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Approximate inference with samples
inference problem in graphical model

�(x ) =
1
Z

Y
(i ;j )2E

 ij (xi ; xj )

belief propagation
I fast (especially on sparse graphs) and very popular
I deterministic
I computes (approximation of the) marginals

approximate inference with samples
given samples fx (1); � � � ; x (N )g from distribution �(x )

1
N

NX
j=1

I(x (j )
i = xi ) ! �(xi )

gives an approximate marginal
I slower and difficult to decide when to stop
I randomized
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Generating samples from a distribution

generating samples from �(x ) generating samples from �(xi )
Markov Chain Monte Carlo methods sequential Monte Carlo methods

Metropolis-Hastings algorithm particle filtering

Markov Chain Monte Carlo methods work as follows
I construct a Markov chain P whose stationary distribution is equal to �
I start from an arbitrary realization x (0) and run the Markov chain until

it converges to its stationary distribution
I this gives a sample from �(x )

how do we construct such a Markov chain P?
how long does it take for the Markov chain to converge?
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Metropolis-Hastings algorithm
Markov chain with a finite state space

I a Markov chain is defined by a state space X n and a jX jn � jX jn
dimensional transition matrix P such that

Pxy = P(xt+1 = y jxt = x )

I stationary distribution of a Markov chain is a jX jn -dim row vector of
distribution such that

�TP = �T

I a Markov chain is reversible if there exists a probability distribution �
such that the detailed balance equation is satisfied:

�xPxy = �yPyx for all x ; y

I further, the corresponding � is a stationary distribution

(�TP)x =
X
y

�yPyx =
X
y

�xPxy = �x

the strategy is to construct a Markov chain P such that it is
reversible, so that we can apply spectral analysis techniques, and has
the desired stationary distribution �x = �(x )
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Metropolis-Hastings algorithm
I start with a candidate transition matrix K , which we will modify to

create P
I to ensure unique stationary distribution, it is sufficient to have

F Kxx > 0 for all x 2 X n , and [aperiodic]
F the undirected graph G(K ) = (X n ;E(K )) is connected,

where E(K ) � f(x ; y) : KxyKyx > 0g [irreducible]
I we want the transition matrix to satisfy the detailed balance equation

with �, but instead for each pair (x ; y), suppose the following holds
without loss of generality, i.e. instead of �(x )Kxy = �(y)Kyx we have

�(x )Kxy > �(y)Kyx

I the trick is to remove some ‘probability mass’ from the larger one
F define Rxy � min

�
1; �(y)Kyx

�(x )Kxy

�
F let

Pxy �
�

KxyRxy if y 6= x
1�Py 6=x Pxy if y = x

F then, P satisfies the detailed balance equations w.r.t �, and hence � is
a stationary distribution of P

�(x )KxyRxy = �(x )Kxy = �(x )Kxy
�(y)Kyx

�(y)Kyx
= �(y)KyxRyx
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challenges with Metropolis-Hastings algorithm
I do we need � to construct P?

we only need �(x )
�(y) =

Q
(i ;j )2E

 ij (xi ;xj )
 ij (yi ;yj )

which can be evaluated efficiently. In particular, we do not need to
compute the partition function Z .

I how do we store K and P with dimensions jX jn � jX jn?
consider this construction as describing a sampling process

F at time t generate a candidate sample x 0 according to K (x (t); x 0),
which possibly has a simple structure

F accept the candidate state with probability Rx (t);x 0

F otherwise reject and keep current state

theorem. Metropolis-Hastings algorithm finds `1-projection of K onto
the space of reversible Markov chains with stationary distribution �

P = min
Q2R(�)

X
x

X
y 6=x

j�(x )Kxy � �(x )Qxy j
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the ‘art’ is in choosing appropriate K , since bad choice of K results in
a Markov chain with slower convergence
if ‘spread’ is too narrow, we are not exploring
if ‘spread’ is too large, acceptance rate can be low
example.

K =
1

jX jn
11T ; Rxy = min

�
1;

Y
(i ;j )2E

 ij (yi ; yj )

 ij (xi ; xj )

�

all pairs are sampled with equal probability (as per K ), but many of
them might be unlikely and be rejected with high probability
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Gibbs sampling
Gibbs sampling defines Pxy as

I at each time step, first select i 2 f1; : : : ;ng from a uniform distribution
I set y[n ]ni = x (t)

[n ]ni and sample yi from �(yi jx[n ]ni )

for sparse graphs, it is easy to evaluate �(yi jx[n ]ni ) /
Q

j2@i  ij (yi ; xj )

thus generated P satisfy the detailed balance with �
I suppose x and y only differ in exactly one position i

�(x )Pxy = �(x )
1
n
�(yi jx[n ]ni )

= �(xi jx[n ]ni )�(x[n ]ni )
1
n
�(yi jx[n ]ni )

= �(x[n ]ni )�(yi jx[n ]ni )| {z }
�(y)

1
n
�(xi jx[n ]ni )| {z }

Pyx

I otherwise, Pxy = 0 if x and y differ in more than one position

the resulting dynamics of the Markov chain is called Glauber
dynamics
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Gibbs sampling and the analysis of Glauber dynamics is used in
I Noisy best response in coordination games

[L. Blume, Games Econ. Behav., 1995]
I Learning Boltzmann machines (contrastive divergence)

[G. Hinton, Neural Computation, 2002]
I . . .
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Mixing time
two common ways to analyze the mixing time of a (reversible) Markov
chain is spectral analysis and coupling
Define. �-mixing time of P is the smallest time such that for all
t > Tmix(�)

j(p(0))TP t � �T jTV � �

for any initial distribution p(0), where jx � y jTV =
P

i jxi � yi j is the
total variation distance
Theorem. we can show that j(p(0))TP t � �T jTV � j�2j

t
�

1p
�min

�
,

where j�2j < 1 is the second largest eigenvalue of P
this implies

Tmix(�) �
log 1

�
p
�min

log(1=j�2j) �
log 1

�
p
�min

1� j�2j| {z }
spectral gap of P

1
1�j�2j is called the relaxation time of a Markov chain
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spectral properties of Markov chains
Property 1. �P = � and P1 = 1 corresponding to �1 = 1
Property 2. �T = �TP = � � � = �TP t

spectral properties of reversible Markov chains
Property 3. P = Π�1=2SΠ1=2 for some symmetric matrix S and Π = diag(�)

Proof.

Property 4. P and S have the same (set of) eigen values

Property 5. �1(S) = 1 with

2
64
p
�1
...p
�n

3
75 as the eigen vector

such that

S = UΛUT

=

2
64
p
�1
...p
�n

3
75�p�1 � � � p

�n
�

+
�
u2 � � � un

�
2
64
�2 � � � 0
...

. . .
...

0 � � � �n

3
75
2
64
uT

2
...

uT
n

3
75
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Proof. of the spectral bound

2 j(p(0))TP t � �T jTV =
X

i

j((p(0))TP t � �T )i j

=
X

i

j((p(0))TP t � �T )i j
�

1=2
i

�
1=2
i

� k((p(0))TP t � �T )Π�1=2k k�1=2k [Cauchy-Schwarz]

= k((p(0))TP t � �TP t )Π�1=2k
= k(p(0) � �)T Π�1=2S tk
� k(p(0) � �)T Π�1=2k j�2jt [Spectral analysis]

� (1 +
1p
�min

) j�2jt [Triangular ineq.]

k(p(0) � �)T Π�1=2k � k(�)T Π�1=2k| {z }
=1

+ kp(0)k kΠ�1=2k2| {z }
�1=

p
�min
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k(p(0) � �)Π�1=2S tk � k(p(0) � �)Π�1=2k j�2j
t

1. (p(0) � �)T Π�1=2 is orthogonal to the first singular vector of S
I recall P = Π�1=2SΠ1=2

I largest eigenvalue of P is one with left and right eigen vectors � and 1
I let �1=2 = Π1=21
I S�1=2 = �1=2, since S�1=2 = Π1=2PΠ�1=2Π1=21 = Π1=21
I hence, �1=2 = Π1=21 is the eigenvector corresponding to the largest

eigen value of S which is also one

(p(0) � �)T Π�1=2 � Π1=21 = 0

2. if a is orthogonal to the first singular left vector of S , then

kaTS tk � kak�2(S)t

I eigen value decomposition: S = UΛUT , where UUT = UTU = I
I S1 � U1�1UT

1 , and aTS t = aT (S � S1)t

I kaTS tk = kaT (S � S1)tk � kakkS � S1kt2 = �t
2kak
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the spectral properties of some simple random walks on graphs
I complete graph:

P =
1
4

2
664

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

3
775 ; with j�2j = 0 ; Tmix / 1

log(1=0)

I cycle:

P =
1
2

2
66664

0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

3
77775 ; with j�2j = 1�O(1=n2) ; Tmix / n2

I star:

P =

2
66664

0 1=4 1=4 1=4 1=4
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

3
77775 ; with �2 = �1 ; Tmix = 1
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Bounding mixing time via conductance [Exercise 8.1]
spectral analysis, and in particular the second largest eigen value of P ,
gives a means to bound the mixing time
however, computing the spectral gap can be challenging
Cheeger’s inequality provides a bound on the spectral gap:

1
1� �2

� 2
Φ2

where conductance Φ of P is defined as

Φ , min
S�Xn

P
x2S ;y2Sc �xPxy

�(S)�(S c)

S
S c

direct computation of Φ is possible in some cases

Tmix(�) �
2 log 2

�
p
�min

Φ2
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Bounding mixing time via coupling
I Define. a coupling of two random variables X and Y with

distributions �X (x ) and �Y (y) is a construction of a joint probability
distribution over (X ;Y ), i.e. �(x ; y) such that the marginals are
preserved:

P
y �(x ; y) = �X (x ) and

P
x �(x ; y) = �Y (y)

I example. two (marginal) Gaussians �(x ) � N (0; 1) and
�(y) � N (0; 4)

F independent
F Y=2X
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I example. two (marginal) Bernoulli X � Bern(p) and Y � Bern(q)
F independent
F construction from U [0; 1]

I how closely can we couple X and Y ?
in other words, what is

min
coupling of �x ;�Y

P(X 6= Y )

Approximate inference by sampling 9-17



I Coupling lemma. for two (continuous or discrete) random variables X
and Y in the same domain,

j�X � �Y jTV = min
couplings of �X ; �Y

P(X 6= Y )

I proof.
P(X 6= Y ) = 1�

X
x

�X ;Y (x ; x )

�
X

x

n
�X (x )�minf�X (x ); �Y (x )g

o

=
X

x

maxf0; �X (x )� �Y (x )g

=
1
2

X
x

���X (x )� �Y (x )
��

further, exists �(x ; y) such that �(x ; x ) = minf�1(x ); �2(x )g, and
�(x ; y) = (�X (x )��(x ;x ))(�Y (y)��(y;y))

1�
P

x
�(x ;x )
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I example of an optimal coupling

X =

�
0 w.p. p
1 w.p. 1� p Y =

�
0 w.p. q
1 w.p. 1� q

need to construct a probability distribution over X and Y
minfp; qg maxf0; p � qg p

maxf0; q � pg minf1� p; 1� qg 1� p
q 1� q

this naturally extends to larger alphabet. Equivalently, one could draw
Z � Uniform[0,1], then coupling is nothing but determining intervals in
[0; 1] for each output of X and Y . For example, the optimal coupling is

X =

�
0 if Z 2 [0; p]
1 otherwise Y =

�
0 if Z 2 [0; q ]
1 otherwise

I Corollary of the coupling lemma. total variation can be upper
bounded by any coupling,

j�X � �Y jTV � P(X ;Y )(X 6= Y )
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Coupling for bounding Tmix of Gibbs sampling
I let Xt and Yt be random states after t transitions according to P with

initial state X0 and Y0
I Corollary of the coupling lemma. for any coupling of Xt and Yt ,

j�Xt � �Yt jTV � P(Xt ;Yt )(Xt 6= Yt )

I Strategy. to get a tight bound on the total variation, we need to
construct good coupling.

j�Xt � �jTV � max
�X0 ;�Y0

j�Xt � �Yt jTV

� max
�X0 ;�Y0

P(Xt 6= Yt )

we consider a particular coupling of two Gibbs sampling chains for
x ; y 2 f0; 1gn

1. draw uniform I 2 [n ]
2. draw x 0I from �(x 0I jx@I ) and y 0I from �(y 0I jy@I ) using the optimal

coupling

Approximate inference by sampling 9-20



Bounding P(Xt ;Yt )(Xt 6= Yt ) by path coupling
[R. Bubley and M. Dyer, FOCS 1997]

I Define. D(x ; y) is the minimal number of allowed moves in the
transition matrix P to go from x to y (e.g. Hamming distance for
Gibbs sampling)

I Idea. if we can construct a coupling such that

E[D(xt+1; yt+1)jxt ; yt ] � �D(xt ; yt ) (1)

for some 0 < � < 1, then

j�Xt � �Yt jTV � P(Xt 6= Yt )

� E[D(xt ; yt )]

� �tD(x0; y0)

) Tmix(�) � log D(x0;y0)
�

log 1
�
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Path coupling for Gibbs sampling

two Markov chains start at a distance as measured by D(x (1;0); x (2;0)),
and with the right coupling two sample path eventually converge and
follow the same sample path after some (random) time

I Path coupling. to prove that E[D(xt+1; yt+1)jxt ; yt ] � �D(xt ; yt ) it
is sufficient to prove it for xt and yt that only differ in one vertex
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Claim. If E
�
D(x̂ ; ŷ)jD(x ; y) = 1

�
� � then Eq. (1) follows.

Proof sketch. consider a minimum length path from x to y :

p = (x ; p1; : : : ; pD(x ;y)�1; y)

which are, after one step of the Markov chain, mapped to

(x̂ ; p̂1; : : : ; p̂D(x ;y)�1; ŷ)

by triangular inequality,

E[D(x̂ ; ŷ)jx ; y ] � E[D(x̂ ; p̂1) + D(p̂1; p̂2) + � � � + D(p̂D(x ;y)�1; ŷ)]

� �E[D(x ; y)]
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for some graphical models, path coupling constant � can be bounded,
e.g.

�(x ) =
1
Z

exp
n X

i ;j2E

�ij xixj

o

I Claim. for Gibbs sampling on Ising models,

E[D(xt+1; yt+1)jD(xt ; yt ) = 1] � 1� 1� dmax tanh(�max)

n
I hence, Gibbs sampling mixes fast when dmax tanh(�max) < 1

I Step 1. Construction of a good coupling. to prove the claim, we
consider a particular coupling of two Gibbs sampling chains
1. draw uniform I 2 [n ]
2. draw x 0I from �(x 0I jx@I ) and y 0I from �(y 0I jy@I ) coupled in the following

way
2-1. draw a random Z � Uniform[0; 1]
2-2. let

x 0I =

�
+1 if Z 2 [0; �(x 0I = +1jx@I )]
�1 otherwise y 0I =

�
+1 if Z 2 [0; �(y 0I = +1jy@I )]
�1 otherwise
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I Step 2. Analysis of the distance. we are left to show that

E[D(x 0; y 0)jx and y differ only at i ] � 1+
1
n

n
�1+

X
j2@i

j tanh(�ij )j
o

i = I i = I

x y

case 1. if I = i , D(x 0; y 0) reduces to 0

E[D(x 0; y 0)jx and y differ only at i ; I = i ] = 0

this happens with probability 1=n
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i iI I

x y

case 2. if I =2 fig [ @i , D(x 0; y 0) remains at 1

E[D(x 0; y 0)jx and y differ only at i ; I =2 fig [ @i ] = 1

this happens with probability 1� 1+j@i j
n
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i i

I I

x y

case 3. if I 2 @i , D(x 0; y 0) can increase with probability

j�(xI = +jx@I )� �(yI = +jy@I )j =

��� A(+) iI (+;+)

A(+) iI (+;+) + A(�) iI (+;�)
� A(+) iI (�;+)

A(+) iI (�;+) + A(�) iI (�;�)

���
where A(+) =

Q
j2@Infig  jI (xj ;+), and A(�) =

Q
j2@Infig  jI (xj ;�)
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I Claim. for Ising model with  (xi ; xI ) = e�iI xixI , the probability is
bounded by j tanh(�iI )j

I proof. in the case of �iI > 0, we want to show that

A(+)e�iI

A(+)e�iI + A(�)e��iI
� A(+)e��iI

A(+)e��iI + A(�)e�iI

=
A(+)A(�)(e2�iI � e�2�iI )

(A(+))2 + (A(�))2 + A(+)A(�)(e2�iI + e�2�iI )

=
(e2�iI � e�2�iI )

(A(+))2 + (A(�))2 + (e2�iI + e�2�iI )

� (e2�iI � e�2�iI )

2 + (e2�iI + e�2�iI )
= tanh(�iI )

where we used the fact that A(+)A(�) = 1 and it also follows that
(A(+))2 + (A(�))2 � 2.

Approximate inference by sampling 9-28



For Ising model,

�G;�(x ) =
1

ZG(�)
exp

n
�

X
(i ;j )2E

xixj

o
:

we showed that Gibbs sampling mixed fast if tanh(�max) degmax < 1.
Experiment with G uniformly random with N vertices and 2N edges
(average degree 4).

 0

 0.1

 0.2

 0.3

 1  2  4  8  16  32

C(
t)

t

N=10
N=20
N=30

� = 0:2
tanh(�) = 0:1975

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000  10000  100000

C(
t)

t

N=10
N=20
N=30

� = 0:5
tanh(�) = 0:4621

C (t) =
1
jV j

X
i2V

xi (0)xi (t) ; t =
1
jV j

[number of steps]
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theorem. [Mossel, Sly, 2010] Assume �ij = � > 0. Then the Glauber
Markov chain mixes rapidly provided

(k � 1) tanh(�) < 1

theorem. [Gerschenfeld, Montanari, FOCS 2007] Assume

(k � 1) tanh(�) > 1

then there exists a sequence of k -regular graphs Gn = ([n ];En) for
which the Glauber Markov chain mixes in time expfΘ(n)g.
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Is (k � 1) tanh(�) = 1 fundamental?
I Recall computation tree T (t ;i) is formed from a graphical model by

considering a root node xi and a tree of all non-backtracking
(non-reversing) paths for length t .

I Proposition. Let �i (xi ) be the BP estimate after t iterations, �(t)
i!j (xi )

be the BP message, and �(t ;i)(xi ) be the marginal of the root xi on
the computation tree T (t ;i), with some boundary conditions to be
specified with the model. Then,

�
(t0+t1)
i (xi ) = �(t1;i)(xi )

with the boundary condition of the computation tree set to �(t0)
j!k (xj )

for a node xj in the boundary with parent node xk .
I Proof. proof by induction.
I Corollary. Let @T (t ;i) denote the boundary nodes of the tree. If

max
x
@T (t;i) ;x 0

@T (t;i)

���(t ;i)(xi jx@T (t;i) )� �(t ;i)(xi jx 0@T (t;i) )
��
TV � �(t) ; (2)

then, for all t1; t2 � t ,���(t1)
i (xi )� �(t2)

i (xi )
�� � �(t) :

In particular, if �(t) ! 0 as t grows, then BP converges.
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I Define. Bi (t) as the subgraph of G that includes all nodes at most
distance t from node xi .

I Corollary. If Bi (t) is a tree, and Equation (2) holds, then

�� �(xi )| {z }
actual marginal

� �
(t)
i (xi )| {z }

BP estimate

�� � �(t) :

In particular, if g is the girth (the length of the shortest cycle) of G ,
then we have ���(xi )� �i (xi )

�� � �((g � 1)=2)

I Proof. observe that �(xi ) =
P

x (t) �(xi jx (t))�(x (t)) where x (t) are the
nodes at distance t from xi .

I the condition (2) is known as correlation decay and we established
that correlation decay implies convergence of BP in general graphs and
correctness of BP on locally tree-like graphs, but checking condition
(2) can be challenging
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Dobrushin’s uniqueness criterion
I Dobrushin’s criterion measures the strengths of interactions, and

provides a sufficient condition for Condition (2).
I Define. Influence of j on i as

Cij , max
x ;x 0 that only differ at j

���(xi = �jxV ni )� �(xi = �jx 0V ni )
��
TV

F 0 � Cij � 1
F Cij = 0 unless (i ; j ) 2 E

I Theorem.[Dobrushin, 1968] Small influence implies correlation decay.
Let

 , max
i2V

�X
j2@i

Cij
	
:

Then,

max
x ;x 0

���(xi = �jxV nBi (t))� �(xi = �jx 0V nBi (t))
��
TV � t

1� 
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Proof strategy

j

bound influence on vertex j from those outside a ball of radius `

Approximate inference by sampling 9-34



assume neighborhood of j is a k -regular tree
a graphical model satisfies uniqueness condition if

j

B(j ; `)

@B(j ; `)

sup
y@B;z@B

����(xj jx@B = y@B) � �(xj jx@B = z@B)
��� � "(`) # 0

[In reality slightly stronger condition needed for proof]
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Checking for uniqueness

j

i

T (i ! j )

hi!j � atanhE�;T (i!j )fxig :

Uniqueness: hi!j asymptotically independent of boundary condition
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Checking for uniqueness

Exercise:

hi!j = �i +
X

v2children(i)

atanh
�

tanh �iv tanh hv!i
	
:

�ij = �, �i = 0,
x@B(j ;`) = +1, x@B(j ;`) = �1 (monotonicity)

h`+1 = (k � 1)atanh
�

tanh� tanh h`
	
:

Approximate inference by sampling 9-37



A one-dimensional recursion

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

h`+1

h` h` h`
(k � 1) tanh� < 1 (k � 1) tanh� = 1 (k � 1) tanh� > 1

who cares about regular trees?
regular trees are the worst case for decay of correlations
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What about the lower bound?

Theorem (Gerschenfeld, Montanari, FOCS 2007)

Assume (k � 1) tanh� > 1.
Then there exists a sequence of k -regular graphs Gn = (Vn = [n ];En) for
which the Glauber Markov chain mixes in time expfΘ(n)g.

Proof.
Take Gn a uniformly random k -regular graph and prove that w.h.p.

P�
nX

i2V

xi = 0
o

= e�Θ(n) ;

P�
nX

i2V

xi > 0
o

= P�
nX

i2V

xi < 0
o

=
1
2
� e�Θ(n) :

Bottleneck!
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Are random graphs a curiosity?

No! Used as gadgets in
Sly, Computational transition at the uniqueness threshold, 2010
A. Sly, N. Sun, The Computational Hardness of Counting in Two-Spin
Models on d-Regular Graphs, 2012
A. Galanis, D. Stefankovic, and E. Vigoda, Inapproximability of the
partition function for the antiferromagnetic Ising and hard-core
models, 2012
. . .

Theorem
For antiferromagnetic Ising models �ij = �� < 0, �i = 0, the partition
function cannot be approximated unless RP=NP.
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Qn(�) � P�
nP

i2V xi = 0
o

�G;�(x ) =
1

ZG(�)
exp

n
�

X
(i ;j )2E

xixj

o

Qn(�) =
Z �

G(�)

ZG(�)
; Z �

G(�) �
X

x : hx ;1i=0

e�
P

(i;j )2E xixj

Upper bound Z �
G(�) by n10EGZ �

G(�).

Lower bound ZG(�) by . . .
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Estimating ZG

Theorem (A.Dembo, A.Montanari, Ann. Appl. Prob. 2010)

Let fGn = (Vn ;En)gn�1 be a sequence of graphs that (i) Is uniformly
sparse; (ii) Converges locally to a unimodular Galton-Watson tree. Let
Zn(�;B) be the Ising model partition function with �ij = �, �i = B .
Then

lim
n!1

1
n

log Zn(�;B) = [explicit expression]

= [Bethe free energy]
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