Monty Hall problem from a game show

- There are three doors, say A, B, C, behind one of them is a prize
- Player chooses one door
- Monty opens one of the doors that the player did not choose and does not have a prize, and offers the player to switch from her choice to the other remaining unrevealed door
- Should she switch or not?
- Our goal is to familiarize with the notations
- We will focus on discrete random variables, for now as rigorous treatment of continuous random variables require sigma-algebra and Borel sets, which is outside the scope of this course

Sample space, events, probability

- sample space Ω
- a set of all outcomes
- an outcome is $\omega \in \Omega$
- for example, if the player's strategy is to switch $\omega=$ (prize A, player B, Monty C, player wins)
- a probability space is a sample space Ω and a probability measure μ such that
- $0 \leq \mu(\omega)$, and
- $\sum_{\omega \in \Omega} \mu(\omega)=1$
- an event A is any subset of Ω, and we define
- $\mu(A)=\sum_{\omega \in A} \mu(\omega)$

Random variables

- a random variable is a mapping from sample space Ω to some set \mathscr{X} and we denote a random variable by $x \in \mathscr{X}$ or $x_{i} \in \mathscr{X}_{i}$ if there are many random variables in the problem
- for example, $x_{1} \in\{A, B, C\}$ can represent the location of the prize
- $x_{2} \in\{A, B, C\}$ can represent the player's initial choice
- $x_{3} \in\{A, B, C\}$ can represent the door Monty opens
- $x_{4} \in\{0,1\}$ can represent whether the player wins or not
- The event $\omega=$ (prize A, player B, Monty C, player does not switch) is then mapped to a random vector $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(A, B, C, 0)$
- μ in the definition of the original probability space induces a probability distribution of the random variable/vector, denoted by $\mu(x)$
- one should visualize $\mu(x)$ as a table with $3 \times 3 \times 3 \times 2$ non-negative entries that sum to one

Probability distribution

- consider the prize being place randomly, then the induced probability distribution is
- $\mu\left(x_{1}=A\right)=\mu\left(x_{1}=B\right)=\mu\left(x_{1}=C\right)=1 / 3$
- consider the player choosing randomly,
- $\mu\left(x_{2}=A\right)=\mu\left(x_{2}=B\right)=\mu\left(x_{2}=C\right)=1 / 3$
- for the random vector $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$, the joint probability distribution is denoted by $\mu(x)=\mu\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$
- for example, if the player's strategy is not to switch, then

$$
\begin{aligned}
& \mu(A, B, C, 0)=1 / 9 \\
& \mu(A, B, C, 1)=0 \\
& \mu(A, A, B, 1)=1 / 18 \\
& \mu(A, A, C, 1)=1 / 18
\end{aligned}
$$

Probability distribution

- given a joint distribution $\mu\left(x_{1}, \ldots, x_{n}\right)$, a marginal distribution of one random variable x_{1} is defined as

$$
\mu\left(x_{1}\right)=\sum_{x_{2}, x_{3}, \ldots, x_{n}} \mu\left(x_{1}, \ldots, x_{n}\right)
$$

and the process of computing such marginal is referred to as marginalizing out $\left(x_{2}, \ldots, x_{n}\right)$

- similarly,

$$
\mu\left(x_{1}, x_{2}\right)=\sum_{x_{3}, \ldots, x_{n}} \mu\left(x_{1}, \ldots, x_{n}\right)
$$

- for example, to decide whether we should switch or not, we need to compute the marginal distribution of $\mu\left(x_{4}=1\right)$ for the player who switches, and for the player who does not switch

Conditional probability distribution

- for the player who does not switch,
- one way to compute the marginal is to enumerate all possible outcomes:

$$
\mu\left(x_{4}=1\right)=\mu(A, A, A, 1)+\mu(A, A, B, 1)+\cdots+\mu(C, C, C, 1)
$$

- a simpler approach is to notice that

$$
\mu\left(x_{4}=1\right)=\mu\left(x_{1}=x_{2}\right)=\mu_{12}(A, A)+\mu_{12}(B, B)+\mu_{12}(C, C)
$$

where μ_{12} denotes the second order marginal distribution of $\mu\left(x_{1}, x_{2}\right)$ and this is $1 / 9+1 / 9+1 / 9=1 / 3$

- for the player who does switch,
- again, one could enumerate
- a simpler approach is to notice that

$$
\mu\left(x_{4}=1\right)=\mu\left(x_{1} \neq x_{2}\right)
$$

and as $\mu\left(x_{1} \neq x_{2}\right)=1-\mu\left(x_{1}=x_{2}\right)$, we know that it is $2 / 3$

Independence

- Two random variables are independent
- if $\mu\left(x_{1}, x_{2}\right)=\mu\left(x_{1}\right) \mu\left(x_{2}\right)$ for all x_{1}, x_{2}
- for example, the location of the prize x_{1} and the initial choice of the player x_{2} are independent, as neither knows the other
- one can easily check that $\mu\left(x_{1}, x_{2}\right)=\mu\left(x_{1}\right) \mu\left(x_{2}\right)$
- We denote independence by $x_{1} \perp x_{2}$
- For the example, if $x_{1}, x_{2}, x_{3}, x_{4}$ are mutually independent, then we only need $2+2+2+1$ entries to store $\mu(x)$, as it decomposes (or factorizes) as $\mu(x)=\mu\left(x_{1}\right) \mu\left(x_{2}\right) \mu\left(x_{3}\right) \mu\left(x_{4}\right)$, and each function can be stored with $2,2,2,1$ values respectively (because probability sum to one, we don't need to store the last entry in each of the functions)
- Independence give efficiency (in storing and also in computing, as we will see)
- in practice, independent random variables are rare, but conditional independence is abundant

Conditional probability distribution

- conditional probability of x_{2} given x_{1} is defined as
$\mu\left(x_{2} \mid x_{1}\right)=\frac{\mu\left(x_{1}, x_{2}\right)}{\mu\left(x_{1}\right)}$
- for example, $\mu\left(x_{2} \mid x_{1}\right)=\mu\left(x_{2}\right)=1 / 3$ as $x_{1} \perp x_{2}$
- $\mu\left(x_{1}=A, x_{2}=A \mid x_{3}=C\right)=\frac{\mu\left(x_{1}=A, x_{2}=A, x_{3}=C\right)}{\mu\left(x_{3}=C\right)}=\frac{1 / 18}{1 / 3}=1 / 6$
- $\mu\left(x_{1}=B, x_{2}=A \mid x_{3}=C\right)=\frac{\mu\left(x_{1}=B, x_{2}=A, x_{3}=C\right)}{\mu\left(x_{3}=C\right)}=\frac{1 / 9}{1 / 3}=1 / 3$
- $\mu\left(x_{2}=A \mid x_{1}=B, x_{3}=B\right)=\frac{\mu\left(x_{2}=A, x_{1}=B, x_{3}=B\right)}{\mu\left(x_{1}=B, x_{3}=B\right)}=\frac{0}{0}=0$

One interpretation of the conditional probability is that the probability that the prize is not behind my chosen door is larger

- note that $\mu\left(x_{1}, x_{2}\right)=\mu\left(x_{1}\right) \mu\left(x_{2} \mid x_{1}\right)$
- which gives the chain rule:

$$
\begin{aligned}
\mu\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =\mu\left(x_{1}, \ldots, x_{n-1}\right) \mu\left(x_{n} \mid x_{1}, \ldots, x_{n-1}\right) \\
& =\mu\left(x_{1}, \ldots, x_{n-1}\right) \mu\left(x_{n-1} \mid x_{1}^{n-2}\right) \mu\left(x_{n} \mid x_{1}^{n-1}\right) \\
& =\prod_{i=1}^{n} \mu\left(x_{i} \mid x_{1}^{i-1}\right)
\end{aligned}
$$

where $x_{i}^{j}=\left(x_{i}, x_{i+1}, \ldots, x_{j}\right)$ and $x_{1}^{0}=x_{1}$

Conditional independence

- Two random variables are conditionally independent
- if $\mu\left(x_{1}, x_{2} \mid x_{3}\right)=\mu\left(x_{1} \mid x_{3}\right) \mu\left(x_{2} \mid x_{3}\right)$ for all x_{1}, x_{2}, x_{3}
- this notion captures many real-life scenarios
- We denote it by $x_{1} \perp x_{2} \mid x_{3}$
- For example, consider 4 random variables ($x_{1}=$ weather, $x_{2}=$ cavity, $x_{3}=$ toothache, $x_{4}=$ catch $)$
- Weather in \{sunny, rain, cloudy, snow\}
- Cavity in $\{0,1\}$, Toothache in $\{0,1\}$, Catch in $\{0,1\}$
- It is clear that weather is independent of any other variables
- The joint distribution $\mu\left(x_{2}, x_{3}, x_{4}\right)$ can be represented by a table as

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

- Note that it requires $2 \times 2 \times 2-1$ numbers to store this table

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

- But we know that catch is independent of toothache, conditioned on cavity
- This can be confirmed via
$\mu($ toothache, catch \mid cavity $)=\mu($ toothache \mid cavity $) \mu($ catch \mid cavity $)$
- One implication of such conditional independence structure is that by the chain rule,
$\mu\left(x_{1}, x_{2}, x_{3}\right)=\mu\left(x_{1}\right) \mu\left(x_{2}, x_{3} \mid x_{1}\right)$
Which requires $1+2 * 3$ numbers to store,
but by the conditional independence, we have
$\mu\left(x_{1}, x_{2}, x_{3}\right)=\mu\left(x_{1}\right) \mu\left(x_{2} \mid x_{1}\right) \mu\left(x_{3} \mid x_{1}\right)$
This only requires $1+2+2$ numbers to store
There can be significant efficiency gain in using the conditional independence structure

