2. Graphical Models

- Undirected graphical models
- Factor graphs
- Bayesian networks
- Conversion between graphical models

Graphical models

- There are three families of graphical models that are closely related, but suitable for different applications and different probability distributions:
- Undirected graphical models (also known as Markov Random Fields)
- Factor graphs
- Bayesian networks
we will learn what they are, how they are different and how to switch between them.
consider a probability distribution over $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathcal{X}^{n}$

$$
\mu\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

a graphical model is combination of a graph and a set of functions over a subset of random variables which define the probability distribution of interest

- graphical model is a marriage between probability theory and graph theory that allows compact representation and efficient inference, when the probability distribution of interest has special independence and conditional independence structures
- for example, consider a random vector $x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathcal{X}^{3}$ and a given distribution $\mu\left(x_{1}, x_{2}, x_{3}\right)$
- we use (with a slight abuse of notations)

$$
\begin{aligned}
\mu\left(x_{1}\right) & \triangleq \sum_{x_{2}, x_{3} \in \mathcal{X}^{2}} \mu\left(x_{1}, x_{2}, x_{3}\right), \quad \text { and } \\
\mu\left(x_{1}, x_{2}\right) & \triangleq \sum_{x_{3} \in \mathcal{X}} \mu\left(x_{1}, x_{2}, x_{3}\right)
\end{aligned}
$$

to denote the first order and the second order marginals respectively

- for this 3-variable case, we can list all possible independence structures

$$
\begin{align*}
x_{1} \perp\left(x_{2}, x_{3}\right) & \Leftrightarrow \mu\left(x_{1}, x_{2}, x_{3}\right)=\mu\left(x_{1}\right) \mu\left(x_{2}, x_{3}\right) \tag{1}\\
x_{1} \perp x_{2} & \Leftrightarrow \mu\left(x_{1}, x_{2}\right)=\mu\left(x_{1}\right) \mu\left(x_{2}\right) \tag{2}\\
x_{1} \perp x_{2} \mid x_{3} \Leftrightarrow x_{1}-x_{3}-x_{2} & \Leftrightarrow \mu\left(x_{1}, x_{2} \mid x_{3}\right)=\mu\left(x_{1} \mid x_{3}\right) \mu\left(x_{2} \mid x_{3}\right)(3)
\end{align*}
$$

and various permutations and combinations of these

- warm-up exercise
- $(1) \Rightarrow(2)$ proof:
$\mu\left(x_{1}, x_{2}\right)=\sum_{x_{3}} \mu\left(x_{1}, x_{2}, x_{3}\right) \stackrel{(1)}{=} \sum_{x_{3}} \mu\left(x_{1}\right) \mu\left(x_{2}, x_{3}\right)=\mu\left(x_{1}\right) \mu\left(x_{2}\right)$
- $(2) \nRightarrow(3)$ counter example: $X_{1} \perp X_{2}$ and $X_{3}=X_{1}+X_{2}$
- $(2) \nLeftarrow(3)$ counter example: Z_{1}, Z_{2}, X_{3} are independent and $X_{1}=X_{3}+Z_{1}$, $X_{2}=X_{3}+Z_{2}$
- this hints that there are different notions of independence, and perhaps we need different types of graphical models to capture them
- all possible independencies for 3 -variable distributions $\mu\left(x_{1}, x_{2}, x_{3}\right)$
- $x_{1} \perp\left(x_{2}, x_{3}\right), \quad x_{2} \perp\left(x_{1}, x_{3}\right), \quad x_{3} \perp\left(x_{1}, x_{2}\right)$
- $x_{1} \perp x_{2}, \quad x_{1} \perp x_{3}, \quad x_{2} \perp x_{3}$,
- $x_{1} \perp x_{2}\left|x_{3}, \quad x_{1} \perp x_{3}\right| x_{2}, \quad x_{2} \perp x_{3} \mid x_{1}$,
- each $\mu\left(x_{1}, x_{2}, x_{3}\right)$ possesses a subset of these 9 independencies
- we can categorize all distributions, according to the independence they possess: e.g. $S=\left\{\mu\left(x_{1}, x_{2}, x_{3}\right): x_{1} \perp x_{2}\right.$, and $\left.x_{2} \perp x_{3} \mid x_{1}\right\}$
- or we can also partition all distributions, according to the independence they possess: e.g. $S=\left\{\mu\left(x_{1}, x_{2}, x_{3}\right): x_{1} \perp\right.$ x_{2}, and $x_{2} \perp x_{3} \mid x_{1}$ but no other independencies $\}$
- there are 2^{9} such possible combinations of independencies
- not all of them are feasible,
e.g. $S=\left\{\mu\left(x_{1}, x_{2}, x_{3}\right): x_{1} \perp x_{2}\right.$, but $\left.x_{1} \nvdash\left(x_{2}, x_{3}\right)\right\}$ is an empty set
- in fact, there are exponentially many possible independencies, resulting in doubly exponentially many possible independence structures in a distribution
- we want to use a graph to represent a set of distributions that share some independencies
- perhaps, one graph could represent one subset of independencies (either a inclusive category or a exclusive partition)
- however, there are only $2^{n^{2}}$ undirected graphs ($4^{n^{2}}$ for directed)
- hence, graphical models only capture (important) subsets of possible independence structures
a probabilistic graphical model is a graph $G(V, E)$ representing a family of probability distributions

1. that share the same factorization of the probability distribution; and
2. that share the same independence structure.
we study 3 types of graphical models

- undirected graphical model $=$ Markov Random Field (MRF)

$$
\mu(x)=\frac{1}{Z} \prod_{c \in \mathcal{C}(G)} \psi_{c}\left(x_{c}\right)
$$

where $\mathcal{C}(G)$ is the set of all maximal cliques in the undirected graph $G(V, E), \psi_{c}\left(x_{c}\right)$ is a non-negative function over the variables $x_{c}=\left\{x_{i}: i \in c\right\}$, and $Z \in \mathbb{R}^{+}$is called the partition function which normalizes the distribution to sum to one

- an undirected graph $G(V, E)$ is a collection of nodes $V=\{1,2, \ldots, n\}$ for the variables $\left\{x_{1}, \ldots, x_{n}\right\}$ and undirected edges $E \subseteq V \times V$
- a clique c is a subset of nodes $c \subseteq V$ such that all pairs in c are connected via edges in E
- a clique c is said to be maximal if one cannot add any more node to c Graphical Models make it a larger clique

- factor graph model (FG)

$$
\mu(x)=\frac{1}{Z} \prod_{a \in F} \psi_{a}\left(x_{\partial a}\right)
$$

where F is the set of factor nodes in the undirected bipartite graph $G(V, F, E), \partial a$ is the set of neighbors of the node a, and $\psi_{a}\left(x_{\partial a}\right)$ are no-negative functions called the factors

- an undirected graph $G(V, F, E)$ is bipartite if there are no edges between a node in V and a node in F
- a node in F is called a factor node, and a node in V is called a variable node
- each factor node $a \in F$ is associated with a factor $\psi_{a}\left(x_{\partial a}\right)$, where ∂a are the variable nodes adjacent to factor a, and $x_{\partial a}$ are the set of corresponding variables
- directed graphical model $=$ Bayesian Network (BN)

$$
\mu(x)=\prod_{i \in V} \mu\left(x_{i} \mid x_{\pi(i)}\right)
$$

where $\pi(i)$ is the set of parent nodes in the directed acyclic graph (DAG) $G(V, E)$

- in a directed graph, an edge (i, j) is different from an edge (j, i)
- an undirected graph is called acyclic if it does not have cycles
- a cycle in a directed graph is a sequence of nodes $c=\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ such that $i_{1}=i_{k}$ and $\left(i_{\ell}, i_{\ell+1}\right) \in E$ for all $\ell \in[k-1]$
- we use $[N]=\{1,2, \ldots, N\}$ to denote the first N integers
- parent nodes of a node i in a directed graph is the set of nodes $\pi(i)\{j \in V:(j, i) \in E\}$
- note that missing edges represent simpler distributions with more independence structures
- also, factor graphs are strictly more general than MRFs
- FGs cannot represent all BNs and BNs cannot represent all FGs
- warm-up example: Markov Random Fields (MRF) and Factor Graphs (FG)

- warm-up example: Bayesian Network (BN) of ordering $\left(x_{1} \rightarrow x_{2} \rightarrow x_{3}\right)$

independence	factorization $\mu\left(x_{1}\right) \mu\left(x_{2} \mid x_{1}\right) \mu\left(x_{3} \mid x_{1}, x_{2}\right)$ none
$\mu\left(x_{1}\right) \mu\left(x_{2} \mid x_{1}\right) \mu\left(x_{3} \mid x_{1}\right)$	$x_{2} \perp x_{3} \mid x_{1}$
$\mu\left(x_{1}\right) \mu\left(x_{2}\right) \mu\left(x_{3} \mid x_{1}, x_{2}\right)$	$x_{1} \perp x_{2}$
$\mu\left(x_{1}\right) \mu\left(x_{2} \mid x_{1}\right) \mu\left(x_{3}\right)$	$x_{3} \perp\left(x_{1}, x_{2}\right)$

Family \#1: Undirected Pairwise Graphical Models

Family \#1: Undirected Pairwise Graphical Models

 (aka Pairwice MRF)

$$
G=(V, E), V=[n] \triangleq\{1, \ldots, n\}, x=\left(x_{1}, \ldots, x_{n}\right), x_{i} \in \mathcal{X}
$$ if we say a joint distribution $\mu(x)$ has the above graphical model, then

- $\mu(x)$ can be decomposed as prescribed by the graph G :

$$
\mu(x)=(1 / Z) \prod_{(i, j) \in E} \psi_{i, j}\left(x_{i}, x_{j}\right)
$$

- which implies a certain set of independencies encoded in G

Undirected pairwise graphical models are specified by

- Graph $G=(V, E)$
- Alphabet \mathcal{X}
- Compatibility function $\psi_{i j}: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}_{+}$, for all $(i, j) \in E$

$$
\mu(x)=\frac{1}{Z} \prod_{(i, j) \in E} \psi_{i j}\left(x_{i}, x_{j}\right)
$$

- pairwise MRF only allow compatibility functions over two variables

Undirected Pairwise Graphical Models

- Graph $G(V, E)$
- Alphabet \mathcal{X}
- Typically $|\mathcal{X}|<\infty$
- Occasionally $\mathcal{X}=\mathbb{R}$ and

$$
\mu(d x)=\frac{1}{Z} \prod_{(i, j) \in E} \psi_{i j}\left(x_{i}, x_{j}\right) d x
$$

(all formulae interpreted as densities [it is okay if you don't understand the above notation for now])

- Compatibility function $\psi_{i j}: \mathcal{X}^{2} \rightarrow \mathbb{R}^{+}$

$$
\mu(x)=\frac{1}{Z} \prod_{(i, j) \in E} \psi_{i j}\left(x_{i}, x_{j}\right)
$$

- Partition function Z plays a crucial role!

$$
Z=\sum_{x \in \mathcal{X}^{n}} \prod_{(i, j) \in E} \psi_{i j}\left(x_{i}, x_{j}\right)
$$

Graph notation

- $\partial i \equiv\{$ neighborhood of node $i\}$,

$$
\partial 9=\{5,6,7\}
$$

- $\operatorname{deg}(i)=|\partial i|$,
$\operatorname{deg}(9)=3$
- $x_{U} \equiv\left(x_{i}\right)_{i \in U}$,
$x_{\{1,5\}}=\left(x_{1}, x_{5}\right)$
- $x_{-i} \equiv x_{V \backslash\{i\}}$
$x_{\partial 9}=\left(x_{5}, x_{6}, x_{7}\right)$
- Complete graph
$x_{-9}=\left(x_{1}, \ldots, x_{8}, x_{10}, x_{11}, x_{12}\right)$
- Clique

Example

- Coloring (e.g. ring tone)
- Given graph $G=(V, E)$ and a set of colors $\mathcal{X}=\{R, G, B\}$
- Find a coloring of the vertices such that no two adjacent vertices have the same color
- Fundamental question: Chromatic number
- our goal: translate this into an inference on graphical models, so that we can use the techniques from the mature field of probabilistic Graplicaakhical models

A (joint) probability of interest is uniform measure over all possible colorings:

$$
\mu(x)=\frac{1}{Z} \prod_{(i, j) \in E} \mathbb{I}\left(x_{i} \neq x_{j}\right)
$$

$\mathbb{I}\left(x_{i} \neq x_{j}\right)$ is an indicator, which is one if $x_{i} \neq x_{j}$ and zero otherwise

- $Z=$ total number of colorings
- Sampling from this distribution is equivalent to finding a coloring
- similarly, independent set problem [Exercise 2.3, 2.4]

(General) Undirected Graphical Model

Undirected graphical models are specified by

- Graph $G=(V, E)$
- Alphabet \mathcal{X}
- Compatibility function $\psi_{c}: \mathcal{X}^{c} \rightarrow \mathbb{R}_{+}$, for all maximal cliques $c \in \mathcal{C}$

$$
\mu(x)=\frac{1}{Z} \prod_{c \in \mathcal{C}} \psi_{c}\left(x_{c}\right)
$$

- consider a fixed graph $G(V, E)$
- the factorizations implied by the graph under MRF and pairwise MRF are different, e.g. $\left(x_{1}, x_{11}, x_{12}\right)$
- however, independencies implied by the graph under MRF or pairwise MRF are the same
- by choosing the right compatibility functions any model represented by pairwise MRF can be represented by MRFs, but not the other way around

Family \#2: Factor Graph Models

Family \#2: Factor graph models

Factor graph $G=(V, F, E)$

- Variable nodes $i, j, k, \cdots \in V$
- Function nodes $a, b, c, \cdots \in F$

Variable node $x_{i} \in \mathcal{X}$, for all $i \in V$
Function node $\psi_{a}: \mathcal{X}^{|\partial a|} \rightarrow \mathbb{R}_{+}$, for all $a \in F$

$$
\mu(x)=\frac{1}{Z} \prod_{a \in F} \psi_{a}\left(x_{\partial a}\right)
$$

Factor graph models

Factor graph model is specified by

- Factor graph $G=(V, F, E)$
- Alphabet \mathcal{X}
- Compatibility function $\psi_{a}: \mathcal{X}^{\partial a} \rightarrow \mathbb{R}_{+}$, for $a \in F$

$$
\mu(x)=\frac{1}{Z} \prod_{a \in F} \psi_{a}\left(x_{\partial a}\right)
$$

Partition function: $Z=\sum_{x \in \mathcal{X}^{V}} \prod_{a \in F} \psi_{a}\left(x_{\partial a}\right)$

Conversion between factor graphs and pairwise models

From pairwise model to factor graph

A pairwise model on $G(V, E)$ with alphabet \mathcal{X} can be represented by a factor graph $G^{\prime}\left(V^{\prime}, F^{\prime}, E^{\prime}\right)$ with $V^{\prime}=V, F^{\prime} \simeq E,\left|E^{\prime}\right|=2|E|, \mathcal{X}^{\prime}=\mathcal{X}$.

- Put a factor node on each edge

From factor graph to a general undirected graphical model (MRF)
A factor model on $G(V, F, E)$ with alphabet \mathcal{X} can be represented by a MRF on $G^{\prime}\left(V^{\prime}, E^{\prime}\right)$ with $V^{\prime}=V, E^{\prime} \simeq \sum_{a \in F}|\partial a|^{2}, \mathcal{X}^{\prime}=\mathcal{X}$.

- A factor node is turned into a clique

From factor graph to a pairwise model

A factor model on $G(V, F, E)$ can be represented by a pairwise model on $G^{\prime}\left(V^{\prime}, E^{\prime}\right)$ with $V^{\prime}=V \cup F, E^{\prime}=E, \mathcal{X}^{\prime}=\mathcal{X}^{\Delta}, \Delta=\max _{a \in F} \operatorname{deg}(a)$.

- A factor node is represented by a large variable node

Factor graphs are more 'fine grained' than undirected graphical models

$\psi\left(x_{1}, x_{2}, x_{3}\right) \quad \psi_{12}\left(x_{1}, x_{2}\right) \psi_{23}\left(x_{2}, x_{3}\right) \psi_{31}\left(x_{3}, x_{1}\right) \quad \psi_{123}\left(x_{1}, x_{2}, x_{3}\right)$
all three encodes same independencies, but different factorizations (in particular the degrees of freedom in the compatibility functions are $3|\mathcal{X}|^{2}$ vs. $\left.|\mathcal{X}|^{3}\right)$

- set of independencies represented by MRF is the same as FG
- but FG can represent a larger set of factorizations

Family \#3: Bayesian Networks

Family \#3: Bayesian networks

DAG: Directed Acyclic Graph $G=(V, D)$
Variable nodes $V=[n], x_{i} \in \mathcal{X}$, for all $i \in V$
Define $\pi(i) \equiv$ pparents of $i\}$
Set of directed edges D

$$
\mu(x)=\prod_{i \in V} \mu_{i}\left(x_{i} \mid x_{\pi(i)}\right)
$$

Bayesian network is specified by

- directed acyclic graph $G=(V, D)$
- alphabet \mathcal{X}
- conditional probability $\mu_{i}(\cdot \mid \cdot): \mathcal{X} \times \mathcal{X}^{\pi(i)} \rightarrow \mathbb{R}_{+}$, for $i \in V$

$$
\mu(x)=\prod_{i \in V} \mu_{i}\left(x_{i} \mid x_{\pi(i)}\right)
$$

- we do not need normalization $(1 / Z)$ since

$$
\sum_{x_{i} \in \mathcal{X}} \mu_{i}\left(x_{i} \mid x_{\pi(i)}\right)=1 \Rightarrow \sum_{x \in \mathcal{X}^{V}} \mu(x)=1
$$

Conversion between Bayesian networks and factor graphs

from Bayesian network to factor graph

A Bayes network $G=(V, D)$ with alphabet \mathcal{X} can be represented by a factor graph model on $G^{\prime}=\left(V^{\prime}, F^{\prime}, E^{\prime}\right)$ with $V^{\prime}=V,\left|F^{\prime}\right|=|V|$, $\left|E^{\prime}\right|=|D|+|V|, \mathcal{X}^{\prime}=\mathcal{X}$.

- represent by a factor node each conditional probability
- moralization for conversion from BN to MRF (we will learn this)

from factor graph to Bayesian network

A factor model on $G=(V, F, E)$ with alphabet \mathcal{X} can be represented by a Bayes network $G^{\prime}=\left(V^{\prime}, D^{\prime}\right)$ with $V^{\prime}=V$ and $\mathcal{X}^{\prime}=\mathcal{X}$.

- take a topological ordering, e.g. x_{1}, \ldots, x_{n}
- for each node i, starting from the first node, find a minimal set $U \subseteq\{1, \ldots, i-1\}$ such that x_{i} is conditionally independent of $x_{\{1, \ldots, i-1\} \backslash U}$ given x_{U}. (we will learn how to do this)
- in general the resulting Bayesian network is dense

Because MRF and BN are incomparable, some independence structure is lost in conversion

$\mu(x)=\psi\left(x_{1}, x_{2}\right) \psi\left(x_{1}, x_{3}\right) \psi\left(x_{2}, x_{4}\right) \psi\left(x_{3}, x_{4}\right)$
$x_{1} \perp x_{4} \mid\left(x_{2}, x_{3}\right)$
$x_{2} \perp x_{3} \mid\left(x_{1}, x_{4}\right)$

$\mu(x)=\mu\left(x_{2}\right) \mu\left(x_{3}\right) \mu\left(x_{1} \mid x_{2}, x_{3}\right)$
$x_{2} \perp x_{3}$

ordering: $\left(x_{1}, x_{2}, x_{4}, x_{3}\right)$

$$
x_{2} \perp x_{3} \mid\left(x_{1}, x_{4}\right)
$$

no independence

- undirected graphical models can be represented by factor graphs
- we can go from MRF to FG without losing any information on the independencies implies by the model
- Bayesian networks are not compatible with undirected graphical models or factor graphs
- if we go from one model to the other, and then back to the original model, then we will not, in general, get back the same model as we started out with
- we lose any information on the independencies implies by the model, when switching from one model to the other

Bayes networks with observed variables

$V=H \cup O$
Hidden variables: $x=\left(x_{i}\right)_{i \in H}$
Observed variables: $y=\left(y_{i}\right)_{i \in O}$

$$
\mu(x, y)=\prod_{i \in H} \mu\left(x_{i} \mid x_{\pi(i) \cap H}, y_{\pi(i) \cap O}\right) \prod_{i \in O} \mu\left(y_{i} \mid x_{\pi(i) \cap H}, y_{\pi(i) \cap O}\right)
$$

Typically interested in $\mu_{y}(x) \equiv \mu(x \mid y)$ and

$$
\arg \max _{x} \mu_{y}(x)
$$

Example

Forensic Science

[Kadane, Shum, A probabilistic analysis of the Sacco and Vanzetti evidence, 1996]
[Taroni et al., Bayesian Networks and Probabilistic Inference in Forensic Science, 2006]

Example

Medical Diagnosis

[M. Shwe, et al., Methods of Information in Medicine, 1991]

Roadmap

Cond. Indep. $\mu(x)$	Factorization $\mu(x)$	Graphical Model	Graph G	Cond. Indep. implied by G
$x_{1}-\left\{x_{2}, x_{3}\right\}-x_{4} ;$	$\frac{1}{Z} \prod \psi_{a}\left(x_{\partial a}\right)$	FG	Factor	Markov
$x_{4}-\{ \}-x_{7} ;$	$\frac{1}{Z} \prod \psi_{C}\left(x_{C}\right)$	MRF	Undirected	Markov
	$\prod \psi_{i}\left(x_{i} \mid x_{\pi(i)}\right)$	BN	Directed	Markov

- A $\mu(x)$ can be represented by multiple $\{F G, M R F, B N\}$ with multiple graphs (but same $\mu(x)$)
- We want a 'simple' graph representation (sparse, small alphabet size)
- Memory to store the graphical model
- Computations for inference
- $\mu(x)$ with some conditional independence structure can be represented by simple $\{$ FG,MRF,BN $\}$

