CSE 515 Statistical methods in computer science

- Wed-Fri 11:30am - 12:45pm, LOW 105
- Sewoong Oh (sewoong@cs.washington.edu)
- https://courses.cs.washington.edu/courses/cse515/20wi
- 4 homeworks (80%) take-home final exam (20\%)

Topics

- Provide a unifying framework for inference tasks in complex systems
- Graphical models: random variables sit on vertices
- Probability distributions: that can be 'decomposed' or 'factorized'
- Inference tasks : draw a conclusion based on the distribution
- Applications: Images, error-correcting codes, machine learning, etc.

Example: translate information in Quick Medical Reference into a graphical model

- each patient is represented by 5-dimensional binary vector $d=\left[d_{1}, \ldots, d_{5}\right] \in\{0,1\}^{5}$ representing which diseases are present (value 1) in the patient
- $f_{j} \in\{0,1\}$: symptoms are determined by diseases
- Graphical model: Bayesian network (e.g. $\mathbb{P}\left(f_{2}=1 \mid d_{1}=0, d_{3}=1\right)$)
- Inference task: Given symptoms (e.g. $f=01010010$), what disease is likely $\left(\arg \max _{d} \mathbb{P}(d \mid f)\right)$?

Example: Navigation

Navigating Spacecrafts (e.g. lunar landing, guiding shuttles)

- Linear system as Gaussian graphical models (e.g. $\mathbb{P}\left(x_{2} \mid x_{1}, u_{1}\right)$)
- Inference task: Given noisy sensor readings, what is the current state? (compute $\mathbb{P}\left(x_{4} \mid y_{1}, \ldots, y_{4}\right)$)
- Kalman filtering

Example: Image processing

Can computers generate/classify handwritten letters/numbers?
[R.Salakhutdinov, G. Hinton, 2009 AISTATS]

10, 000 Training data

Reconstruction by sampling
28×28 Pixel images

Example: Image processing

- Pairwise Markov random fields (deep Boltzmann machines)
- Gibbs sampling

Example: Communication

Error-correcting codes (e.g. Low-Density Parity Check codes)

:

- Factor graphs
- (loopy) Belief propagation
- Inference task: Received y_{1}^{n}, what x_{1}^{n} is most likely? $\left(\arg \max _{x} \mathbb{P}(x \mid y)\right)$

General theme

Probability distribution over $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$
given observations $Y=\left(Y_{1}, \ldots, Y_{m}\right)$

$$
\mu_{y}(x)=\mathbb{P}_{X_{1}, \ldots, X_{n} \mid Y_{1}, \ldots, Y_{m}}\left(x_{1}, x_{2}, \ldots, x_{n} \mid y_{1}, y_{2}, \ldots, y_{m}\right)
$$

from a set $x_{i} \in \mathcal{X}$ and $y_{j} \in \mathcal{Y}$, typically $|\mathcal{X}|<\infty$

- Finding the most probable realization

$$
\hat{x} \in \arg \max _{x \in \mathcal{X}^{n}} \mu_{y}(x)
$$

- Calculate marginals

$$
\mu_{y}\left(x_{1}\right)=\sum_{x_{2}, \ldots, x_{n}} \mu_{y}(x)
$$

- Sampling

Key challenge: $n \gg 1$

computational complexity is $O\left(|\mathcal{X}|^{n}\right)$ and there is no efficient method for general distributions

Structure

Suppose the variables are independent

$$
\mu_{y}(x)=\mu_{1}\left(x_{1}\right) \mu_{2}\left(x_{2}\right) \cdots \mu_{n}\left(x_{n}\right)
$$

then, computational complexity is only $|\mathcal{X}| \cdot n$

- Finding the most probable realization

$$
\hat{x}_{i} \in \arg \max _{x_{i} \in \mathcal{X}} \mu_{i}\left(x_{i}\right)
$$

- Calculate marginals

$$
\mu_{y}\left(x_{1}\right)=\mu_{1}\left(x_{1}\right)
$$

- Sampling: $X_{1}, X_{2}, \ldots, X_{n}$ independently

When the probability distribution factorizes, we can achieve huge computational gains

Graphical models

- Undirected pairwise graphical models
- Factor graphs
- Bayesian networks

Topics include

- Representing inference tasks using graphical models
- General and powerful framework for efficient inference
- Belief propagation
- Hidden Markov models, Kalman filtering
- Plenty of math: convex analysis, random processes, Markov chains, etc.

