
Monty Hall problem from a game show
• There are three doors, say A,B,C , behind one of them is a prize

• Player chooses one door

• Monty opens one of the doors that the player did not choose and 

does not have a prize,  
and offers the player to switch from her choice to the other 
remaining unrevealed door


• Should she switch or not?


• Our goal is to familiarize with the notations

• We will focus on discrete random variables, for now 

as rigorous treatment of continuous random variables require 
sigma-algebra and Borel sets, which is outside the scope of this 
course



Sample space, events, probability

• sample space  
• a set of all outcomes 

• an outcome is  

• for example, if the player’s strategy is to switch 

(prize A, player B, Monty C, player wins)


• a probability space is a sample space  and a probability measure  
such that 

• , and 


• 


• an event  is any subset of , and we define 


•
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Random variables

• a random variable is a mapping from sample space  to some set  
and we denote a random variable by  or  if there are many 
random variables in the problem 
• for example,  can represent the location of the prize


•  can represent the player’s initial choice


•  can represent the door Monty opens


•  can represent whether the player wins or not


• The event (prize A, player B, Monty C, player does not switch)  
is then mapped to a random vector 


•  in the definition of the original probability space induces  
a probability distribution of the random variable/vector, denoted by 


• one should visualize  as a table with  non-negative entries 
that sum to one

Ω 𝒳
x ∈ 𝒳 xi ∈ 𝒳i

x1 ∈ {A, B, C}
x2 ∈ {A, B, C}
x3 ∈ {A, B, C}
x4 ∈ {0,1}

ω =
x = (x1, x2, x3, x4) = (A, B, C,0)

μ
μ(x)

μ(x) 3 × 3 × 3 × 2



Probability distribution

• consider the prize being place randomly, then the induced 
probability distribution is 

• 


• consider the player choosing randomly,

• 


• for the random vector , the joint probability 
distribution is denoted by 

• for example, if the player’s strategy is not to switch, then  

             
             
             
            

μ(x1 = A) = μ(x1 = B) = μ(x1 = C) = 1/3

μ(x2 = A) = μ(x2 = B) = μ(x2 = C) = 1/3
x = (x1, x2, x3, x4)

μ(x) = μ(x1, x2, x3, x4)

μ(A, B, C,0) = 1/9
μ(A, B, C,1) = 0
μ(A, A, B,1) = 1/18
μ(A, A, C,1) = 1/18



Probability distribution

• given a joint distribution , a marginal distribution of 
one random variable  is defined as  
         

and the process of computing such marginal is referred to as 
marginalizing out 


• similarly,  
      


• for example, to decide whether we should switch or not, we need 
to compute the marginal distribution of  for the player 
who switches, and for the player who does not switch

μ(x1, …, xn)
x1

μ(x1) = ∑
x2,x3,…,xn

μ(x1, …, xn)

(x2, …, xn)

μ(x1, x2) = ∑
x3,…,xn

μ(x1, …, xn)

μ(x4 = 1)



Conditional probability distribution

• for the player who does not switch, 

• one way to compute the marginal is to enumerate all possible outcomes:  



• a simpler approach is to notice that  

     
where  denotes the second order marginal distribution of  
and this is 1/9+1/9+1/9=1/3


• for the player who does switch, 

• again, one could enumerate

• a simpler approach is to notice that  

    
and as , we know that it is 2/3

μ(x4 = 1) = μ(A, A, A,1) + μ(A, A, B,1) + ⋯ + μ(C, C, C,1)

μ(x4 = 1) = μ(x1 = x2) = μ12(A, A) + μ12(B, B) + μ12(C, C)
μ12 μ(x1, x2)

μ(x4 = 1) = μ(x1 ≠ x2)
μ(x1 ≠ x2) = 1 − μ(x1 = x2)



Independence
• Two random variables are independent 

• if  for all 

• for example, the location of the prize  and the initial choice of the player  are 

independent, as neither knows the other


• one can easily check that  


• We denote independence by 


• For the example, if  are mutually independent, then we only need 
 entries to store , as it decomposes (or factorizes) as 

, and each function can be stored with 2,2,2,1 values 
respectively (because probability sum to one, we don’t need to store the last entry in 
each of the functions)


• Independence give efficiency (in storing and also in computing, as we will see)


• in practice, independent random variables are rare, but conditional independence is 
abundant

μ(x1, x2) = μ(x1)μ(x2) x1, x2
x1 x2

μ(x1, x2) = μ(x1)μ(x2)

x1 ⊥ x2

x1, x2, x3, x4
2 + 2 + 2 + 1 μ(x)
μ(x) = μ(x1)μ(x2)μ(x3)μ(x4)



Conditional probability distribution
• conditional probability of  given  is defined as  




• for example,  as 


• 


• 


• 


• note that 

• which gives the chain rule:  

             
                                       

                                        

where  and 

x2 x1

μ(x2 |x1) =
μ(x1, x2)

μ(x1)
μ(x2 |x1) = μ(x2) = 1/3 x1 ⊥ x2

μ(x1 = A, x2 = A |x3 = C) =
μ(x1 = A, x2 = A, x3 = C)

μ(x3 = C)
=

1/18
1/3

= 1/6

μ(x1 = B, x2 = A |x3 = C) =
μ(x1 = B, x2 = A, x3 = C)

μ(x3 = C)
=

1/9
1/3

= 1/3

μ(x2 = A |x1 = B, x3 = B) =
μ(x2 = A, x1 = B, x3 = B)

μ(x1 = B, x3 = B)
=

0
0

= 0

μ(x1, x2) = μ(x1)μ(x2 |x1)

μ(x1, x2, …, xn) = μ(x1, …, xn−1)μ(xn |x1, …, xn−1)
= μ(x1, …, xn−1)μ(xn−1 |xn−2

1 )μ(xn |xn−1
1 )

=
n

∏
i=1

μ(xi |xi−1
1 )

x j
i = (xi, xi+1, …, xj) x0

1 = x1

One interpretation of 
the conditional 

probability is that the 
probability that the 

prize is not behind my 
chosen door is larger



Conditional independence
• Two random variables are conditionally independent 


• if  for all 

• this notion captures many real-life scenarios

• We denote it by  

• For example, consider 4 random variables  
( weather, cavity, toothache, catch)


• Weather in {sunny, rain, cloudy, snow}

• Cavity in {0,1}, Toothache in {0,1}, Catch in {0,1}

• It is clear that weather is independent of any other variables

• The joint distribution  can be represented by a table as 


• Note that it requires  numbers to store this table

μ(x1, x2 |x3) = μ(x1 |x3)μ(x2 |x3) x1, x2, x3

x1 ⊥ x2 |x3

x1 = x2 = x3 = x4 =

μ(x2, x3, x4)

2 × 2 × 2 − 1



- But we know that catch is independent of toothache, conditioned 
on cavity


- This can be confirmed via 
        



- One implication of such conditional independence structure is that 

by the chain rule,  



    Which requires 1 + 2*3 numbers to store,  
    but by the conditional independence, we have                       
    

    This only requires 1+2+2 numbers to store


There can be significant efficiency gain in using the conditional 
independence structure

μ(toothache, catch |cavity) = μ(toothache |cavity)μ(catch |cavity)

μ(x1, x2, x3) = μ(x1)μ(x2, x3 |x1)

μ(x1, x2, x3) = μ(x1)μ(x2 |x1)μ(x3 |x1)


