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Graphical models

There are three families of graphical models that are closely related,
but suitable for different applications and different probability
distributions:

I Undirected graphical models (also known as Markov Random Fields)
I Factor graphs
I Bayesian networks

we will learn what they are, how they are different and how to switch
between them.

consider a probability distribution over x = (x1, x2, . . . , xn) ∈ X n

µ(x1, x2, . . . , xn)

a graphical model is combination of a graph and a set of functions
over a subset of random variables which define the probability
distribution of interest
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graphical model is a marriage between probability theory and graph
theory that allows compact representation and efficient inference,
when the probability distribution of interest has special
independence and conditional independence structures
for example, consider a random vector x = (x1, x2, x3) ∈ X 3 and a
given distribution µ(x1, x2, x3)
we use (with a slight abuse of notations)

µ(x1) ,
∑

x2,x3∈X 2

µ(x1, x2, x3) , and

µ(x1, x2) ,
∑
x3∈X

µ(x1, x2, x3)

to denote the first order and the second order marginals respectively
for this 3-variable case, we can list all possible independence structures

x1 ⊥ (x2, x3) ⇔ µ(x1, x2, x3) = µ(x1)µ(x2, x3) (1)

x1 ⊥ x2 ⇔ µ(x1, x2) = µ(x1)µ(x2) (2)

x1 ⊥ x2|x3 ⇔ x1–x3–x2 ⇔ µ(x1, x2|x3) = µ(x1|x3)µ(x2|x3)(3)

and various permutations and combinations of these
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warm-up exercise
I (1)⇒ (2)

proof:

µ(x1, x2) =
∑
x3
µ(x1, x2, x3)

(1)
=

∑
x3
µ(x1)µ(x2, x3) = µ(x1)µ(x2)

I (2) 6⇒ (3)
counter example: X1 ⊥ X2 and X3 = X1 +X2

I (2) 6⇐ (3)
counter example: Z1, Z2, X3 are independent and X1 = X3 + Z1,
X2 = X3 + Z2

this hints that there are different notions of independence, and
perhaps we need different types of graphical models to capture them

all possible independencies for 3-variable distributions µ(x1, x2, x3)
I x1 ⊥ (x2, x3), x2 ⊥ (x1, x3), x3 ⊥ (x1, x2)
I x1 ⊥ x2, x1 ⊥ x3, x2 ⊥ x3,
I x1 ⊥ x2|x3, x1 ⊥ x3|x2, x2 ⊥ x3|x1,

each µ(x1, x2, x3) possesses a subset of these 9 independencies
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we can categorize all distributions, according to the independence
they possess: e.g. S = {µ(x1, x2, x3) : x1 ⊥ x2, and x2 ⊥ x3|x1}
or we can also partition all distributions, according to the
independence they possess: e.g. S = {µ(x1, x2, x3) : x1 ⊥
x2, and x2 ⊥ x3|x1 but no other independencies}
there are 29 such possible combinations of independencies

not all of them are feasible,
e.g. S = {µ(x1, x2, x3) : x1 ⊥ x2, but x1 ⊥6 (x2, x3)} is an empty set

in fact, there are exponentially many possible independencies,
resulting in doubly exponentially many possible independence
structures in a distribution
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we want to use a graph to represent a set of distributions that share
some independencies

perhaps, one graph could represent one subset of independencies
(either a inclusive category or a exclusive partition)

however, there are only 2n
2

undirected graphs (4n
2

for directed)

hence, graphical models only capture (important) subsets of possible
independence structures
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a probabilistic graphical model is a graph G(V,E) representing a
family of probability distributions

1. that share the same factorization of the probability distribution; and
2. that share the same independence structure.

we study 3 types of graphical models
undirected graphical model = Markov Random Field (MRF)

µ(x) =
1

Z

∏
c∈C(G)

ψc(xc)

where C(G) is the set of all maximal cliques in the undirected graph
G(V,E), ψc(xc) is a non-negative function over the variables
xc = {xi : i ∈ c}, and Z ∈ R+ is called the partition function which
normalizes the distribution to sum to one

I an undirected graph G(V,E) is a collection of nodes
V = {1, 2, . . . , n} for the variables {x1, . . . , xn} and undirected edges
E ⊆ V × V

I a clique c is a subset of nodes c ⊆ V such that all pairs in c are
connected via edges in E

I a clique c is said to be maximal if one cannot add any more node to c
to make it a larger clique
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factor graph model (FG)

µ(x) =
1

Z

∏
a∈F

ψa(x∂a)

where F is the set of factor nodes in the undirected bipartite graph
G(V, F,E), ∂a is the set of neighbors of the node a, and ψa(x∂a) are
no-negative functions called the factors

I an undirected graph G(V, F,E) is bipartite if there are no edges
between a node in V and a node in F

I a node in F is called a factor node, and a node in V is called a
variable node

I each factor node a ∈ F is associated with a factor ψa(x∂a), where ∂a
are the variable nodes adjacent to factor a, and x∂a are the set of
corresponding variables
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directed graphical model = Bayesian Network (BN)

µ(x) =
∏
i∈V

µ(xi|xπ(i))

where π(i) is the set of parent nodes in the directed acyclic graph
(DAG) G(V,E)

I in a directed graph, an edge (i, j) is different from an edge (j, i)
I an undirected graph is called acyclic if it does not have cycles
I a cycle in a directed graph is a sequence of nodes c = (i1, i2, . . . , ik)

such that i1 = ik and (i`, i`+1) ∈ E for all ` ∈ [k − 1]
I we use [N ] = {1, 2, . . . , N} to denote the first N integers
I parent nodes of a node i in a directed graph is the set of nodes
π(i){j ∈ V : (j, i) ∈ E}

note that missing edges represent simpler distributions with more
independence structures

also, factor graphs are strictly more general than MRFs

FGs cannot represent all BNs and BNs cannot represent all FGs
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warm-up example: Markov Random Fields (MRF) and Factor Graphs
(FG)

MRF FG independencefactorization

noneµ(x1, x2, x3)

x2 ⊥ x3|x1

[Exercise 2.1]

ψ(x1, x2)ψ(x1, x3)

x3 ⊥ (x1, x2)ψ(x1, x2)ψ(x3)

all indep.ψ(x1)ψ(x2)ψ(x3)

x1 x2

x3
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warm-up example: Bayesian Network (BN) of ordering
(x1 → x2 → x3)

BN independencefactorization

µ(x1)µ(x2|x1)µ(x3|x1, x2) none

µ(x1)µ(x2|x1)µ(x3|x1) x2 ⊥ x3|x1

µ(x1)µ(x2)µ(x3|x1, x2) x1 ⊥ x2

µ(x1)µ(x2|x1)µ(x3|x2) x1 ⊥ x3|x2

µ(x1)µ(x2|x1)µ(x3) x3 ⊥ (x1, x2)

µ(x1)µ(x2)µ(x3) all indep.

x1 x2

x3

Graphical Models 2-11



Family #1: Undirected Pairwise Graphical Models
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Family #1: Undirected Pairwise Graphical Models
(a.k.a. Pairwise MRF)

x1

x2

x3

x4

x5

x6

x7 x8

x9

x10

x11

x12

G = (V,E), V = [n] , {1, . . . , n}, x = (x1, . . . , xn), xi ∈ X
if we say a joint distribution µ(x) has the above graphical model, then

µ(x) can be decomposed as prescribed by the graph G:
µ(x) = (1/Z)

∏
(i,j)∈E ψi,j(xi, xj)

which implies a certain set of independencies encoded in G
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x1

x2

x3

x4

x5

x6

x7 x8

x9

x10

x11

x12

Undirected pairwise graphical models are specified by
I Graph G = (V,E)
I Alphabet X
I Compatibility function ψij : X × X → R+, for all (i, j) ∈ E

µ(x) =
1

Z

∏
(i,j)∈E

ψij(xi, xj)

I pairwise MRF only allow compatibility functions over two variables
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Undirected Pairwise Graphical Models

Graph G(V,E)
Alphabet X

I Typically |X | <∞
I Occasionally X = R and

µ(dx) =
1

Z

∏
(i,j)∈E

ψij(xi, xj) dx

(all formulae interpreted as densities [it is okay if you don’t understand
the above notation for now] )

Compatibility function ψij : X 2 → R+

µ(x) =
1

Z

∏
(i,j)∈E

ψij(xi, xj)

Partition function Z plays a crucial role!

Z =
∑
x∈Xn

∏
(i,j)∈E

ψij(xi, xj)
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Graph notation

1

2
3

4

5

6
7 8

9

10

11

12

∂i ≡ {neighborhood of node i},
deg(i) = |∂i|,
xU ≡ (xi)i∈U ,

x−i ≡ xV \{i}
Complete graph

Clique

∂9 = {5, 6, 7}
deg(9) = 3

x{1,5} = (x1, x5)

x∂9 = (x5, x6, x7)

x−9 = (x1, . . . , x8, x10, x11, x12)
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Example

x1

x2

x3

x4

x5

x6

x7 x8

x9

x10

x11

x12

Coloring (e.g. ring tone)
Given graph G = (V,E) and a set of colors X = {R,G,B}
Find a coloring of the vertices such that no two adjacent vertices have
the same color
Fundamental question: Chromatic number
our goal: translate this into an inference on graphical models, so
that we can use the techniques from the mature field of probabilistic
graphical models
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x1

x2

x3

x4

x5

x6

x7 x8

x9

x10

x11

x12

A (joint) probability of interest is uniform measure over all possible
colorings:

µ(x) =
1

Z

∏
(i,j)∈E

I(xi 6= xj)

I(xi 6= xj) is an indicator, which is one if xi 6= xj and zero otherwise

Z = total number of colorings
Sampling from this distribution is equivalent to finding a coloring
similarly, independent set problem [Exercise 2.3, 2.4]
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(General) Undirected Graphical Model

x1

x2

x3

x4

x5

x6x7 x8

x9

x10

x11

x12

Undirected graphical models are specified by
I Graph G = (V,E)
I Alphabet X
I Compatibility function ψc : X c → R+, for all maximal cliques c ∈ C

µ(x) =
1

Z

∏
c∈C

ψc(xc)

Graphical Models 2-19



x1

x2

x3

x4

x5

x6x7 x8

x9

x10

x11

x12

consider a fixed graph G(V,E)
I the factorizations implied by the graph under MRF and pairwise MRF

are different, e.g. (x1, x11, x12)
I however, independencies implied by the graph under MRF or pairwise

MRF are the same
I by choosing the right compatibility functions any model represented by

pairwise MRF can be represented by MRFs, but not the other way
around
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Family #2: Factor Graph Models
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Family #2: Factor graph models

x1
x2

x3

x4

x5

x6

a

b

c

d

←variable xi ∈ X

←factor ψa(x1, x5, x6︸ ︷︷ ︸
∂a

)

∂4

Factor graph G = (V, F,E)
I Variable nodes i, j, k, · · · ∈ V
I Function nodes a, b, c, · · · ∈ F

Variable node xi ∈ X , for all i ∈ V
Function node ψa : X |∂a| → R+, for all a ∈ F

µ(x) =
1

Z

∏
a∈F

ψa(x∂a)
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Factor graph models

x1
x2

x3

x4

x5

x6

a

b

c

d

←variable xi ∈ X

←factor ψa(x1, x5, x6︸ ︷︷ ︸
∂a

)

∂4

Factor graph model is specified by
I Factor graph G = (V, F,E)
I Alphabet X
I Compatibility function ψa : X ∂a → R+, for a ∈ F

µ(x) =
1

Z

∏
a∈F

ψa(x∂a)

Partition function: Z =
∑

x∈XV
∏
a∈F ψa(x∂a)
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Conversion between factor graphs and pairwise models

From pairwise model to factor graph

A pairwise model on G(V,E) with alphabet X can be represented by a
factor graph G′(V ′, F ′, E′) with V ′ = V , F ′ ' E, |E′| = 2|E|, X ′ = X .

Put a factor node on each edge

From factor graph to a general undirected graphical model (MRF)

A factor model on G(V, F,E) with alphabet X can be represented by a
MRF on G′(V ′, E′) with V ′ = V , E′ '

∑
a∈F |∂a|2, X ′ = X .

A factor node is turned into a clique

From factor graph to a pairwise model

A factor model on G(V, F,E) can be represented by a pairwise model on
G′(V ′, E′) with V ′ = V ∪ F , E′ = E, X ′ = X∆, ∆ = maxa∈F deg(a).

A factor node is represented by a large variable node
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Factor graphs are more ‘fine grained’ than undirected graphical models

1

2

3 1

2

3 1

2

3

ψ(x1, x2, x3) ψ12(x1, x2)ψ23(x2, x3)ψ31(x3, x1) ψ123(x1, x2, x3)

all three encodes same independencies, but different factorizations
(in particular the degrees of freedom in the compatibility functions are
3|X |2 vs. |X |3)

set of independencies represented by MRF is the same as FG

but FG can represent a larger set of factorizations
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Family #3: Bayesian Networks
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Family #3: Bayesian networks
x1 x2 x3

x4 x5

x6 x7 x8

DAG: Directed Acyclic Graph G = (V,D)

Variable nodes V = [n], xi ∈ X , for all i ∈ V
Define π(i) ≡ {parents of i}
Set of directed edges D

µ(x) =
∏
i∈V

µi(xi|xπ(i))
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x1 x2 x3

x4 x5

x6 x7 x8

Bayesian network is specified by
I directed acyclic graph G = (V,D)
I alphabet X
I conditional probability µi(·|·) : X × X π(i) → R+, for i ∈ V

µ(x) =
∏
i∈V

µi(xi|xπ(i))

I we do not need normalization (1/Z) since∑
xi∈X

µi(xi|xπ(i)) = 1 ⇒
∑
x∈XV

µ(x) = 1
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Conversion between Bayesian networks and factor graphs

from Bayesian network to factor graph

A Bayes network G = (V,D) with alphabet X can be represented by a
factor graph model on G′ = (V ′, F ′, E′) with V ′ = V , |F ′| = |V |,
|E′| = |D|+ |V |, X ′ = X .

represent by a factor node each conditional probability
moralization for conversion from BN to MRF (we will learn this)

from factor graph to Bayesian network

A factor model on G = (V, F,E) with alphabet X can be represented by a
Bayes network G′ = (V ′, D′) with V ′ = V and X ′ = X .

take a topological ordering, e.g. x1, . . . , xn
for each node i, starting from the first node, find a minimal set
U ⊆ {1, . . . , i− 1} such that xi is conditionally independent of
x{1,...,i−1}\U given xU . (we will learn how to do this)
in general the resulting Bayesian network is dense
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Because MRF and BN are incomparable, some independence structure is
lost in conversion

x1

x2 x3

x4

µ(x) = ψ(x1, x2)ψ(x1, x3)ψ(x2, x4)ψ(x3, x4)
x1 ⊥ x4|(x2, x3)
x2 ⊥ x3|(x1, x4)

ordering:(x1, x2, x4, x3)

x2 ⊥ x3|(x1, x4)

µ(x) = µ(x2)µ(x3)µ(x1|x2, x3)
x2 ⊥ x3 no independence

Graphical Models 2-30



undirected graphical models can be represented by factor graphs
I we can go from MRF to FG without losing any information on the

independencies implies by the model

Bayesian networks are not compatible with undirected graphical
models or factor graphs

I if we go from one model to the other, and then back to the original
model, then we will not, in general, get back the same model as we
started out with

I we lose any information on the independencies implies by the model,
when switching from one model to the other
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Bayes networks with observed variables

V = H ∪O
Hidden variables: x = (xi)i∈H

Observed variables: y = (yi)i∈O

µ(x, y) =
∏
i∈H

µ(xi|xπ(i)∩H , yπ(i)∩O)
∏
i∈O

µ(yi|xπ(i)∩H , yπ(i)∩O)

Typically interested in µy(x) ≡ µ(x|y) and

arg max
x

µy(x)
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Example

Forensic Science
[Kadane, Shum, A probabilistic analysis of the Sacco and Vanzetti evidence, 1996]

[Taroni et al., Bayesian Networks and Probabilistic Inference in Forensic Science, 2006]
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Example

diseases

‘soft ORs’

symptoms

Medical Diagnosis
[M. Shwe, et al., Methods of Information in Medicine, 1991]
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Roadmap

Cond. Indep. Factorization Graphical Graph Cond. Indep.
µ(x) µ(x) Model G implied by G

x1–{x2, x3}–x4; 1
Z

∏
ψa(x∂a) FG Factor Markov

x4–{}–x7; 1
Z

∏
ψC(xC) MRF Undirected Markov

...
∏
ψi(xi|xπ(i)) BN Directed Markov

A µ(x) can be represented by multiple {FG,MRF,BN} with multiple
graphs (but same µ(x))

We want a ‘simple’ graph representation (sparse, small alphabet size)
I Memory to store the graphical model
I Computations for inference

µ(x) with some conditional independence structure can be
represented by simple {FG,MRF,BN}
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