9. Approximate inference by sampling

- Markov Chain Monte Carlo methods
- Metropolis-Hastings algorithm
- Gibbs sampling
- Bounding mixing time via spectral analysis
- Bounding mixing time via coupling

Approximate inference with samples

- inference problem in graphical model

$$
\mu(x)=\frac{1}{Z} \prod_{(i, j) \in E} \psi_{i j}\left(x_{i}, x_{j}\right)
$$

- belief propagation
- fast (especially on sparse graphs) and very popular
- deterministic
- computes (approximation of the) marginals
- approximate inference with samples given samples $\left\{x^{(1)}, \cdots, x^{(N)}\right\}$ from distribution $\mu(x)$

$$
\frac{1}{N} \sum_{j=1}^{N} \mathbb{I}\left(x_{i}^{(j)}=x_{i}\right) \rightarrow \mu\left(x_{i}\right)
$$

gives an approximate marginal

- slower and difficult to decide when to stop
- randomized

Generating samples from a distribution

generating samples from $\mu(x) \quad$ generating samples from $\mu\left(x_{i}\right)$

Markov Chain Monte Carlo methods sequential Monte Carlo methods
Metropolis-Hastings algorithm particle filtering

- Markov Chain Monte Carlo methods work as follows
- construct a Markov chain P whose stationary distribution is equal to μ
- start from an arbitrary realization $x^{(0)}$ and run the Markov chain until it converges to its stationary distribution
- this gives a sample from $\mu(x)$
- how do we construct such a Markov chain P?
- how long does it take for the Markov chain to converge?

Metropolis-Hastings algorithm

- Markov chain with a finite state space
- a Markov chain is defined by a state space \mathcal{X}^{n} and a $|\mathcal{X}|^{n} \times|\mathcal{X}|^{n}$ dimensional transition matrix P such that

$$
P_{x y}=\mathbb{P}\left(x_{t+1}=y \mid x_{t}=x\right)
$$

- stationary distribution of a Markov chain is a $|\mathcal{X}|^{n}$-dim row vector of distribution such that

$$
\pi^{T} P=\pi^{T}
$$

- a Markov chain is reversible if there exists a probability distribution π such that the detailed balance equation is satisfied:

$$
\pi_{x} P_{x y}=\pi_{y} P_{y x} \quad \text { for all } x, y
$$

- further, the corresponding π is a stationary distribution

$$
\left(\pi^{T} P\right)_{x}=\sum_{y} \pi_{y} P_{y x}=\sum_{y} \pi_{x} P_{x y}=\pi_{x}
$$

- the strategy is to construct a Markov chain P such that it is reversible, so that we can apply spectral analysis techniques, and has the desired stationary distribution $\pi_{x}=\mu(x)$

- Metropolis-Hastings algorithm

- start with a candidate transition matrix K, which we will modify to create P
- to ensure unique stationary distribution, it is sufficient to have
$\star K_{x x}>0$ for all $x \in \mathcal{X}^{n}$, and
\star the undirected graph $G(K)=\left(\mathcal{X}^{n}, E(K)\right)$ is connected, where $E(K) \equiv\left\{(x, y): K_{x y} K_{y x}>0\right\}$
- we want the transition matrix to satisfy the detailed balance equation with μ, but instead for each pair (x, y), suppose the following holds without loss of generality, i.e. instead of $\mu(x) K_{x y}=\mu(y) K_{y x}$ we have

$$
\mu(x) K_{x y}>\mu(y) K_{y x}
$$

- the trick is to remove some 'probability mass' from the larger one
\star define $R_{x y} \equiv \min \left(1, \frac{\mu(y) K_{y x}}{\mu(x) K_{x y}}\right)$
\star let

$$
P_{x y} \equiv \begin{cases}K_{x y} R_{x y} & \text { if } y \neq x \\ 1-\sum_{y \neq x} P_{x y} & \text { if } y=x\end{cases}
$$

\star then, P satisfies the detailed balance equations w.r.t μ, and hence μ is a stationary distribution of P

$$
\mu(x) K_{x y} R_{x y}=\mu(x) K_{x y}=\mu(x) K_{x y} \frac{\mu(y) K_{y x}}{\mu(y) K_{y x}}=\mu(y) K_{y x} R_{y x}
$$

- challenges with Metropolis-Hastings algorithm
- do we need μ to construct P ?
we only need $\frac{\mu(x)}{\mu(y)}=\prod_{(i, j) \in E} \frac{\psi_{i j}\left(x_{i}, x_{j}\right)}{\psi_{i j}\left(y_{i}, y_{j}\right)}$
which can be evaluated efficiently. In particular, we do not need to compute the partition function Z.
- how do we store K and P with dimensions $|\mathcal{X}|^{n} \times|\mathcal{X}|^{n}$? consider this construction as describing a sampling process
\star at time t generate a candidate sample x^{\prime} according to $K\left(x^{(t)}, x^{\prime}\right)$, which possibly has a simple structure
* accept the candidate state with probability $R_{x^{(t)}, x^{\prime}}$
« otherwise reject and keep current state
- theorem. Metropolis-Hastings algorithm finds ℓ_{1}-projection of K onto the space of reversible Markov chains with stationary distribution μ

$$
P=\min _{Q \in R(\mu)} \sum_{x} \sum_{y \neq x}\left|\mu(x) K_{x y}-\mu(x) Q_{x y}\right|
$$

- the 'art' is in choosing appropriate K, since bad choice of K results in a Markov chain with slower convergence
- if 'spread' is too narrow, we are not exploring
- if 'spread' is too large, acceptance rate can be low
- example.

$$
K=\frac{1}{|\mathcal{X}|^{n}} \mathbf{1 1}^{T}, \quad R_{x y}=\min \left(1, \prod_{(i, j) \in E} \frac{\psi_{i j}\left(y_{i}, y_{j}\right)}{\psi_{i j}\left(x_{i}, x_{j}\right)}\right)
$$

all pairs are sampled with equal probability (as per K), but many of them might be unlikely and be rejected with high probability

Gibbs sampling

- Gibbs sampling defines $P_{x y}$ as
- at each time step, first select $i \in\{1, \ldots, n\}$ from a uniform distribution
- set $y_{[n] \backslash i}=x_{[n] \backslash i}^{(t)}$ and sample y_{i} from $\mu\left(y_{i} \mid x_{[n] \backslash i}\right)$
- for sparse graphs, it is easy to evaluate $\mu\left(y_{i} \mid x_{[n] \backslash i}\right) \propto \prod_{j \in \partial i} \psi_{i j}\left(y_{i}, x_{j}\right)$
- thus generated P satisfy the detailed balance with μ
- suppose x and y only differ in exactly one position i

$$
\begin{aligned}
\mu(x) P_{x y} & =\mu(x) \frac{1}{n} \mu\left(y_{i} \mid x_{[n] \backslash i}\right) \\
& =\mu\left(x_{i} \mid x_{[n] \backslash i}\right) \mu\left(x_{[n] \backslash i}\right) \frac{1}{n} \mu\left(y_{i} \mid x_{[n] \backslash i}\right) \\
& =\underbrace{\mu\left(x_{[n] \backslash i}\right) \mu\left(y_{i} \mid x_{[n] \backslash i}\right)}_{\mu(y)} \underbrace{\frac{1}{n} \mu\left(x_{i} \mid x_{[n] \backslash i}\right)}_{P_{y x}}
\end{aligned}
$$

- otherwise, $P_{x y}=0$ if x and y differ in more than one position
- the resulting dynamics of the Markov chain is called Glauber dynamics
- Gibbs sampling and the analysis of Glauber dynamics is used in
- Noisy best response in coordination games
[L. Blume, Games Econ. Behav., 1995]
- Learning Boltzmann machines (contrastive divergence) [G. Hinton, Neural Computation, 2002]

Mixing time

- two common ways to analyze the mixing time of a (reversible) Markov chain is spectral analysis and coupling
- Define. ϵ-mixing time of P is the smallest time such that for all $t>T_{\text {mix }}(\epsilon)$

$$
\left|\left(p^{(0)}\right)^{T} P^{t}-\pi^{T}\right|_{\mathrm{TV}} \leq \epsilon
$$

for any initial distribution $p^{(0)}$, where $|x-y|_{\mathrm{TV}}=\sum_{i}\left|x_{i}-y_{i}\right|$ is the total variation distance

- Theorem. we can show that $\left|\left(p^{(0)}\right)^{T} P^{t}-\pi^{T}\right|_{\mathrm{TV}} \leq\left|\lambda_{2}\right|^{t}\left(\frac{1}{\sqrt{\pi_{\text {min }}}}\right)$, where $\left|\lambda_{2}\right|<1$ is the second largest eigenvalue of P this implies

$$
T_{\text {mix }}(\epsilon) \leq \frac{\log \frac{1}{\frac{\sqrt{\pi_{\min }}}{}}}{\log \left(1 /\left|\lambda_{2}\right|\right)} \leq \frac{\log \frac{1}{\epsilon \sqrt{\pi_{\min }}}}{\underbrace{1-\left|\lambda_{2}\right|}_{\text {spectral gap of } P}}
$$

- $\frac{1}{1-\left|\lambda_{2}\right|}$ is called the relaxation time of a Markov chain
- spectral properties of Markov chains

Property 1. $\pi P=\pi$ and $P \mathbb{1}=\mathbb{1}$ corresponding to $\lambda_{1}=1$
Property 2. $\pi^{T}=\pi^{T} P=\cdots=\pi^{T} P^{t}$

- spectral properties of reversible Markov chains

Property 3. $P=\Pi^{-1 / 2} S \Pi^{1 / 2}$ for some symmetric matrix S and $\Pi=\operatorname{diag}(\pi)$ Proof.

Property 4. P and S have the same (set of) eigen values
Property 5. $\lambda_{1}(S)=1$ with $\left[\begin{array}{c}\sqrt{\pi_{1}} \\ \vdots \\ \sqrt{\pi_{n}}\end{array}\right]$ as the eigen vector
such that

$$
\begin{aligned}
S & =U \wedge U^{T} \\
& =\left[\begin{array}{c}
\sqrt{\pi_{1}} \\
\vdots \\
\sqrt{\pi_{n}}
\end{array}\right]\left[\begin{array}{lll}
\sqrt{\pi_{1}} & \cdots & \sqrt{\pi_{n}}
\end{array}\right]+\left[\begin{array}{lll}
u_{2} & \cdots & u_{n}
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{2} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{n}
\end{array}\right]\left[\begin{array}{c}
u_{2}^{T} \\
\vdots \\
u_{n}^{T}
\end{array}\right]
\end{aligned}
$$

- Proof. of the spectral bound

$$
\begin{aligned}
2\left|\left(p^{(0)}\right)^{T} P^{t}-\pi^{T}\right| \mathrm{TV} & =\sum_{i}\left|\left(\left(p^{(0)}\right)^{T} P^{t}-\pi^{T}\right)_{i}\right| \\
& =\sum_{i} \frac{\left|\left(\left(p^{(0)}\right)^{T} P^{t}-\pi^{T}\right)_{i}\right|}{\pi_{i}^{1 / 2}} \pi_{i}^{1 / 2} \\
& \leq\left\|\left(\left(p^{(0)}\right)^{T} P^{t}-\pi^{T}\right) \Pi^{-1 / 2}\right\|\left\|\pi^{1 / 2}\right\| \\
& =\left\|\left(\left(p^{(0)}\right)^{T} P^{t}-\pi^{T} P^{t}\right) \Pi^{-1 / 2}\right\| \\
& =\left\|\left(p^{(0)}-\pi\right)^{T} \Pi^{-1 / 2} S^{t}\right\| \\
& \leq\left\|\left(p^{(0)}-\pi\right)^{T} \Pi^{-1 / 2}\right\|\left|\lambda_{2}\right|^{t} \\
& \leq\left(1+\frac{1}{\sqrt{\pi_{\min }}}\right)\left|\lambda_{2}\right|^{t} \\
\left\|\left(p^{(0)}-\pi\right)^{T} \Pi^{-1 / 2}\right\| \leq & \underbrace{\left\|(\pi)^{T} \Pi^{-1 / 2}\right\|}_{=1}+\underbrace{\left\|p^{(0)}\right\|\left\|\Pi^{-1 / 2}\right\|_{2}}_{\leq 1 / \sqrt{\pi_{\min }}}
\end{aligned}
$$

[Cauchy-Schwar
[Spectral analysis]
[Triangular ineq.]

$$
\left\|\left(p^{(0)}-\pi\right) \Pi^{-1 / 2} S^{t}\right\| \leq\left\|\left(p^{(0)}-\pi\right) \Pi^{-1 / 2}\right\|\left|\lambda_{2}\right|^{t}
$$

1. $\left(p^{(0)}-\pi\right)^{T} \Pi^{-1 / 2}$ is orthogonal to the first singular vector of S

- recall $P=\Pi^{-1 / 2} S \Pi^{1 / 2}$
- largest eigenvalue of P is one with left and right eigen vectors π and $\mathbb{1}$
- let $\pi^{1 / 2}=\Pi^{1 / 2} \mathbb{1}$
- $S \pi^{1 / 2}=\pi^{1 / 2}$, since $S \pi^{1 / 2}=\Pi^{1 / 2} P \Pi^{-1 / 2} \Pi^{1 / 2} \mathbb{1}=\Pi^{1 / 2} \mathbb{1}$
- hence, $\pi^{1 / 2}=\Pi^{1 / 2} \mathbb{1}$ is the eigenvector corresponding to the largest eigen value of S which is also one

$$
\left(p^{(0)}-\pi\right)^{T} \Pi^{-1 / 2} \cdot \Pi^{1 / 2} \mathbb{1}=0
$$

2. if a is orthogonal to the first singular left vector of S, then

$$
\left\|a^{T} S^{t}\right\| \leq\|a\| \sigma_{2}(S)^{t}
$$

- eigen value decomposition: $S=U \wedge U^{T}$, where $U U^{T}=U^{T} U=\mathbf{I}$
- $S_{1} \equiv U_{1} \lambda_{1} U_{1}^{T}$, and $a^{T} S^{t}=a^{T}\left(S-S_{1}\right)^{t}$
- $\left\|a^{T} S^{t}\right\|=\left\|a^{T}\left(S-S_{1}\right)^{t}\right\| \leq\|a\|\left\|S-S_{1}\right\|_{2}^{t}=\lambda_{2}^{t}\|a\|$
the spectral properties of some simple random walks on graphs
- complete graph:

$$
P=\frac{1}{4}\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right], \text { with }\left|\lambda_{2}\right|=0, T_{\operatorname{mix}} \propto \frac{1}{\log (1 / 0)}
$$

- cycle:

$$
P=\frac{1}{2}\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0
\end{array}\right] \text {, with }\left|\lambda_{2}\right|=1-O\left(1 / n^{2}\right), T_{\operatorname{mix}} \propto n^{2}
$$

- star:

$$
P=\left[\begin{array}{ccccc}
0 & 1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right] \text {, with } \lambda_{2}=-1, T_{\text {mix }}=\infty
$$

Bounding mixing time via conductance [Exercise 8.1]

- spectral analysis, and in particular the second largest eigen value of P, gives a means to bound the mixing time
- however, computing the spectral gap can be challenging
- Cheeger's inequality provides a bound on the spectral gap:

$$
\frac{1}{1-\lambda_{2}} \leq \frac{2}{\Phi^{2}}
$$

where conductance Φ of P is defined as

$$
\Phi \triangleq \min _{S \subset \mathcal{X}^{n}} \frac{\sum_{x \in S, y \in S^{c}} \pi_{x} P_{x y}}{\pi(S) \pi\left(S^{c}\right)}
$$

- direct computation of Φ is possible in some cases

$$
T_{\operatorname{mix}}(\epsilon) \leq \frac{2 \log \frac{2}{\epsilon \sqrt{\text { min }}}}{\Phi^{2}}
$$

Bounding mixing time via coupling

- Define. a coupling of two random variables X and Y with distributions $\mu_{X}(x)$ and $\mu_{Y}(y)$ is a construction of a joint probability distribution over (X, Y), i.e. $\mu(x, y)$ such that the marginals are preserved: $\sum_{y} \mu(x, y)=\mu_{X}(x)$ and $\sum_{x} \mu(x, y)=\mu_{Y}(y)$
- example. two (marginal) Gaussians $\mu(x) \sim \mathcal{N}(0,1)$ and $\mu(y) \sim \mathcal{N}(0,4)$
\star independent
* $Y=2 X$
- example. two (marginal) Bernoulli $X \sim \operatorname{Bern}(p)$ and $Y \sim \operatorname{Bern}(q)$
\star independent
\star construction from $U[0,1]$
- how closely can we couple X and Y ? in other words, what is

$$
\min _{\text {coupling of } \mu_{x}, \mu_{Y}} \mathbb{P}(X \neq Y)
$$

- Coupling lemma. for two (continuous or discrete) random variables X and Y in the same domain,

$$
\left|\mu_{X}-\mu_{Y}\right|_{\mathrm{TV}}=\min _{\text {couplings of } \mu_{X}, \mu_{Y}} \mathbb{P}(X \neq Y)
$$

- proof.

$$
\begin{aligned}
\mathbb{P}(X \neq Y) & =1-\sum_{x} \mu_{X, Y}(x, x) \\
& \geq \sum_{x}\left\{\mu_{X}(x)-\min \left\{\mu_{X}(x), \mu_{Y}(x)\right\}\right\} \\
& =\sum_{x} \max \left\{0, \mu_{X}(x)-\mu_{Y}(x)\right\} \\
& =\frac{1}{2} \sum_{x}\left|\mu_{X}(x)-\mu_{Y}(x)\right|
\end{aligned}
$$

further, exists $\mu(x, y)$ such that $\mu(x, x)=\min \left\{\mu_{1}(x), \mu_{2}(x)\right\}$, and $\mu(x, y)=\frac{\left(\mu_{X}(x)-\mu(x, x)\right)\left(\mu_{Y}(y)-\mu(y, y)\right)}{1-\sum_{x} \mu(x, x)}$

- example of an optimal coupling

$$
X=\left\{\begin{array}{ll}
0 & \text { w.p. } p \\
1 & \text { w.p. } 1-p
\end{array} \quad Y= \begin{cases}0 & \text { w.p. } q \\
1 & \text { w.p. } 1-q\end{cases}\right.
$$

need to construct a probability distribution over X and Y

$\min \{p, q\}$	$\max \{0, p-q\}$	p
$\max \{0, q-p\}$	$\min \{1-p, 1-q\}$	$1-p$
q	$1-q$	

this naturally extends to larger alphabet. Equivalently, one could draw $Z \sim$ Uniform[0,1], then coupling is nothing but determining intervals in $[0,1]$ for each output of X and Y. For example, the optimal coupling is

$$
X=\left\{\begin{array}{ll}
0 & \text { if } Z \in[0, p] \\
1 & \text { otherwise }
\end{array} \quad Y= \begin{cases}0 & \text { if } Z \in[0, q] \\
1 & \text { otherwise }\end{cases}\right.
$$

- Corollary of the coupling lemma. total variation can be upper bounded by any coupling,

$$
\left|\mu_{X}-\mu_{Y}\right|_{\mathrm{TV}} \leq \mathbb{P}_{(X, Y)}(X \neq Y)
$$

Coupling for bounding $T_{\text {mix }}$ of Gibbs sampling

- let X_{t} and Y_{t} be random states after t transitions according to P with initial state X_{0} and Y_{0}
- Corollary of the coupling lemma. for any coupling of X_{t} and Y_{t},

$$
\left|\mu_{X_{t}}-\mu_{Y_{t}}\right|_{\mathrm{TV}} \leq \mathbb{P}_{\left(X_{t}, Y_{t}\right)}\left(X_{t} \neq Y_{t}\right)
$$

- Strategy. to get a tight bound on the total variation, we need to construct good coupling.

$$
\begin{aligned}
\left|\mu_{X_{t}}-\pi\right|_{\mathrm{TV}} & \leq \max _{\mu_{X_{0}}, \mu_{Y_{0}}}\left|\mu_{X_{t}}-\mu_{Y_{t}}\right|_{\mathrm{TV}} \\
& \leq \max _{\mu_{X_{0}, \mu_{Y_{0}}}} \mathbb{P}\left(X_{t} \neq Y_{t}\right)
\end{aligned}
$$

we consider a particular coupling of two Gibbs sampling chains for $x, y \in\{0,1\}^{n}$

1. draw uniform $I \in[n]$
2. draw x_{I}^{\prime} from $\mu\left(x_{I}^{\prime} \mid x_{\partial I}\right)$ and y_{I}^{\prime} from $\mu\left(y_{I}^{\prime} \mid y_{\partial I}\right)$ using the optimal coupling

- Bounding $\mathbb{P}_{\left(X_{t}, Y_{t}\right)}\left(X_{t} \neq Y_{t}\right)$ by path coupling
[R. Bubley and M. Dyer, FOCS 1997]
- Define. $D(x, y)$ is the minimal number of allowed moves in the transition matrix P to go from x to y (e.g. Hamming distance for Gibbs sampling)
- Idea. if we can construct a coupling such that

$$
\begin{equation*}
\mathbb{E}\left[D\left(x_{t+1}, y_{t+1}\right) \mid x_{t}, y_{t}\right] \leq \alpha D\left(x_{t}, y_{t}\right) \tag{1}
\end{equation*}
$$

for some $0<\alpha<1$, then

$$
\begin{aligned}
\left|\mu_{X_{t}}-\mu_{Y_{t}}\right|_{\mathrm{TV}} & \leq \mathbb{P}\left(X_{t} \neq Y_{t}\right) \\
& \leq \mathbb{E}\left[D\left(x_{t}, y_{t}\right)\right] \\
& \leq \alpha^{t} D\left(x_{0}, y_{0}\right) \\
\Rightarrow \quad T_{\operatorname{mix}}(\epsilon) & \leq \frac{\log \frac{D\left(x_{0}, y_{0}\right)}{\epsilon}}{\log \frac{1}{\alpha}}
\end{aligned}
$$

Path coupling for Gibbs sampling

two Markov chains start at a distance as measured by $D\left(x^{(1,0)}, x^{(2,0)}\right)$, and with the right coupling two sample path eventually converge and follow the same sample path after some (random) time
$x^{(1,0)}$

$x^{(2,0)}$

- Path coupling. to prove that $\mathbb{E}\left[D\left(x_{t+1}, y_{t+1}\right) \mid x_{t}, y_{t}\right] \leq \alpha D\left(x_{t}, y_{t}\right)$ it is sufficient to prove it for x_{t} and y_{t} that only differ in one vertex

Have to consider all possible pairs

Claim. If $\mathbb{E}[D(\hat{x}, \hat{y}) \mid D(x, y)=1] \leq \alpha$ then Eq. (1) follows. Proof sketch. consider a minimum length path from x to y :

$$
p=\left(x, p_{1}, \ldots, p_{D(x, y)-1}, y\right)
$$

which are, after one step of the Markov chain, mapped to

$$
\left(\hat{x}, \hat{p}_{1}, \ldots, \hat{p}_{D(x, y)-1}, \hat{y}\right)
$$

by triangular inequality,

$$
\begin{aligned}
\mathbb{E}[D(\hat{x}, \hat{y}) \mid x, y] & \leq \mathbb{E}\left[D\left(\hat{x}, \hat{p}_{1}\right)+D\left(\hat{p}_{1}, \hat{p}_{2}\right)+\cdots+D\left(\hat{p}_{D(x, y)-1}, \hat{y}\right)\right] \\
& \leq \alpha \mathbb{E}[D(x, y)]
\end{aligned}
$$

for some graphical models, path coupling constant α can be bounded, e.g.

$$
\mu(x)=\frac{1}{Z} \exp \left\{\sum_{i, j \in E} \theta_{i j} x_{i} x_{j}\right\}
$$

- Claim. for Gibbs sampling on Ising models,

$$
\mathbb{E}\left[D\left(x_{t+1}, y_{t+1}\right) \mid D\left(x_{t}, y_{t}\right)=1\right] \leq 1-\frac{1-d_{\max } \tanh \left(\theta_{\max }\right)}{n}
$$

- hence, Gibbs sampling mixes fast when $d_{\max } \tanh \left(\theta_{\max }\right)<1$
- Step 1. Construction of a good coupling. to prove the claim, we consider a particular coupling of two Gibbs sampling chains

1. draw uniform $I \in[n]$
2. draw x_{I}^{\prime} from $\mu\left(x_{I}^{\prime} \mid x_{\partial I}\right)$ and y_{I}^{\prime} from $\mu\left(y_{I}^{\prime} \mid y_{\partial I}\right)$ coupled in the following way
2-1. draw a random $Z \sim \operatorname{Uniform}[0,1]$
$2-2$. let
$x_{I}^{\prime}=\left\{\begin{array}{ll}+1 & \text { if } Z \in\left[0, \mu\left(x_{I}^{\prime}=+1 \mid x_{\partial I}\right)\right] \\ -1 & \text { otherwise }\end{array} y_{I}^{\prime}= \begin{cases}+1 & \text { if } Z \in\left[0, \mu\left(y_{I}^{\prime}=+1 \mid y_{\partial I}\right)\right] \\ -1 & \text { otherwise }\end{cases}\right.$

- Step 2. Analysis of the distance. we are left to show that $\mathbb{E}\left[D\left(x^{\prime}, y^{\prime}\right) \mid x\right.$ and y differ only at $\left.i\right] \leq 1+\frac{1}{n}\left\{-1+\sum_{j \in \partial i}\left|\tanh \left(\theta_{i j}\right)\right|\right\}$

y

case 1. if $I=i, D\left(x^{\prime}, y^{\prime}\right)$ reduces to 0

$$
\mathbb{E}\left[D\left(x^{\prime}, y^{\prime}\right) \mid x \text { and } y \text { differ only at } i, I=i\right]=0
$$

this happens with probability $1 / n$

case 2. if $I \notin\{i\} \cup \partial i, D\left(x^{\prime}, y^{\prime}\right)$ remains at 1
$\mathbb{E}\left[D\left(x^{\prime}, y^{\prime}\right) \mid x\right.$ and y differ only at $\left.i, I \notin\{i\} \cup \partial i\right]=1$
this happens with probability $1-\frac{1+|\partial i|}{n}$

case 3. if $I \in \partial i, D\left(x^{\prime}, y^{\prime}\right)$ can increase with probability

$$
\begin{gathered}
\left|\mu\left(x_{I}=+\mid x_{\partial I}\right)-\mu\left(y_{I}=+\mid y_{\partial I}\right)\right|= \\
\left|\frac{A^{(+)} \psi_{i I}(+,+)}{A^{(+)} \psi_{i I}(+,+)+A^{(-)} \psi_{i I}(+,-)}-\frac{A^{(+)} \psi_{i I}(-,+)}{A^{(+)} \psi_{i I}(-,+)+A^{(-)} \psi_{i I}(-,-)}\right|
\end{gathered}
$$

where $A^{(+)}=\prod_{j \in \partial I \backslash\{i\}} \psi_{j I}\left(x_{j},+\right)$, and $A^{(-)}=\prod_{j \in \partial I \backslash\{i\}} \psi_{j I}\left(x_{j},-\right)$

- Claim. for Ising model with $\psi\left(x_{i}, x_{I}\right)=e^{\theta_{i I} x_{i} x_{I}}$, the probability is bounded by $\left|\tanh \left(\theta_{i I}\right)\right|$
- proof. in the case of $\theta_{i I}>0$, we want to show that

$$
\begin{aligned}
& \frac{A^{(+)} e^{\theta_{i I}}}{A^{(+)} e^{\theta_{i I}}+A^{(-)} e^{-\theta_{i I}}}-\frac{A^{(+)} e^{-\theta_{i I}}}{A^{(+)} e^{-\theta_{i I}}+A^{(-)} e^{\theta_{i I}}} \\
& =\frac{A^{(+)} A^{(-)}\left(e^{2 \theta_{i I}}-e^{-2 \theta_{i I}}\right)}{\left(A^{(+)}\right)^{2}+\left(A^{(-)}\right)^{2}+A^{(+)} A^{(-)}\left(e^{2 \theta_{i I}}+e^{-2 \theta_{i I}}\right)} \\
& =\frac{\left(e^{2 \theta_{i I}}-e^{-2 \theta_{i I}}\right)}{\left(A^{(+)}\right)^{2}+\left(A^{(-)}\right)^{2}+\left(e^{2 \theta_{i I}}+e^{-2 \theta_{i I}}\right)} \\
& \leq \frac{\left(e^{2 \theta_{i I}}-e^{-2 \theta_{i I}}\right)}{2+\left(e^{2 \theta_{i I}}+e^{-2 \theta_{i I}}\right)}=\tanh \left(\theta_{i I}\right)
\end{aligned}
$$

where we used the fact that $A^{(+)} A^{(-)}=1$ and it also follows that $\left(A^{(+)}\right)^{2}+\left(A^{(-)}\right)^{2} \geq 2$.

For Ising model,

$$
\mu_{G, \theta}(x)=\frac{1}{Z_{G}(\theta)} \exp \left\{\theta \sum_{(i, j) \in E} x_{i} x_{j}\right\} .
$$

we showed that Gibbs sampling mixed fast if $\tanh \left(\theta_{\max }\right) \operatorname{deg}_{\max }<1$. Experiment with G uniformly random with N vertices and $2 N$ edges (average degree 4).

Approximate inference by sampling

- theorem. [Mossel, Sly, 2010] Assume $\theta_{i j}=\theta>0$. Then the Glauber Markov chain mixes rapidly provided

$$
(k-1) \tanh (\theta)<1
$$

- theorem. [Gerschenfeld, Montanari, FOCS 2007] Assume

$$
(k-1) \tanh (\theta)>1
$$

then there exists a sequence of k-regular graphs $G_{n}=\left([n], E_{n}\right)$ for which the Glauber Markov chain mixes in time $\exp \{\Theta(n)\}$.

- Is $(k-1) \tanh (\theta)=1$ fundamental?
- Recall computation tree $T^{(t, i)}$ is formed from a graphical model by considering a root node x_{i} and a tree of all non-backtracking (non-reversing) paths for length t.
- Proposition. Let $\nu_{i}\left(x_{i}\right)$ be the BP estimate after t iterations, $\nu_{i \rightarrow j}^{(t)}\left(x_{i}\right)$ be the BP message, and $\mu^{(t, i)}\left(x_{i}\right)$ be the marginal of the root x_{i} on the computation tree $T^{(t, i)}$, with some boundary conditions to be specified with the model. Then,

$$
\nu_{i}^{\left(t_{0}+t_{1}\right)}\left(x_{i}\right)=\mu^{\left(t_{1}, i\right)}\left(x_{i}\right)
$$

with the boundary condition of the computation tree set to $\nu_{j \rightarrow k}^{\left(t_{0}\right)}\left(x_{j}\right)$ for a node x_{j} in the boundary with parent node x_{k}.

- Proof. proof by induction.
- Corollary. Let $\partial T^{(t, i)}$ denote the boundary nodes of the tree. If

$$
\max _{x_{\partial T(t, i)}, x_{\partial T}^{\prime}(t, i)}\left|\mu^{(t, i)}\left(x_{i} \mid x_{\partial T^{(t, i)}}\right)-\mu^{(t, i)}\left(x_{i} \mid x_{\partial T(t, i)}^{\prime}\right)\right|_{\mathrm{TV}} \leq \delta(t),(2)
$$

then, for all $t_{1}, t_{2} \geq t$,

$$
\left|\nu_{i}^{\left(t_{1}\right)}\left(x_{i}\right)-\nu_{i}^{\left(t_{2}\right)}\left(x_{i}\right)\right| \leq \delta(t) .
$$

In particular, if $\delta(t) \rightarrow 0$ as t grows, then BP converges.

- Define. $B_{i}(t)$ as the subgraph of G that includes all nodes at most distance t from node x_{i}.
- Corollary. If $B_{i}(t)$ is a tree, and Equation (2) holds, then

$$
|\underbrace{\mu\left(x_{i}\right)}_{\text {actual marginal }}-\underbrace{\nu_{i}^{(t)}\left(x_{i}\right)}_{\mathrm{BP} \text { estimate }}| \leq \delta(t) .
$$

In particular, if g is the girth (the length of the shortest cycle) of G, then we have

$$
\left|\mu\left(x_{i}\right)-\nu_{i}\left(x_{i}\right)\right| \leq \delta((g-1) / 2)
$$

- Proof. observe that $\mu\left(x_{i}\right)=\sum_{x^{(t)}} \mu\left(x_{i} \mid x^{(t)}\right) \mu\left(x^{(t)}\right)$ where $x^{(t)}$ are the nodes at distance t from x_{i}.
- the condition (2) is known as correlation decay and we established that correlation decay implies convergence of BP in general graphs and correctness of BP on locally tree-like graphs, but checking condition (2) can be challenging

Dobrushin's uniqueness criterion

- Dobrushin's criterion measures the strengths of interactions, and provides a sufficient condition for Condition (2).
- Define. Influence of j on i as

$$
\begin{aligned}
& C_{i j} \triangleq \max _{x, x^{\prime} \text { that only differ at } j}\left|\mu\left(x_{i}=\cdot \mid x_{V \backslash i}\right)-\mu\left(x_{i}=\cdot \mid x_{V \backslash i}^{\prime}\right)\right|_{\mathrm{TV}} \\
& \star 0 \leq C_{i j} \leq 1 \\
& \star C_{i j}=0 \text { unless }(i, j) \in E
\end{aligned}
$$

- Theorem.[Dobrushin, 1968] Small influence implies correlation decay. Let

$$
\gamma \triangleq \max _{i \in V}\left\{\sum_{j \in \partial i} C_{i j}\right\}
$$

Then,

$$
\max _{x, x^{\prime}}\left|\mu\left(x_{i}=\cdot \mid x_{V \backslash B_{i}(t)}\right)-\mu\left(x_{i}=\cdot \mid x_{V \backslash B_{i}(t)}^{\prime}\right)\right|_{\mathrm{TV}} \leq \frac{\gamma^{t}}{1-\gamma}
$$

Proof strategy

- bound influence on vertex j from those outside a ball of radius ℓ
- assume neighborhood of j is a k-regular tree
- a graphical model satisfies uniqueness condition if

$$
\sup _{y_{\partial \mathrm{B}}, z_{\partial \mathrm{B}}}\left|\mu\left(x_{j} \mid x_{\partial \mathrm{B}}=y_{\partial \mathrm{B}}\right)-\mu\left(x_{j} \mid x_{\partial \mathrm{B}}=z_{\partial \mathrm{B}}\right)\right| \leq \varepsilon(\ell) \downarrow 0
$$

[In reality slightly stronger condition needed for proof]

Checking for uniqueness

$$
h_{i \rightarrow j} \equiv \operatorname{atanh} \mathbb{E}_{\mu, T(i \rightarrow j)}\left\{x_{i}\right\} .
$$

Uniqueness: $h_{i \rightarrow j}$ asymptotically independent of boundary condition

Checking for uniqueness

Exercise:

$$
h_{i \rightarrow j}=\theta_{i}+\sum_{v \in \operatorname{children}(i)} \operatorname{atanh}\left\{\tanh \theta_{i v} \tanh h_{v \rightarrow i}\right\} .
$$

- $\theta_{i j}=\beta, \theta_{i}=0$,
- $x_{\partial \mathrm{B}(j, \ell)}=+1, x_{\partial \mathrm{B}(j, \ell)}=-1$ (monotonicity)

$$
h_{\ell+1}=(k-1) \operatorname{atanh}\left\{\tanh \beta \tanh h_{\ell}\right\} .
$$

A one-dimensional recursion

- who cares about regular trees?
- regular trees are the worst case for decay of correlations

What about the lower bound?

Theorem (Gerschenfeld, Montanari, FOCS 2007)
Assume $(k-1) \tanh \beta>1$.
Then there exists a sequence of k-regular graphs $G_{n}=\left(V_{n}=[n], E_{n}\right)$ for which the Glauber Markov chain mixes in time $\exp \{\Theta(n)\}$.

Proof.

Take G_{n} a uniformly random k-regular graph and prove that w.h.p.

$$
\begin{aligned}
& \mathbb{P}_{\mu}\left\{\sum_{i \in V} x_{i}=0\right\}=e^{-\Theta(n)} \\
& \mathbb{P}_{\mu}\left\{\sum_{i \in V} x_{i}>0\right\}=\mathbb{P}_{\mu}\left\{\sum_{i \in V} x_{i}<0\right\}=\frac{1}{2}-e^{-\Theta(n)} .
\end{aligned}
$$

Are random graphs a curiosity?

No! Used as gadgets in

- Sly, Computational transition at the uniqueness threshold, 2010
- A. Sly, N. Sun, The Computational Hardness of Counting in Two-Spin Models on d-Regular Graphs, 2012
- A. Galanis, D. Stefankovic, and E. Vigoda, Inapproximability of the partition function for the antiferromagnetic Ising and hard-core models, 2012

Theorem

For antiferromagnetic Ising models $\theta_{i j}=-\theta<0, \theta_{i}=0$, the partition function cannot be approximated unless $R P=N P$.
$Q_{n}(\beta) \equiv \mathbb{P}_{\mu}\left\{\sum_{i \in V} x_{i}=0\right\}$

$$
\begin{gathered}
\mu_{G, \beta}(x)=\frac{1}{Z_{G}(\beta)} \exp \left\{\beta \sum_{(i, j) \in E} x_{i} x_{j}\right\} \\
Q_{n}(\beta)=\frac{Z_{G}^{*}(\beta)}{Z_{G}(\beta)}, \quad Z_{G}^{*}(\beta) \equiv \sum_{x\{\{x, 1)=0} e^{\beta \sum_{(i, j) \in E} x_{i} x_{j}}
\end{gathered}
$$

- Upper bound $Z_{G}^{*}(\beta)$ by $n^{10} \mathbb{E}_{G} Z_{G}^{*}(\beta)$.
- Lower bound $Z_{G}(\beta)$ by ...

Estimating Z_{G}

Theorem (A.Dembo, A.Montanari, Ann. Appl. Prob. 2010)
Let $\left\{G_{n}=\left(V_{n}, E_{n}\right)\right\}_{n \geq 1}$ be a sequence of graphs that (i) Is uniformly sparse; (ii) Converges locally to a unimodular Galton-Watson tree. Let $Z_{n}(\beta, B)$ be the Ising model partition function with $\theta_{i j}=\beta, \theta_{i}=B$. Then

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1}{n} \log Z_{n}(\beta, B) & =\text { [explicit expression] } \\
& =\quad[\text { Bethe free energy }]
\end{aligned}
$$

