9. Approximate inference by sampling

- Markov Chain Monte Carlo methods
- Metropolis-Hastings algorithm
- Gibbs sampling
- Bounding mixing time via spectral analysis
- Bounding mixing time via coupling
Approximate inference with samples

- inference problem in graphical model
 \[
 \mu(x) = \frac{1}{Z} \prod_{(i,j) \in E} \psi_{ij}(x_i, x_j)
 \]

- belief propagation
 - fast (especially on sparse graphs) and very popular
 - deterministic
 - computes (approximation of the) marginals

- approximate inference with samples
 given samples \(\{x^{(1)}, \ldots, x^{(N)}\}\) from distribution \(\mu(x)\)

 \[
 \frac{1}{N} \sum_{j=1}^{N} \mathbb{1}(x_{i}^{(j)} = x_i) \to \mu(x_i)
 \]

 gives an approximate marginal
 - slower and difficult to decide when to stop
 - randomized
Generating samples from a distribution

<table>
<thead>
<tr>
<th>generating samples from $\mu(x)$</th>
<th>generating samples from $\mu(x_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Markov Chain Monte Carlo methods</td>
<td>sequential Monte Carlo methods</td>
</tr>
<tr>
<td>Metropolis-Hastings algorithm</td>
<td>particle filtering</td>
</tr>
</tbody>
</table>

- **Markov Chain Monte Carlo methods** work as follows
 - construct a Markov chain P whose stationary distribution is equal to μ
 - start from an arbitrary realization $x^{(0)}$ and run the Markov chain until it converges to its stationary distribution
 - this gives a sample from $\mu(x)$

- how do we construct such a Markov chain P?
- how long does it take for the Markov chain to converge?
Metropolis-Hastings algorithm

- Markov chain with a finite state space
 - a Markov chain is defined by a state space \mathcal{X}^n and a $|\mathcal{X}|^n \times |\mathcal{X}|^n$ dimensional transition matrix P such that
 \[P_{xy} = \mathbb{P}(x_{t+1} = y | x_t = x) \]
 - stationary distribution of a Markov chain is a $|\mathcal{X}|^n$-dim row vector of distribution such that
 \[\pi^T P = \pi^T \]
 - a Markov chain is reversible if there exists a probability distribution π such that the detailed balance equation is satisfied:
 \[\pi_x P_{xy} = \pi_y P_{yx} \quad \text{for all } x, y \]
 - further, the corresponding π is a stationary distribution
 \[(\pi^T P)_x = \sum_y \pi_y P_{yx} = \sum_y \pi_x P_{xy} = \pi_x \]
- the strategy is to construct a Markov chain P such that it is reversible, so that we can apply spectral analysis techniques, and has the desired stationary distribution $\pi_x = \mu(x)$
Metropolis-Hastings algorithm

> start with a candidate transition matrix K, which we will modify to create P

> to ensure unique stationary distribution, it is sufficient to have

- $K_{xx} > 0$ for all $x \in \mathcal{X}^n$, and [aperiodic]
- the undirected graph $G(K) = (\mathcal{X}^n, E(K))$ is connected, where $E(K) \equiv \{(x, y) : K_{xy}K_{yx} > 0\}$ [irreducible]

> we want the transition matrix to satisfy the detailed balance equation with μ, but instead for each pair (x, y), suppose the following holds without loss of generality, i.e. instead of $\mu(x)K_{xy} = \mu(y)K_{yx}$ we have

$$\mu(x)K_{xy} > \mu(y)K_{yx}$$

> the trick is to remove some ‘probability mass’ from the larger one

- define $R_{xy} \equiv \min\left(1, \frac{\mu(y)K_{yx}}{\mu(x)K_{xy}}\right)$

- let

$$P_{xy} \equiv \left\{ \begin{array}{ll}
K_{xy}R_{xy} & \text{if } y \neq x \\
1 - \sum_{y \neq x}P_{xy} & \text{if } y = x
\end{array} \right.$$

- then, P satisfies the detailed balance equations w.r.t μ, and hence μ is a stationary distribution of P

$$\mu(x)K_{xy}R_{xy} = \mu(x)K_{xy} = \mu(x)K_{xy} \frac{\mu(y)K_{yx}}{\mu(y)K_{yx}} = \mu(y)K_{yx}R_{yx}$$
challenges with Metropolis-Hastings algorithm

- do we need μ to construct P?

 we only need $\frac{\mu(x)}{\mu(y)} = \prod_{(i,j) \in E} \frac{\psi_{ij}(x_i, x_j)}{\psi_{ij}(y_i, y_j)}$

 which can be evaluated efficiently. In particular, we do not need to compute the partition function Z.

- how do we store K and P with dimensions $|\mathcal{X}|^n \times |\mathcal{X}|^n$?

 consider this construction as describing a sampling process

 - at time t generate a candidate sample x' according to $K(x^{(t)}, x')$, which possibly has a simple structure
 - accept the candidate state with probability $R_{x^{(t)}, x'}$
 - otherwise reject and keep current state

- **Theorem.** Metropolis-Hastings algorithm finds ℓ_1-projection of K onto the space of reversible Markov chains with stationary distribution μ

 $$
P = \min_{Q \in R(\mu)} \sum_x \sum_{y \neq x} |\mu(x)K_{xy} - \mu(x)Q_{xy}|$$
the ‘art’ is in choosing appropriate K, since bad choice of K results in a Markov chain with slower convergence

if ‘spread’ is too narrow, we are not exploring

if ‘spread’ is too large, acceptance rate can be low

example.

$$K = \frac{1}{|\mathcal{X}|^n} 11^T, \quad R_{xy} = \min \left(1, \prod_{(i,j) \in E} \frac{\psi_{ij}(y_i, y_j)}{\psi_{ij}(x_i, x_j)} \right)$$

all pairs are sampled with equal probability (as per K), but many of them might be unlikely and be rejected with high probability
Gibbs sampling

- Gibbs sampling defines P_{xy} as
 - at each time step, first select $i \in \{1, \ldots, n\}$ from a uniform distribution
 - set $y[n]\backslash i = x^{(t)}[n]\backslash i$ and sample y_i from $\mu(y_i|x[n]\backslash i)$
- for sparse graphs, it is easy to evaluate $\mu(y_i|x[n]\backslash i) \propto \prod_{j \in \partial i} \psi_{ij}(y_i, x_j)$
- thus generated P satisfy the detailed balance with μ
 - suppose x and y only differ in exactly one position i

$$
\mu(x)P_{xy} = \mu(x)\frac{1}{n}\mu(y_i|x[n]\backslash i)
= \mu(x_i|x[n]\backslash i)\mu(x[n]\backslash i)\frac{1}{n}\mu(y_i|x[n]\backslash i)
= \mu(x[n]\backslash i)\mu(y_i|x[n]\backslash i)\frac{1}{n}\mu(x_i|x[n]\backslash i)
\mu(y)\frac{1}{n}\mu(x_i|x[n]\backslash i)
= \mu(y)P_{yx}
$$

- otherwise, $P_{xy} = 0$ if x and y differ in more than one position
- the resulting dynamics of the Markov chain is called Glauber dynamics

Approximate inference by sampling
Gibbs sampling and the analysis of Glauber dynamics is used in

- Noisy best response in coordination games
 [L. Blume, Games Econ. Behav., 1995]
- Learning Boltzmann machines (contrastive divergence)
 [G. Hinton, Neural Computation, 2002]
- ...
Mixing time

- two common ways to analyze the mixing time of a (reversible) Markov chain is **spectral analysis** and **coupling**

Define. ε-**mixing time** of P is the smallest time such that for all $t > T_{\text{mix}}(\varepsilon)$

$$|(p^{(0)})^T P^t - \pi^T|_{\text{TV}} \leq \varepsilon$$

for any initial distribution $p^{(0)}$, where $|x - y|_{\text{TV}} = \sum_i |x_i - y_i|$ is the total variation distance

Theorem. we can show that $|(p^{(0)})^T P^t - \pi^T|_{\text{TV}} \leq |\lambda_2|^t \left(\frac{1}{\sqrt{\pi_{\text{min}}}} \right)$, where $|\lambda_2| < 1$ is the second largest eigenvalue of P

this implies

$$T_{\text{mix}}(\varepsilon) \leq \log \frac{1}{\varepsilon \sqrt{\pi_{\text{min}}}} \leq \log \frac{1}{\varepsilon \sqrt{\pi_{\text{min}}}} \leq \frac{1}{1 - |\lambda_2|}$$

$\frac{1}{1 - |\lambda_2|}$ is called the **relaxation time** of a Markov chain
spectral properties of Markov chains

Property 1. \(\pi P = \pi \) and \(P1 = 1 \) corresponding to \(\lambda_1 = 1 \)

Property 2. \(\pi^T = \pi^T P = \cdots = \pi^T P^t \)

spectral properties of reversible Markov chains

Property 3. \(P = \Pi^{-1/2} S \Pi^{1/2} \) for some symmetric matrix \(S \) and \(\Pi = \text{diag}(\pi) \)

Proof.

Property 4. \(P \) and \(S \) have the same (set of) eigen values

Property 5. \(\lambda_1(S) = 1 \) with \(\begin{bmatrix} \sqrt{\pi_1} \\ \vdots \\ \sqrt{\pi_n} \end{bmatrix} \) as the eigen vector

such that

\[
S = U \Lambda U^T
\]

\[
= \begin{bmatrix} \sqrt{\pi_1} \\ \vdots \\ \sqrt{\pi_n} \end{bmatrix} \begin{bmatrix} \sqrt{\pi_1} & \cdots & \sqrt{\pi_n} \end{bmatrix} + \begin{bmatrix} u_2 & \cdots & u_n \end{bmatrix} \begin{bmatrix} \lambda_2 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix} \begin{bmatrix} u_2^T \\ \vdots \\ u_n^T \end{bmatrix}
\]

Approximate inference by sampling
Proof. of the spectral bound

\[
2 \left| (p^{(0)})^T P^t - \pi^T \right|_{TV} = \sum_i \left| (p^{(0)})^T P^t - \pi^T \right|_i \\
= \sum_i \left| (p^{(0)})^T P^t - \pi^T \right|_i \pi_i^{1/2} \\
\leq \left\| (p^{(0)})^T P^t - \pi^T \right\|_{\Pi^{-1/2}} \left\| \pi^{1/2} \right\| \\
= \left\| (p^{(0)})^T P^t - \pi^T P^t \right\|_{\Pi^{-1/2}} \\
= \left\| (p^{(0)} - \pi)^T \Pi^{-1/2} S^t \right\| \\
\leq \left\| (p^{(0)} - \pi)^T \Pi^{-1/2} \right\| |\lambda_2|^t \\
\leq (1 + \frac{1}{\sqrt{\pi_{\min}}}) |\lambda_2|^t \\
\]

\[
\left\| (p^{(0)} - \pi)^T \Pi^{-1/2} \right\| \leq \left\| (\pi)^T \Pi^{-1/2} \right\| + \left\| p^{(0)} \right\| \left\| \Pi^{-1/2} \right\|_2 \\
= 1 + \frac{1}{\sqrt{\pi_{\min}}} \\
\]

Approximate inference by sampling
\[\|(p^{(0)} - \pi)\Pi^{-1/2}S^t\| \leq \|(p^{(0)} - \pi)\Pi^{-1/2}\| |\lambda_2|^t \]

1. \((p^{(0)} - \pi)^T\Pi^{-1/2}\) is orthogonal to the first singular vector of \(S\)
 - recall \(P = \Pi^{-1/2}SP\Pi^{1/2}\)
 - largest eigenvalue of \(P\) is one with left and right eigen vectors \(\pi\) and \(1\)
 - let \(\pi^{1/2} = \Pi^{1/2}1\)
 - \(S\pi^{1/2} = \pi^{1/2}\), since \(S\pi^{1/2} = \Pi^{1/2}P\Pi^{-1/2}\Pi^{1/2}1 = \Pi^{1/2}1\)
 - hence, \(\pi^{1/2} = \Pi^{1/2}1\) is the eigenvector corresponding to the largest eigenvalue of \(S\) which is also one
 \[(p^{(0)} - \pi)^T\Pi^{-1/2} \cdot \Pi^{1/2}1 = 0 \]

2. if \(a\) is orthogonal to the first singular left vector of \(S\), then
 \[\|a^TS^t\| \leq \|a\|\sigma_2(S)^t \]
 - eigen value decomposition: \(S = U\Lambda U^T\), where \(UU^T = U^TU = I\)
 - \(S_1 \equiv U_1\lambda_1U_1^T\), and \(a^TS^t = a^T(S - S_1)^t\)
 - \(\|a^TS^t\| = \|a^T(S - S_1)^t\| \leq \|a\|\|S - S_1\|_2^t = \lambda_2^t\|a\|\)

Approximate inference by sampling
the spectral properties of some simple random walks on graphs

- complete graph:

\[
P = \frac{1}{4} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}, \text{ with } |\lambda_2| = 0, \ T_{\text{mix}} \propto \frac{1}{\log(1/0)}
\]

- cycle:

\[
P = \frac{1}{2} \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}, \text{ with } |\lambda_2| = 1 - O(1/n^2), \ T_{\text{mix}} \propto n^2
\]

- star:

\[
P = \begin{bmatrix} 0 & 1/4 & 1/4 & 1/4 & 1/4 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}, \text{ with } \lambda_2 = -1, \ T_{\text{mix}} = \infty
\]
Bounding mixing time via conductance [Exercise 8.1]

- spectral analysis, and in particular the second largest eigen value of P, gives a means to bound the mixing time
- however, computing the spectral gap can be challenging
- **Cheeger’s inequality** provides a bound on the spectral gap:

 \[\frac{1}{1 - \lambda_2} \leq \frac{2}{\Phi^2} \]

 where conductance Φ of P is defined as

 \[\Phi \triangleq \min_{S \subseteq \mathcal{X}} \frac{\sum_{x \in S, y \in S^c} \pi_x P_{xy}}{\pi(S)\pi(S^c)} \]

- direct computation of Φ is possible in some cases

 \[T_{\text{mix}}(\epsilon) \leq \frac{2 \log \frac{2}{\epsilon \sqrt{\pi_{\min}}}}{\Phi^2} \]
Bounding mixing time via coupling

- **Define.** a coupling of two random variables X and Y with distributions $\mu_X(x)$ and $\mu_Y(y)$ is a construction of a joint probability distribution over (X, Y), i.e. $\mu(x, y)$ such that the marginals are preserved: $\sum_y \mu(x, y) = \mu_X(x)$ and $\sum_x \mu(x, y) = \mu_Y(y)$

- **example.** two (marginal) Gaussians $\mu(x) \sim \mathcal{N}(0, 1)$ and $\mu(y) \sim \mathcal{N}(0, 4)$
 - independent
 - $Y=2X$
example. two (marginal) Bernoulli $X \sim \text{Bern}(p)$ and $Y \sim \text{Bern}(q)$

- independent
- construction from $U[0, 1]$

how closely can we couple X and Y?
in other words, what is

$$\min_{\text{coupling of } \mu_x, \mu_y} \mathbb{P}(X \neq Y)$$
Coupling lemma. for two (continuous or discrete) random variables X and Y in the same domain,

$$|\mu_X - \mu_Y|_{TV} = \min_{\text{couplings of } \mu_X, \mu_Y} \mathbb{P}(X \neq Y)$$

proof.

$$\mathbb{P}(X \neq Y) = 1 - \sum_x \mu_{X,Y}(x, x)$$

$$\geq \sum_x \left\{ \mu_X(x) - \min\{\mu_X(x), \mu_Y(x)\} \right\}$$

$$= \sum_x \max\{0, \mu_X(x) - \mu_Y(x)\}$$

$$= \frac{1}{2} \sum_x |\mu_X(x) - \mu_Y(x)|$$

Further, exists $\mu(x, y)$ such that $\mu(x, x) = \min\{\mu_1(x), \mu_2(x)\}$, and

$$\mu(x, y) = \frac{(\mu_X(x) - \mu(x, x))(\mu_Y(y) - \mu(y, y))}{1 - \sum_x \mu(x, x)}$$
example of an optimal coupling

\[X = \begin{cases}
0 & \text{w.p. } p \\
1 & \text{w.p. } 1 - p
\end{cases} \quad Y = \begin{cases}
0 & \text{w.p. } q \\
1 & \text{w.p. } 1 - q
\end{cases} \]

need to construct a probability distribution over \(X \) and \(Y \)

<table>
<thead>
<tr>
<th>(\min{p, q})</th>
<th>(\max{0, p - q})</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\max{0, q - p})</td>
<td>(\min{1 - p, 1 - q})</td>
<td>(1 - p)</td>
</tr>
<tr>
<td>(q)</td>
<td>(1 - q)</td>
<td></td>
</tr>
</tbody>
</table>

this naturally extends to larger alphabet. Equivalently, one could draw \(Z \sim \text{Uniform}[0,1] \), then coupling is nothing but determining intervals in \([0,1]\) for each output of \(X \) and \(Y \). For example, the optimal coupling is

\[X = \begin{cases}
0 & \text{if } Z \in [0, p] \\
1 & \text{otherwise}
\end{cases} \quad Y = \begin{cases}
0 & \text{if } Z \in [0, q] \\
1 & \text{otherwise}
\end{cases} \]

Corollary of the coupling lemma. total variation can be upper bounded by any coupling,

\[|\mu_X - \mu_Y|_{TV} \leq \mathbb{P}(X \neq Y) \]
Coupling for bounding T_{mix} of Gibbs sampling

- let X_t and Y_t be random states after t transitions according to P with initial state X_0 and Y_0
- **Corollary of the coupling lemma.** for any coupling of X_t and Y_t,

$$|\mu_{X_t} - \mu_{Y_t}|_{TV} \leq \mathbb{P}(X_t, Y_t)(X_t \neq Y_t)$$

- **Strategy.** to get a tight bound on the total variation, we need to construct good coupling.

$$|\mu_{X_t} - \pi|_{TV} \leq \max_{\mu_{X_0}, \mu_{Y_0}} |\mu_{X_t} - \mu_{Y_t}|_{TV} \leq \max_{\mu_{X_0}, \mu_{Y_0}} \mathbb{P}(X_t \neq Y_t)$$

we consider a particular coupling of two Gibbs sampling chains for $x, y \in \{0, 1\}^n$

1. draw uniform $I \in [n]$
2. draw x'_I from $\mu(x'_I|x_{\partial I})$ and y'_I from $\mu(y'_I|y_{\partial I})$ using the optimal coupling
Bounding $\mathbb{P}(X_t, Y_t)(X_t \neq Y_t)$ by path coupling

[R. Bubley and M. Dyer, FOCS 1997]

- **Define.** $D(x, y)$ is the minimal number of allowed moves in the transition matrix P to go from x to y (e.g. Hamming distance for Gibbs sampling)
- **Idea.** if we can construct a coupling such that

$$E[D(x_{t+1}, y_{t+1})|x_t, y_t] \leq \alpha D(x_t, y_t)$$ \hspace{1cm} (1)

for some $0 < \alpha < 1$, then

$$|\mu_{X_t} - \mu_{Y_t}|_{TV} \leq \mathbb{P}(X_t \neq Y_t)$$

$$\leq E[D(x_t, y_t)]$$

$$\leq \alpha^t D(x_0, y_0)$$

$$\Rightarrow \quad T_{\text{mix}}(\epsilon) \leq \frac{\log \frac{D(x_0, y_0)}{\epsilon}}{\log \frac{1}{\alpha}}$$
Path coupling for Gibbs sampling

two Markov chains start at a distance as measured by $D(x^{(1,0)}, x^{(2,0)})$, and with the right coupling two sample path eventually converge and follow the same sample path after some (random) time.

Path coupling. to prove that $\mathbb{E}[D(x_{t+1}, y_{t+1})|x_t, y_t] \leq \alpha D(x_t, y_t)$ it is sufficient to prove it for x_t and y_t that only differ in one vertex.
Claim. If $\mathbb{E}[D(\hat{x}, \hat{y})| D(x, y) = 1] \leq \alpha$ then Eq. (1) follows.

Proof sketch. consider a minimum length path from x to y:

$$p = (x, p_1, \ldots, p_{D(x,y)-1}, y)$$

which are, after one step of the Markov chain, mapped to

$$(\hat{x}, \hat{p}_1, \ldots, \hat{p}_{D(x,y)-1}, \hat{y})$$

by triangular inequality,

$$\mathbb{E}[D(\hat{x}, \hat{y})| x, y] \leq \mathbb{E}[D(\hat{x}, \hat{p}_1) + D(\hat{p}_1, \hat{p}_2) + \cdots + D(\hat{p}_{D(x,y)-1}, \hat{y})] \leq \alpha \mathbb{E}[D(x, y)]$$
for some graphical models, path coupling constant α can be bounded, e.g.

$$\mu(x) = \frac{1}{Z} \exp \left\{ \sum_{i,j \in E} \theta_{ij} x_i x_j \right\}$$

- **Claim.** for Gibbs sampling on Ising models,

$$\mathbb{E}[D(x_{t+1}, y_{t+1})|D(x_t, y_t) = 1] \leq 1 - \frac{1 - d_{\text{max}} \tanh(\theta_{\text{max}})}{n}$$

- hence, Gibbs sampling mixes fast when $d_{\text{max}} \tanh(\theta_{\text{max}}) < 1$

- **Step 1. Construction of a good coupling.** to prove the claim, we consider a particular coupling of two Gibbs sampling chains

1. draw uniform $I \in [n]$
2. draw x'_I from $\mu(x'_I|x_{\partial I})$ and y'_I from $\mu(y'_I|y_{\partial I})$ coupled in the following way
 2-1. draw a random $Z \sim \text{Uniform}[0, 1]$
 2-2. let

$$x'_I = \begin{cases}
+1 & \text{if } Z \in [0, \mu(x'_I = +1|x_{\partial I})] \\
-1 & \text{otherwise}
\end{cases} \quad y'_I = \begin{cases}
+1 & \text{if } Z \in [0, \mu(y'_I = +1|y_{\partial I})] \\
-1 & \text{otherwise}
\end{cases}$$
Step 2. Analysis of the distance. We are left to show that

\[
\mathbb{E}[D(x', y') | x \text{ and } y \text{ differ only at } i] \leq 1 + \frac{1}{n} \left\{ -1 + \sum_{j \in \partial i} |\tanh(\theta_{ij})| \right\}
\]

case 1. if \(I = i \), \(D(x', y') \) reduces to 0

\[
\mathbb{E}[D(x', y') | x \text{ and } y \text{ differ only at } i, I = i] = 0
\]

this happens with probability \(1/n \)
case 2. if $I \notin \{i\} \cup \partial_i$, $D(x', y')$ remains at 1

$\mathbb{E}[D(x', y')|x \text{ and } y \text{ differ only at } i, I \notin \{i\} \cup \partial i] = 1$

this happens with probability $1 - \frac{1 + |\partial i|}{n}$
case 3. if $I \in \partial i$, $D(x', y')$ can increase with probability

$$\left| \mu(x_I = + | x_{\partial I}) - \mu(y_I = + | y_{\partial I}) \right| =$$

$$\frac{A^{(+)} \psi_{iI} (+, +)}{A^{(+)} \psi_{iI} (+, +) + A^{(-)} \psi_{iI} (+, -)} - \frac{A^{(+)} \psi_{iI} (-, +)}{A^{(+)} \psi_{iI} (-, +) + A^{(-)} \psi_{iI} (-, -)}$$

where $A^{(+)} = \prod_{j \in \partial I \setminus \{i\}} \psi_{jI}(x_j, +)$, and $A^{(-)} = \prod_{j \in \partial I \setminus \{i\}} \psi_{jI}(x_j, -)$
Claim. for Ising model with $\psi(x_i, x_I) = e^{\theta_i I x_i x_I}$, the probability is bounded by $| \tanh(\theta_i I) |$

proof. in the case of $\theta_i I > 0$, we want to show that

$$\frac{A(+) e^{\theta_i I}}{A(+) e^{\theta_i I} + A(-) e^{-\theta_i I}} - \frac{A(+) e^{-\theta_i I}}{A(+) e^{-\theta_i I} + A(-) e^{\theta_i I}}$$

$$= \frac{A(+) A(-) (e^{2\theta_i I} - e^{-2\theta_i I})}{(A(+))^2 + (A(-))^2 + A(+) A(-) (e^{2\theta_i I} + e^{-2\theta_i I})}$$

$$= \frac{(e^{2\theta_i I} - e^{-2\theta_i I})}{(A(+))^2 + (A(-))^2 + (e^{2\theta_i I} + e^{-2\theta_i I})}$$

$$\leq \frac{(e^{2\theta_i I} - e^{-2\theta_i I})}{2 (e^{2\theta_i I} + e^{-2\theta_i I})} = \tanh(\theta_i I)$$

where we used the fact that $A(+) A(-) = 1$ and it also follows that $(A(+))^2 + (A(-))^2 \geq 2$.

Approximate inference by sampling
For Ising model,

\[\mu_{G, \theta}(x) = \frac{1}{Z_G(\theta)} \exp \left\{ \theta \sum_{(i,j) \in E} x_i x_j \right\}. \]

we showed that Gibbs sampling mixed fast if \(\tanh(\theta_{\text{max}}) \deg_{\text{max}} < 1 \).

Experiment with \(G \) uniformly random with \(N \) vertices and \(2N \) edges (average degree 4).

\[C(t) = \frac{1}{|V|} \sum_{i \in V} x_i(0)x_i(t), \quad t = \frac{1}{|V|} \text{[number of steps]} \]
• **Theorem.** [Mossel, Sly, 2010] Assume $\theta_{ij} = \theta > 0$. Then the Glauber Markov chain mixes rapidly provided

$$(k - 1) \tanh(\theta) < 1$$

• **Theorem.** [Gerschenfeld, Montanari, FOCS 2007] Assume

$$(k - 1) \tanh(\theta) > 1$$

then there exists a sequence of k-regular graphs $G_n = ([n], E_n)$ for which the Glauber Markov chain mixes in time $\exp\{\Theta(n)\}$.

Approximate inference by sampling
Is \((k - 1) \tanh(\theta) = 1\) fundamental?

- Recall computation tree \(T^{(t,i)}\) is formed from a graphical model by considering a root node \(x_i\) and a tree of all non-backtracking (non-reversing) paths for length \(t\).

- **Proposition.** Let \(\nu_i(x_i)\) be the BP estimate after \(t\) iterations, \(\nu_{i \rightarrow j}^{(t)}(x_i)\) be the BP message, and \(\mu^{(t,i)}(x_i)\) be the marginal of the root \(x_i\) on the computation tree \(T^{(t,i)}\), with some boundary conditions to be specified with the model. Then,

\[
\nu_i^{(t_0 + t_1)}(x_i) = \mu^{(t_1,i)}(x_i)
\]

with the boundary condition of the computation tree set to \(\nu_j^{(t_0)}(x_j)\) for a node \(x_j\) in the boundary with parent node \(x_k\).

- **Proof.** proof by induction.

- **Corollary.** Let \(\partial T^{(t,i)}\) denote the boundary nodes of the tree. If

\[
\max_{x_{\partial T^{(t,i)}}, x_{\partial T^{(t,i)}}} \left| \mu^{(t,i)}(x_i | x_{\partial T^{(t,i)}}) - \mu^{(t,i)}(x_i | x'_{\partial T^{(t,i)}}) \right|_{TV} \leq \delta(t), \quad (2)
\]

then, for all \(t_1, t_2 \geq t\),

\[
\left| \nu_i^{(t_1)}(x_i) - \nu_i^{(t_2)}(x_i) \right| \leq \delta(t).
\]

In particular, if \(\delta(t) \to 0\) as \(t\) grows, then BP converges.
Define. $B_i(t)$ as the subgraph of G that includes all nodes at most distance t from node x_i.

Corollary. If $B_i(t)$ is a tree, and Equation (2) holds, then

$$|\underbrace{\mu(x_i)} - \underbrace{\nu_i^{(t)}(x_i)}| \leq \delta(t).$$

In particular, if g is the girth (the length of the shortest cycle) of G, then we have

$$|\mu(x_i) - \nu_i(x_i)| \leq \delta((g - 1)/2)$$

Proof. observe that $\mu(x_i) = \sum_{x(t)} \mu(x_i|x^{(t)})\mu(x^{(t)})$ where $x^{(t)}$ are the nodes at distance t from x_i.

the condition (2) is known as correlation decay and we established that correlation decay implies convergence of BP in general graphs and correctness of BP on locally tree-like graphs, but checking condition (2) can be challenging
Dobrushin’s uniqueness criterion

- Dobrushin’s criterion measures the strengths of interactions, and provides a sufficient condition for Condition (2).

- **Define.** Influence of j on i as

$$C_{ij} \triangleq \max_{x, x'} \left| \mu(x_i = j | x_{V \setminus i}) - \mu(x_i = j | x'_{V \setminus i}) \right|_{TV}$$

- $0 \leq C_{ij} \leq 1$
- $C_{ij} = 0$ unless $(i, j) \in E$

- **Theorem.** [Dobrushin, 1968] Small influence implies correlation decay. Let

$$\gamma \triangleq \max_{i \in V} \left\{ \sum_{j \in \partial i} C_{ij} \right\}.$$

Then,

$$\max_{x, x'} \left| \mu(x_i = j | x_{V \setminus B_i(t)}) - \mu(x_i = j | x'_{V \setminus B_i(t)}) \right|_{TV} \leq \frac{\gamma^t}{1 - \gamma}$$

Approximate inference by sampling
Proof strategy

- bound influence on vertex j from those outside a ball of radius ℓ
• assume neighborhood of j is a k-regular tree

• a graphical model satisfies uniqueness condition if

\[
\sup_{\partial B(j, \ell)} \left| \mu(x_j | x_{\partial B} = y_{\partial B}) - \mu(x_j | x_{\partial B} = z_{\partial B}) \right| \leq \varepsilon(\ell) \downarrow 0
\]

[In reality slightly stronger condition needed for proof]
Checking for uniqueness

$$h_{i \rightarrow j} \equiv \text{atanh} \mathbb{E}_{\mu, T(i \rightarrow j)} \{ x_i \}.$$

Uniqueness: \(h_{i \rightarrow j} \) asymptotically independent of boundary condition
Checking for uniqueness

Exercise:

\[h_{i \rightarrow j} = \theta_i + \sum_{v \in \text{children}(i)} \text{atanh}\{ \tanh \theta_{iv} \tanh h_{v \rightarrow i} \}. \]

- \(\theta_{ij} = \beta, \theta_i = 0, \)
- \(x_{\partial B(j,\ell)} = +1, \ x_{\partial B(j,\ell)} = -1 \) (monotonicity)

\[h_{\ell+1} = (k - 1) \text{atanh}\{ \tanh \beta \tanh h_{\ell} \}. \]
A one-dimensional recursion

\(h_{\ell+1} \)

\(h_\ell \)

\(h_\ell \)

\(h_\ell \)

\[(k - 1) \tanh \beta < 1 \quad (k - 1) \tanh \beta = 1 \quad (k - 1) \tanh \beta > 1\]

- who cares about regular trees?
- regular trees are the **worst case** for decay of correlations
What about the lower bound?

Theorem (Gerschenfeld, Montanari, FOCS 2007)

Assume \((k - 1) \tanh \beta > 1\).

Then there exists a sequence of \(k\)-regular graphs \(G_n = (V_n = [n], E_n)\) for which the Glauber Markov chain mixes in time \(\exp\{\Theta(n)\}\).

Proof.

Take \(G_n\) a uniformly random \(k\)-regular graph and prove that w.h.p.

\[
\mathbb{P}_\mu \left\{ \sum_{i \in V} x_i = 0 \right\} = e^{-\Theta(n)},
\]

\[
\mathbb{P}_\mu \left\{ \sum_{i \in V} x_i > 0 \right\} = \mathbb{P}_\mu \left\{ \sum_{i \in V} x_i < 0 \right\} = \frac{1}{2} - e^{-\Theta(n)}.
\]

Bottleneck!
Are random graphs a curiosity?

No! Used as gadgets in

- Sly, *Computational transition at the uniqueness threshold*, 2010
- ...

Theorem

*For antiferromagnetic Ising models $\theta_{ij} = -\theta < 0$, $\theta_i = 0$, the partition function cannot be approximated unless RP$=NP$.***
\(Q_n(\beta) \equiv \mathbb{P}_\mu\left\{ \sum_{i \in V} x_i = 0 \right\}\)

\[
\mu_{G,\beta}(x) = \frac{1}{Z_G(\beta)} \exp \left\{ \beta \sum_{(i,j) \in E} x_i x_j \right\}
\]

\[
Q_n(\beta) = \frac{Z^*_G(\beta)}{Z_G(\beta)}, \quad Z^*_G(\beta) \equiv \sum_{x:\langle x,1\rangle = 0} e^{\beta \sum_{(i,j) \in E} x_i x_j}
\]

- Upper bound \(Z^*_G(\beta)\) by \(n^{10} \mathbb{E}_G Z^*_G(\beta)\).

- Lower bound \(Z_G(\beta)\) by ...

Let \(\{ G_n = (V_n, E_n) \}_{n \geq 1} \) be a sequence of graphs that (i) is uniformly sparse; (ii) converges locally to a unimodular Galton-Watson tree. Let \(Z_n(\beta, B) \) be the Ising model partition function with \(\theta_{ij} = \beta, \theta_i = B \).

Then

\[
\lim_{n \to \infty} \frac{1}{n} \log Z_n(\beta, B) = \text{[explicit expression]}
\]

\[
= \text{[Bethe free energy]}
\]