Monty Hall problem from a game show

- There are three doors, say A,B,C, behind one of them is a prize
- Player chooses one door
- Monty opens one of the doors that the player did not choose and does not have a prize, and offers the player to switch from her choice to the other remaining unrevealed door
- Should she switch or not?
- Our goal is to familiarize with the notations
- We will focus on discrete random variables, for now as rigorous treatment of continuous random variables require sigma-algebra and Borel sets, which is outside the scope of this course

Sample space, events, probability

- sample space Ω
 - a set of all outcomes
 - an outcome is $\omega \in \Omega$
 - for example, if the player's strategy is to switch

 ω = (prize A, player B, Monty C, player wins)

- a probability space is a sample space Ω and a probability measure μ such that

•
$$0 \le \mu(\omega)$$
, and
• $\sum_{\omega \in \Omega} \mu(\omega) = 1$

• an **event** A is any subset of Ω , and we define

•
$$\mu(A) = \sum_{\omega \in A} \mu(\omega)$$

Random variables

- a **random variable** is a mapping from sample space Ω to some set \mathscr{X} and we denote a random variable by $x \in \mathscr{X}$ or $x_i \in \mathscr{X}_i$ if there are many random variables in the problem
 - for example, $x_1 \in \{A, B, C\}$ can represent the location of the prize
 - $x_2 \in \{A, B, C\}$ can represent the player's initial choice
 - $x_3 \in \{A, B, C\}$ can represent the door Monty opens
 - $x_4 \in \{0,1\}$ can represent whether the player wins or not
 - The event $\omega = (\text{prize A, player B, Monty C, player does not switch})$ is then mapped to a **random vector** $x = (x_1, x_2, x_3, x_4) = (A, B, C, 0)$
- μ in the definition of the original probability space induces a **probability distribution** of the random variable/vector, denoted by $\mu(x)$
- one should visualize $\mu(x)$ as a table with $3 \times 3 \times 3 \times 2$ non-negative entries that sum to one

Probability distribution

consider the prize being place randomly, then the induced probability distribution is

• $\mu(x_1 = A) = \mu(x_1 = B) = \mu(x_1 = C) = 1/3$

• consider the player choosing randomly,

•
$$\mu(x_2 = A) = \mu(x_2 = B) = \mu(x_2 = C) = 1/3$$

- for the random vector $x = (x_1, x_2, x_3, x_4)$, the joint probability distribution is denoted by $\mu(x) = \mu(x_1, x_2, x_3, x_4)$
 - for example, if the player's strategy is not to switch, then

$$\mu(A, B, C, 0) = 1/9$$

$$\mu(A, B, C, 1) = 0$$

$$\mu(A, A, B, 1) = 1/18$$

$$\mu(A, A, C, 1) = 1/18$$

Probability distribution

• given a joint distribution $\mu(x_1, ..., x_n)$, a marginal distribution of one random variable x_1 is defined as

$$\mu(x_1) = \sum_{x_2, x_3, \dots, x_n} \mu(x_1, \dots, x_n)$$

and the process of computing such marginal is referred to as marginalizing out $(x_2, ..., x_n)$

• similarly,

$$\mu(x_1, x_2) = \sum_{x_3, \dots, x_n} \mu(x_1, \dots, x_n)$$

• for example, to decide whether we should switch or not, we need to compute the marginal distribution of $\mu(x_4 = 1)$ for the player who switches, and for the player who does not switch

Conditional probability distribution

- for the player who does not switch,
 - one way to compute the marginal is to **enumerate** all possible outcomes: $\mu(x_4 = 1) = \mu(A, A, A, 1) + \mu(A, A, B, 1) + \dots + \mu(C, C, C, 1)$
 - a simpler approach is to notice that

$$\mu(x_4 = 1) = \mu(x_1 = x_2) = \mu_{12}(A, A) + \mu_{12}(B, B) + \mu_{12}(C, C)$$

where μ_{12} denotes the second order marginal distribution of $\mu(x_1, x_2)$ and this is 1/9+1/9+1/9=1/3

- for the player who does switch,
 - again, one could enumerate
 - a simpler approach is to notice that

 $\mu(x_4 = 1) = \mu(x_1 \neq x_2)$

and as $\mu(x_1 \neq x_2) = 1 - \mu(x_1 = x_2)$, we know that it is 2/3

Independence

- Two random variables are independent
 - if $\mu(x_1, x_2) = \mu(x_1)\mu(x_2)$ for all x_1, x_2
 - for example, the location of the prize x₁ and the initial choice of the player x₂ are independent, as neither knows the other
 - one can easily check that $\mu(x_1, x_2) = \mu(x_1)\mu(x_2)$
 - We denote independence by $x_1 \perp x_2$
 - For the example, if x_1, x_2, x_3, x_4 are mutually independent, then we only need 2 + 2 + 2 + 1 entries to store $\mu(x)$, as it decomposes (or **factorizes**) as $\mu(x) = \mu(x_1)\mu(x_2)\mu(x_3)\mu(x_4)$, and each function can be stored with 2,2,2,1 values respectively (because probability sum to one, we don't need to store the last entry in each of the functions)
 - Independence give efficiency (in storing and also in computing, as we will see)
 - in practice, independent random variables are rare, but conditional independence is abundant

Conditional probability distribution

• conditional probability of x_2 given x_1 is defined as

$$\mu(x_2 \,|\, x_1) = \frac{\mu(x_1, x_2)}{\mu(x_1)}$$

• for example, $\mu(x_2 | x_1) = \mu(x_2) = 1/3$ as $x_1 \perp x_2$

•
$$\mu(x_1 = A, x_2 = A \mid x_3 = C) = \frac{\mu(x_1 = A, x_2 = A, x_3 = C)}{\mu(x_3 = C)} = \frac{1/18}{1/3} = 1/6$$

• $\mu(x_1 = B, x_2 = A \mid x_3 = C) = \frac{\mu(x_1 = B, x_2 = A, x_3 = C)}{\mu(x_3 = C)} = \frac{1/9}{1/3} = 1/3$

One interpretation of the conditional probability is that the probability that the prize is not behind my chosen door is larger

•
$$\mu(x_2 = A \mid x_1 = B, x_3 = B) = \frac{\mu(x_2 = A, x_1 = B, x_3 = B)}{\mu(x_1 = B, x_3 = B)} = \frac{0}{0} = 0$$

- note that $\mu(x_1, x_2) = \mu(x_1)\mu(x_2 | x_1)$
- which gives the chain rule:

$$\begin{split} \mu(x_1, x_2, \dots, x_n) &= \mu(x_1, \dots, x_{n-1})\mu(x_n \,|\, x_1, \dots, x_{n-1}) \\ &= \mu(x_1, \dots, x_{n-1})\mu(x_{n-1} \,|\, x_1^{n-2})\mu(x_n \,|\, x_1^{n-1}) \\ &= \prod_{i=1}^n \mu(x_i \,|\, x_1^{i-1}) \\ \end{split}$$
 where $x_i^j = (x_i, x_{i+1}, \dots, x_j)$ and $x_1^0 = x_1$

Conditional independence

- Two random variables are **conditionally independent**
 - if $\mu(x_1, x_2 | x_3) = \mu(x_1 | x_3)\mu(x_2 | x_3)$ for all x_1, x_2, x_3
 - this notion captures many real-life scenarios
 - We denote it by $x_1 \perp x_2 \mid x_3$
 - For example, consider 4 random variables $(x_1 = \text{weather}, x_2 = \text{cavity}, x_3 = \text{toothache}, x_4 = \text{catch})$
 - Weather in {sunny, rain, cloudy, snow}
 - Cavity in {0,1}, Toothache in {0,1}, Catch in {0,1}
 - It is clear that weather is independent of any other variables
 - The joint distribution $\mu(x_2, x_3, x_4)$ can be represented by a table as

	toothache		¬ toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

• Note that it requires $2 \times 2 \times 2 - 1$ numbers to store this table

	toothache		¬ toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

- But we know that catch is independent of toothache, conditioned on cavity
- This can be confirmed via

 $\mu(toothache, catch | cavity) = \mu(toothache | cavity)\mu(catch | cavity)$

 One implication of such conditional independence structure is that by the chain rule,

$$\mu(x_1, x_2, x_3) = \mu(x_1)\mu(x_2, x_3 | x_1)$$

Which requires 1 + 2*3 numbers to store,
but by the conditional independence, we have
$$\mu(x_1, x_2, x_3) = \mu(x_1)\mu(x_2 | x_1)\mu(x_3 | x_1)$$

This only requires 1+2+2 numbers to store

There can be significant efficiency gain in using the conditional independence structure