h$$

$$egin{array}{rcl} \mu(v,h) &=& rac{1}{Z} \exp\{-E(v,h)\} \ &=& rac{1}{Z} \prod_{i \in [N]} e^{a_i v_i} \prod_{j \in [M]} e^{b_j h_j} \prod_{(i,j) \in E} e^{v_i W_{ij} h_j} \end{array}$$

note that RBM has no intra-layer edges (hence the name **restricted**) (cf. Boltzmann machine [Hinton,Sejnowski 1985])

Restricted Boltzmann machine

it follows from the Markov property of MRF that the conditional distribution a product distribution

$$egin{aligned} &\mu(v|h) &\propto & \exp\left\{(a+Wh)^T\,v
ight\} \ &= &\prod_i \exp\left\{(a_i+\langle W_{i\cdot},h
angle)\,v_i
ight\} \ &= &\prod_{i\in[N]}\mu(v_i|h) \ &\mu(h|v) \ &= &\prod_{j\in[M]}\mu(h_j|v) \end{aligned}$$

hence, inference in the conditional distribution is efficient e.g. compute a conditional marginal $\mu(h_i|v)$ Restricted Boltzmann machines

since
$$\mu(h|v) = \prod \mu(h_j|v)$$
,
 $\mu(h_j = 0|v) = \frac{\mu(h_j = 0|v)}{\mu(h_j = 0|v) + \mu(h_j = 1|v)}$
 $= \frac{1}{1 + e^{b_j + \langle W_j, v \rangle}}$
 $\mu(h_j = 1|v) = \underbrace{\frac{1}{1 + e^{-(b_j + \langle W_j, v \rangle)}}}_{\triangleq \sigma(b_j + \langle W_j, v \rangle) \text{ is a sigmiod}}$

similarly,

$$\mu(v_i=1|h)~=~\sigma(a_i+\langle W_i,h
angle)$$

where W_i and W_j are *i*-th row and *j*-th column of W resepectively, and $\langle \cdot, \cdot \rangle$ denotes the inner product

one interpretation of RBM is to think of it as a stochastic version of a neural network, where nodes and edges correspond to neurons and synaptic connections, and a single node fires (i.e. v_i = +1) stochastically from a sigmoid activation function σ(x) = 1/(1 + e^{-x}),

$$\mu(v_i=+1|h)=rac{e^{a_i+\langle W_i.\,,h
angle}}{1+e^{a_i+\langle W_i.\,,h
angle}}=\sigma(a_i+\langle W_i.\,,h
angle)$$

► another interpretation is to think of the bias a and the components W_i connected to a hidden node h_i encode higher level structure

• if the goal is to sample from this distribution (perhaps to generate images that resemble hand-written digits), the lack of inter-layer connection makes Gibbs sampling particularly easy, since one can apply block Gibbs sampling for each layer all together from $\mu(v|h)$ and $\mu(h|v)$ iteratively

• What about computing the marginal $\mu(v)$?

$$egin{aligned} \mu(v) &= & \sum_{h \in \{0,1\}^M} \mu(v,h) \ &= & rac{1}{Z} \sum_h \exp\{-E(v,h)\} \ &= & rac{1}{Z} \exp\left\{a^T v + \sum_{j=1}^M \log(1+e^{b_j + \langle W_{\cdot j},v
angle})
ight\} \end{aligned}$$

because

$$\sum_{h \in \{0,1\}^M} e^{a^T v + b^T h + v^T W h} = e^{a^T v} \sum_{h \in \{0,1\}^M} e^{b^T h + v^T W h}$$
$$= e^{a^T v} \sum_{h \in \{0,1\}^M} \prod_{j=1}^M e^{b_j h_j + \langle v, W_{\cdot,j} \rangle h_j}$$
$$= e^{a^T v} \prod_{j=1}^M \sum_{h_j \in \{0,1\}} e^{b_j h_j + \langle v, W_{\cdot,j} \rangle h_j}$$

$$egin{array}{rcl} \mu(v) &=& rac{1}{Z} \exp \left\{ a^T v + \sum_{j=1}^M \log(1+e^{b_j+\langle W_{\cdot j},v
angle})
ight\} \ &=& rac{1}{Z} \exp \left\{ a^T v + \sum_{j=1}^M ext{softplus}(b_j+\langle W_{\cdot j},v
angle)
ight\} \end{array}$$

 a_i is the bias in v_i , b_j is the bias in h_j , and W_{j} is the output "image" v resulting from the hidden node h_j

- in the spirit of unsupervised learning, how do we extract features such that we achieve, dimensionality reduction?
 - suppose we have learned the RBM, and have a, b, W at our disposal
 - \blacktriangleright we want to compute features of a new sample $v^{(\ell)}$
 - we use the conditional distribution of the hidden layers as features

$$\mu(h|v^{(\ell)}) \ = \ [\mu(h_1|v^{(\ell)}), \cdots, \mu(h_M|v^{(\ell)})]$$

a sample $v^{(\ell)}$

Parameter learning

• given i.i.d. samples $v^{(1)}, \ldots, v^{(n)}$ from the marginal $\mu(v)$, we want to learn the RBM using maximum likelihood estimator

$$\mu(v) = \frac{1}{Z} \sum_{h \in \{0,1\}^M} \exp\left\{a^T v + b^T h + v^T W h\right\}$$
$$\mathcal{L}(a, b, W) = \frac{1}{n} \sum_{\ell=1}^n \log \mu(v^{(\ell)})$$

- Gradient ascent (although not concave, and multi-modal)
 - * consider a single sample likelihood

$$\begin{split} \log \mu(v^{(\ell)}) &= \log \sum_{h} \exp(a^{T} v^{(\ell)} + b^{T} h + (v^{(\ell)})^{T} Wh) - \log Z \\ \frac{\partial \log \mu(v^{(\ell)})}{\partial b_{i}} &= \frac{\sum_{h} h_{i} e^{a^{T} v^{(\ell)} + b^{T} h + (v^{(\ell)})^{T} Wh}}{\sum_{h} e^{a^{T} v^{(\ell)} + b^{T} h + (v^{(\ell)})^{T} Wh}} - \frac{\sum_{v,h} h_{i} e^{a^{T} v + b^{T} h + v^{T} Wh}}{Z} \\ &= \underbrace{\mathbb{E}_{\mu(h|v^{(\ell)})}[h_{i}]}_{\text{data-dependent expectation}} - \underbrace{\mathbb{E}_{\mu(v,h)}[h_{i}]}_{\text{model expectation}} \\ \frac{\partial \log \mu(v^{(\ell)})}{\partial a_{i}} &= v_{i}^{(\ell)} - \mathbb{E}_{\mu(v,h)}[v_{i}] \\ \frac{\partial \log \mu(v^{(\ell)})}{\partial a_{i}} &= \mathbb{E}_{\mu(h|v^{(\ell)})}[v_{i}^{(\ell)} h_{j}] - \mathbb{E}_{\mu(v,h)}[v_{i} h_{j}] \end{split}$$

Restricted Boltzmannⁱmachines

once we have the gradient update a, b, and W as

$$W_{ij}^{(t+1)} = W_{ij}^{(t)} + \alpha \underbrace{\left(\mathbb{E}_{\mu(h|v)q(v)}[v_ih_j] - \mathbb{E}_{\mu(v,h)}[v_ih_j] \right)}_{\frac{\partial \log \mu}{\partial W_{ij}}}$$

 q(v) is the empirical distribution of the training samples v⁽¹⁾,..., v⁽ⁿ⁾
 to compute the gradient, we need to compute the second term E_{μ(v,h)}[v_ih_j] requires inference

- one approach is to approximately compute the expectation using samples from MCMC, but in general can be quite slow for large network
- custom algorithms designed for RBMs: contrastive divergence, persistent contrastive divergence, parallel tempering

MCMC (block Gibbs sampling)

for computing

$$\mathbb{E}_{\mu(v,h)}[v_ih_j]$$

where μ is defined by given current parameters $a^{(t)}, b^{(t)}, W^{(t)}$

• MCMC (block Gibbs sampling)

- ▶ start with samples $\mathcal{V} = \{v^{(1)}, \dots, v^{(K)}\} \in \{0, 1\}^{N \times K}$ drawn from the data (i.i.d. uniformly at random with replacement)
- repeat
 - ★ sample $\mathcal{H} = \{h^{(1)} \dots, h^{(K)}\} \in \{0, 1\}^{M \times K}$ each from $\mu(h^{(k)}|v^{(k)})$ for $k \in [K]$
 - * sample $\mathcal{V} = \{v^{(1)}, \dots, v^{(K)}\} \in \{0, 1\}^{N \times K}$ each from $\mu(v^{(k)}|h^{(k)})$ for $k \in [K]$
- compute the estimate $rac{1}{K}\sum_{k=1}^{K}v_{i}^{(k)}h_{j}^{(k)}$
- eventually, if repeated long enough (longer than mixing time), this converges to an unbiased estimate of $\mathbb{E}_{\mu(v,h)}[v_ih_j]$.
- how does it compare to BP?

Contrastive Divergence [IPAM tutorial, Hinton 2002]

- a standard approach for learning RBMs
- start sampling chain at $v^{(\ell)}$ from each of the training sample
- run Gibbs sampling for k steps to get (v(k), h(k))
- ▶ large k reduces bias, but in practice k = 1 works well
- k-step contrastive divergence
 - * Input: Graph G over v, h, training samples $S = \{v^{(1)}, \dots, v^{(n)}\}$
 - ***** Output: gradient $\{\Delta w_{ij}\}_{i \in [N], j \in [M]}, \{\Delta a_i\}_{i \in [N]}, \{\Delta b_j\}_{j \in [M]}$

1. initialize
$$\Delta w_{ij}, \Delta a_i, \Delta b_j = 0$$

2. Repeat
3. for all $v^{(\ell)} \in S$
4. $v(0) \leftarrow v^{(\ell)}$

3. for all
$$v^{(\ell)} \in$$

4.
$$v(0) \leftarrow v^{(\ell)}$$

5. for
$$t = 0, ..., k - 1$$
 do

- 6. for i = 1, ..., N do sample $h(t)_i \sim \mu(h_i | v(t))$
- for j = 1, ..., M do sample $v(t+1)_j \sim \mu(v_j|h(t))$ 7.

8. For
$$i = 1, \dots, N, j = 1, \dots, M$$
 do
9. $\Delta w_{ij} \leftarrow \Delta w_{ij} + \mathbb{E}_{\mu(h_j | v(0))}[h_j v(0)_i] - \mathbb{E}_{\mu(h_j | v(k))}[h_j v(k)_i]$

- 10. $\Delta a_i \leftarrow \Delta a_i + v(0)_i - v(k)_i$
- $\Delta b_j \leftarrow \Delta b_j + \mathbb{E}_{\mu(h_j|\nu(0))}[h_j] \mathbb{E}_{\mu(h_j|\nu(k))}[h_j]$ 11.
- 12. End for.

Persistent MCMC/Persistent CD [Teleman 2008]

- practical parameter learning algorithms for RBM use heuristics to approximate the log-likelihood gradient to speed up
- use persistent Markov chains to speed up the Markov chain
 - ► jointly update fantasy particles $S^{(t)} = \{(h, v)^{(k,t)}\}_{k \in [K]}$ and parameters $\theta^{(t)} = (a^{(t)}, b^{(t)}, W^{(t)})$ by repeating
 - ★ fix $(a^{(t)}, b^{(t)}, W^{(t)})$ and sample the next fantasy particles $S^{(t)} = \{(h, v)_{k,(t+1)}\}_{k \in [K]}$ according to a Markov chain ★ update $(a^{(t)}, b^{(t)}, W^{(t)})$

$$W_{ij}^{(t+1)} = W_{ij}^{(t)} + lpha_t ig(\mathbb{E}_{\mu(h|v)q(v)}[v_ih_j] - \mathbb{E}_{\mu(v,h)}[v_ih_j] ig)$$

by computing the model expectation (the second term) via $\mathbb{E}_{\mu(v,h)}[v_ih_j] \simeq \frac{1}{K} \sum_{k=1}^K (v_i^{(k,t+1)}h_j^{(k,t+1)})$

- ▶ since the Markov chain is run for finite k (often k=1 in practice), the resulting approximation of the gradient is biased (is dependent on the training samples {v^(ℓ)})
- Theorem.

$$rac{\log \mu(v(0))}{\partial w_{ij}} = \Delta w_{ij} + \mathbb{E}_{\mu(h|v)P(v(k))}[v(k)_i h_j] - \mathbb{E}_{\mu(v,h)}[v_i h_j]$$

▶ the gap vanishes as $k o \infty$ and $p(v(k)) o \mu(v)$

in general for finite k, the bias can distort learning procedure and converge to a solution that is not the maximum-likelihood

contrastive divergence with k = 1, 2, 5, 10, 20, 100 (bottom to up) and 16 hidden nodes and training data from 4 \times 4 bars-and-stripes ¹

¹["An Introduction to Restricted Boltzmann Machines", Fischer, Igel] ["Training Restricted Boltzmann machines " = 1 = 1

Example: collaborative filtering

- Restricted Boltzmann machines for collaborative filtering [Salakhutdinov, Mnih, Hinton '07]
 - suppose there are M movies and N users
 - each user provides 5-star ratings for a subset of movies

< 18,000 movies							\rightarrow
480, use	,000 ers	х	1	1	x		х
		х	х	х	5		х
		х	х	3	x		х
		х	4	3	x		2
			х	х	x		х
		х	5	х	1		х
		х	x	3	3		х
	2	х	1	х	х		2

- model each user as a restricted Boltzmann machine with different hidden variables
- equivalently, treat each user as an independent sample from RBM

- for a user who rated m movies let $V \in \{0, 1\}^{K \times m}$ be observed ratings where $v_i^k = 1$ if the user gave rating k to movie i
- let h_j be the binary valued hidden variables for $j = \{1, ..., J\}$ • users have different RBM's but share the same weights W_{ij}^k • RBM

$$\mu(V,h) = \frac{1}{Z} \exp \left\{ \sum_{k=1}^{5} (V^k)^T W^k h + \sum_{k=1}^{5} (a^k)^T V^k + b^T h \right\}$$

• learning: compute the gradient for each user and average over all users $W_{ij}^k(t+1) = W_{ij}^k(t) + \alpha_t (\mathbb{E}_{\mu(h|V_{\text{sample}})}[V_i^k h_j] - \mathbb{E}_{\mu(V,h)}[V_i^k h_j])$

RBM

$$\mu(V,h) = rac{1}{Z} \exp \left\{ \sum_{k=1}^{5} (V^k)^T W^k h + \sum_{k=1}^{5} (a^k)^T V^k + b^T h
ight\}$$

prediction

• predicting a single movie v_{m+1} is easy

$$\begin{split} \mu(v_{m+1}^r = 1 | V) \propto \sum_{h \in \{0,1\}^J} \mu(v_{m+1}^r = 1, v_{m+1}^{\bar{r}} = 0, V, h) \\ \propto \sum_{h \in \{0,1\}^J} \exp\Big\{ \sum_{k=1}^5 (V^k)^T W^k h + a_{m+1}^r v_{m+1}^r + \sum_j W_{m+1,j}^r h_j + b^T h \Big\} \\ \propto C_r \prod_{j=1}^J \sum_{h_j \in \{0,1\}^J} \exp\Big\{ \sum_{i,k} V_i^k W_{ij}^k h_j + W_{m+1,j}^r h_j + b_j h_j \Big\} \end{split}$$

- however, predicting L movies require 5^L evaluations
- instead approximate it by computing $\mu(h|V)$ and using it to evaluate $\mu(v_\ell|h)$

• on 17, 770 imes 480, 189 Netflix dataset, J = 100 works well

Deep Boltzmann machine

• deep Boltzmann machine

$$\mu(v,h,s) = rac{1}{Z} \exp\left\{a^T v + b^T h + c^T s + v^T W^1 h + h^T W^2 s
ight\}$$

• capable of learning higher level and more complex representations

Deep Boltzmann machine [Salakhutdinov, Hinton '09]

- MNIST dataset with 60,000 training set
 - Samples generated by running Gibbs sampler for 100,000 steps

• NORB dataset with 24,300 stereo image pairs training set

25 toy objects in 5 classes (car, truck, plane, animal, human)

• (stochastic) gradient ascent (drop *a*, *b*, *c* for simplicity)

$$egin{array}{rcl} \mathcal{L}(\,W^1,\,W^2) &=& \log \mu(v^{(\ell)}) \ &=& \log \sum_{h,s} \exp \left\{(v^{(\ell)})^{\,T}\,W^1h + h^{\,T}\,W^2s
ight\} - \log Z \end{array}$$

gradient

$$\begin{aligned} \frac{\partial \log \mu(v^{(\ell)})}{\partial W_{ij}^{1}} &= \\ \frac{\sum_{h,s} (v_{i}^{(\ell)} h_{j}) e^{(v^{(\ell)})^{T} W^{1} h + h^{T} W^{2} s}}{\sum_{h,s} e^{(v^{(\ell)})^{T} W^{1} h + h^{T} W^{2} s}} - \frac{\sum_{v,h,s} (v_{i}^{(\ell)} h_{j}) e^{(v^{(\ell)})^{T} W^{1} h + h^{T} W^{2} s}}{Z} \\ &= \mathbb{E}_{\mu(h|v^{(\ell)})} [v_{i}^{(\ell)} h_{j}] - \mathbb{E}_{\mu(v,h)} [v_{i} h_{j}] \\ \frac{\partial \log \mu(v^{(\ell)})}{\partial W_{ij}^{2}} &= \mathbb{E}_{\mu(h,s|v^{(\ell)})} [h_{i} s_{j}] - \mathbb{E}_{\mu(h,s)} [h_{i} s_{j}] \end{aligned}$$

• problem: now even the data-dependent expectation is difficult to compute

Variational method

• use naive mean-field approximation to get a lower bound on the objective function

$$\begin{array}{lll} \mathcal{L}(W^{1},W^{2}) & = & \log \mu(v^{(\ell)}) \\ & \geq & \log \mu(v^{(\ell)}) - D_{\mathrm{KL}}\big(b(h,s) \, \big\| \, \mu(h,s|v^{(\ell)})\big) \\ & = & \sum_{h,s} b(h,s) \log \mu(h,s,v^{(\ell)}) + H(b) \\ & \equiv & \mathbb{G}(b,W^{1},W^{2},v^{(\ell)}) \end{array}$$

- instead of maximizing $\mathcal{L}(W^1, W^2)$, maximize $\mathbb{G}(b, W^1, W^2, v^{(\ell)})$ to get approximately optimal W^1 and W^2
- constrain $b(h,s) = \prod_i p_i(h_i) \prod_j q_j(s_j)$ for simplicity
- and let $p_i = p_i(h_i = 1)$ and $q_j = q_j(s_j = 1)$

$$\mathbb{G} = \sum_{k,i} \, W^1_{ki} v^{(\ell)}_k p_i + \sum_{i,j} \, W^2_{ij} p_i q_j - \log Z + \sum_i H(p_i) + \sum_j H(q_j)$$

- fix (W^1, W^2) and find maximizers $\{p_i^*\}, \{q_i^*\}$
- fix $\{p_i^*\}, \{q_i^*\}$ and update (W^1, W^2) according to gradient ascent $W^2(t+1) = W^2(t) + c(r^* r^* - \mathbb{F})$

$$W^2_{ij}(t+1) = W^2_{ij}(t) + lpha(p^*_i \; q^*_j - \mathbb{E}_{\mu(h,s)}[h_i s_j])$$

$$\mathbb{G} = \sum_{k,i} \, W^1_{ki} v^{(\ell)}_k p_i + \sum_{i,j} \, W^2_{ij} \, p_i q_j - \log Z + \sum_i H(p_i) + \sum_j H(q_j)$$

- how do we find $\{p_i^*\}$ and $\{q_j^*\}$?
- gradient

$$\begin{array}{lcl} p_i^* & = & \displaystyle \frac{1}{1 + e^{-\sum_k W_{ki}^1 v_k^{(\ell)}} - \sum_j W_{ij}^2 q_j^*} \\ q_j^* & = & \displaystyle \frac{1}{1 + e^{-\sum_i W_{ij}^2 p_i^*}} \end{array}$$