
CSE 515 Statistical methods in computer science

Wed-Fri 11:30am - 12:45pm, LOW 105

Sewoong Oh (sewoong@cs.washington.edu)

https://courses.cs.washington.edu/courses/cse515/20wi

4 homeworks (80%)
take-home final exam (20%)
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Topics

Provide a unifying framework for inference tasks in complex systems

Graphical models: random variables sit on vertices

Probability distributions: that can be ‘decomposed’ or ‘factorized’

Inference tasks : draw a conclusion based on the distribution

Applications: Images, error-correcting codes, machine learning, etc.
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Example: translate information in Quick Medical Reference
into a graphical model

d1

flu

d2 d3

cold

d4 d5

f1

fever

f2

cough

f3 f4 f5 f6 f7 f8

diseases

symptoms

each patient is represented by 5-dimensional binary vector
d = [d1, . . . , d5] ∈ {0, 1}5 representing which diseases are present
(value 1) in the patient

fj ∈ {0, 1}: symptoms are determined by diseases

Graphical model: Bayesian network (e.g. P(f2 = 1|d1 = 0, d3 = 1))

Inference task: Given symptoms (e.g. f = 01010010), what disease is
likely (argmaxd P(d|f))?
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Example: Navigation

Spacecraft 
dynamics Sensors

Estimated 
(hidden) stateController

xt

yt

Noise

Navigating Spacecrafts (e.g. lunar landing, guiding shuttles)

time⇒
hidden
state

x1 x2 x3 x4

y1sensor
reading

y2 y3 y4

Linear system as Gaussian graphical models (e.g. P(x2|x1, u1))
Inference task: Given noisy sensor readings, what is the current state?
(compute P(x4|y1, . . . , y4))
Kalman filtering
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Example: Image processing
Can computers generate/classify handwritten letters/numbers?
[R.Salakhutdinov, G. Hinton, 2009 AISTATS]

28× 28 Pixel images

10, 000 Training data Reconstruction by sampling
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Example: Image processing

Pairwise Markov random fields (deep Boltzmann machines)

Gibbs sampling

CSE515 6 / 11



Example: Communication

ChannelCodebook Decoder
2k messages xn1 yn1 recover

Error-correcting codes (e.g. Low-Density Parity Check codes)

x1

x2

x3

x4

x5

y1

y2

y3

y4

y5

Factor graphs
(loopy) Belief propagation
Inference task: Received yn1 , what xn1 is most likely?
(argmaxx P(x|y))
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General theme
Probability distribution over X = (X1, X2, . . . , Xn)
given observations Y = (Y1, . . . , Ym)

µy(x) = PX1,...,Xn|Y1,...,Ym
(x1, x2, . . . , xn|y1, y2, . . . , ym)

from a set xi ∈ X and yj ∈ Y, typically |X | <∞
Finding the most probable realization

x̂ ∈ arg max
x∈Xn

µy(x)

Calculate marginals

µy(x1) =
∑

x2,...,xn

µy(x)

Sampling

Key challenge: n� 1

computational complexity is O(|X |n) and there is no efficient method
for general distributions
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Structure
Suppose the variables are independent

µy(x) = µ1(x1)µ2(x2) · · ·µn(xn)

then, computational complexity is only |X | · n

Finding the most probable realization

x̂i ∈ arg max
xi∈X

µi(xi)

Calculate marginals

µy(x1) = µ1(x1)

Sampling: X1, X2, . . . , Xn independently

When the probability distribution factorizes,
we can achieve huge computational gains
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Graphical models

Undirected pairwise graphical models

Factor graphs

Bayesian networks
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Topics include

Representing inference tasks using graphical models

General and powerful framework for efficient inference

Belief propagation

Hidden Markov models, Kalman filtering

Plenty of math: convex analysis, random processes, Markov chains,
etc.
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