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Gaussian graphical models

belief propagation naturally extends to continuous distributions by
replacing summations to integrals

νi→j(xi) =
∏

k∈∂i\j

∫
ψik(xi, xk)νk→i(xk) dxk

integration can be intractable for general functions

however, for Gaussian graphical models for jointly Gaussian random
variables, we can avoid explicit integration by exploiting algebraic
structure, which yields efficient inference algorithms
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Multivariate jointly Gaussian random variables
four definitions of a Gaussian random vector x ∈ Rn: x is Gaussian iff

1. x = Au+ b for standard i.i.d. Gaussian random vector u ∼ N (0, I)

2. y = aTx is Gaussian for all a ∈ Rn

3. covariance form: the probability density function is

µ(x) =
1

(2π)n/2|Λ|1/2
exp

{
− 1

2
(x−m)TΛ−1(x−m)

}
denoted as x ∼ N (m,Λ) with mean m = E[x] and covariance matrix
Λ = E[(x−m)(x−m)T ] (for some positive definite Λ).

4. information form: the probability density function is

µ(x) ∝ exp
{
− 1

2
xTJx+ hTx

}
denoted as x ∼ N−1(h, J) with potential vector h and information
(or precision) matrix J (for some positive definite J)

note that J = Λ−1 and h = Λ−1m = Jm

x can be non-Gaussian and the marginals still Gaussian
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consider two operations on the following Gaussian random vector

x =

[
x1
x2

]
∼ N

([
m1

m2

]
,

[
Λ11 Λ12

Λ21 Λ22

])
= N−1

([
h1
h2

]
,

[
J11 J12
J21 J22

])
marginalization is easy to compute when x is in covariance form

x1 ∼ N (m1,Λ11)

for x1 ∈ Rd1 , one only needs to read the corresponding entries of
dimensions d1 and d2

1
but complicated when x is in information form

x1 ∼ N−1(h′, J ′)

where J ′ = Λ−1
11 =

( [
I 0

]
J−1

[
I
0

])−1
and

h′ = J ′m1 =
( [

I 0
]
J−1

[
I
0

])−1 [
I 0

]
J−1h

we will prove that h′ = h1 − J12J
−1
22 h2 and J ′ = J11 − J12J

−1
22 J21

what is wrong in computing the marginal with the above formula?

for x1 ∈ Rd1 and x2 ∈ Rd2 and d1 � d2, inverting J22 requires
runtime O(d2.8074

2 ) (Strassen algorithm)
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Proof of J ′ = Λ−1
11 = J11 − J12J

−1
22 J21

I J ′ is called Schur complement of the block J22 of the matrix J
I useful matrix identity[

I −BD−1

0 I

] [
A B
C D

] [
I 0

−D−1C I

]
=

[
A−BD−1C 0

0 D

]
[
A B
C D

]−1

=

[
I 0

−D−1C I

] [
(A−BD−1C)−1 0

0 D−1

] [
I −BD−1

0 I

]
=

[
(A−BD−1C)−1 −S−1BD−1

−D−1CS−1 D−1 +D−1CS−1BD−1

]
where S = A−BD−1C

I since Λ = J−1,

Λ =

[
J11 J12
J21 J22

]−1

=

[
(J11 − J12J−1

22 J21)−1 −S−1J12J
−1
22

−J−1
22 J21S

−1 J−1
22 + J−1

22 J21S
−1J12J

−1
22

]
where S = J11 − J12J−1

22 J21, which gives

Λ11 = (J11 − J12J−1
22 J21)−1

hence,

J ′ = Λ−1
11 = J11 − J12J−1

22 J21
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Proof of h′ = J ′m1 = h1 − J12J
−1
22 h2

I notice that since

Λ =

[
J11 J12
J21 J22

]−1

=

[
S−1 −S−1J12J

−1
22

−J−1
22 J21S

−1 J−1
22 + J−1

22 J21S
−1J12J

−1
22

]

where S = J11 − J12J−1
22 J21, we know from m = Λh that

m1 =
[
S−1 −S−1J12J

−1
22

] [h1
h2

]
since J ′ = S, we have

h′ = J ′m1 =
[
I −J12J−1

22

] [h1
h2

]
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conditioning is easy to compute when x is in information form

x1|x2 ∼ N−1
(
h1 − J12x2 , J11

)
proof: treat x2 as a constant to get

µ(x1|x2) ∝ µ(x1, x2)

∝ exp
{
−

1

2
[xT1 xT2 ]

[
J11 J12
J21 J22

] [
x1
x2

]
+ [hT1 hT2 ]

[
x1
x2

]}
∝ exp

{
−

1

2

(
xT1 J11x1 + 2xT2 J21x1

)
+ hT1 x1

}
= exp

{
−

1

2
xT1 J11x1 + (h1 − J12x2)T x1

}
but complicated when x is in covariance form

x1|x2 ∼ N (m′,Λ′)

where m′ = m1 + Λ12Λ−1
22 (x2 −m2) and Λ′ = Λ11 − Λ12Λ−1

22 Λ21
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Gaussian graphical model
theorem 1. For x ∼ N (m,Λ), xi and xj are independent if and only
if Λij = 0

Q. for what other distribution does uncorrelation imply independence?
theorem 2. For x ∼ N−1(h, J), xi–xV \{i,j}–xj if and only if Jij = 0

Q. is it obvious?
graphical model representation of Gaussian random vectors

I J encodes the pairwise Markov independencies
I obtain Gaussian graphical model by adding an edge whenever Jij 6= 0

µ(x) ∝ exp
{
− 1

2
xTJx + hTx

}
=

∏
i∈V

e−
1
2
xTi Jiixi+h

T
i xi︸ ︷︷ ︸

ψi(xi)

∏
(i,j)∈E

e−
1
2
xTi Jijxj︸ ︷︷ ︸

ψij(xi,xj)

I is pairwise Markov property enough?
I Is pairwise Markov Random Field enough?

problem: compute marginals µ(xi) when G is a tree
I messages and marginals are Gaussian, completely specified by mean

and variance
I simple algebra to compute integration
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example: heredity of head dimensions [Frets 1921]

estimated mean and covariance of four dimensional vector
(L1, B1, L2, B2)

lengths and breadths of first and second born sons are measured

25 samples

analyses by [Whittaker 1990] support the following Gaussian graphical
model

L1

B1 B2

L2
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example: mathematics scores [Whittaker 1990]
Examination scores of 88 students in 5 subjects
empirical information matrix (diagonal and above) covariance (below
diagonal)

Mechanics Vectors Algebra Analysis Statistics

Mechanics 5.24 -2.44 -2.74 0.01 -0.14
Vectors 0.33 10.43 -4.71 -0.79 -0.17
Algebra 0.23 0.28 26.95 -7.05 -4.70
Analysis 0.00 0.08 0.43 9.88 -2.02
Statistics 0.02 0.02 0.36 0.25 6.45

Analysis

Statistics

Algebra

Vectors

Mechanics
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Gaussian belief propagation on trees
initialize messages on the leaves as Gaussian (each node has xi which
can be either a scalar or a vector)

νi→j(xi) = ψi(xi) = e−
1
2
xTi Jiixi+h

T
i xi ∼ N−1(hi→j , Ji→j)

where hi→j = hi and Ji→j = Jii

update messages assuming νk→i(xk) ∼ N−1(hk→i, Jk→i)

νi→j(xi) = ψi(xi)
∏

k∈∂i\j

∫
ψik(xi, xk)νk→i(xk) dxk

evaluating the integration (= marginalizing Gaussian)

∫
ψik(xi, xk)νk→i(xk) dxk =

∫
e−x

T
i Jkixk− 1

2
xTk Jk→ixk+h

T
k→ixk dxk

=

∫
exp

{
−

1

2
[xTi xTk ]

[
0 Jik
Jik Jk→i

] [
xi
xk

]
+ [0 hTk→i]

[
xi
xk

]}
dxk

∼ N−1
(
− JikJ−1

k→ihk→i,−JikJ
−1
k→iJki

)
since this is evaluating the marginal of xi for (xi, xk) ∼ N−1

([ 0
hk→i

]
,

[
0 Jik
Jik Jk→i

])
.
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therefore, messages are also Gaussian νi→j(xi) ∼ N−1(hi→j , Ji→j)
completely specified by two parameters: mean and variance
Gaussian belief propagation

hi→j = hi −
∑

k∈∂i\j

JikJ
−1
k→ihk→i

Ji→j = Jii −
∑

k∈∂i\j

JikJ
−1
k→iJki

marginal can be computed as xi ∼ N−1(ĥi, Ĵi)

ĥi = hi −
∑
k∈∂i

JikJ
−1
k→ihk→i

Ĵi = Jii −
∑
k∈∂i

JikJ
−1
k→iJki

for xi ∈ Rd Gaussian BP requires O(n · d3) operations on a tree
I matrix inversion can be computed in O(d3) (e.g., Gaussian elimination)

if we naively invert the information matrix J22 of the entire graph

x1 ∼ N−1(h1 − J12J−1
22 h2, J11 − J12J

−1
22 J21)

requires O
(
(nd)3

)
operations
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connections to Gaussian elimination
I one way to view Gaussian BP is that given J and h it computes

m = J−1h

I this implies that for any positive-definite matrix A with tree structure,
we can use Gaussian BP to solve for x

Ax = b (x = A−1b)

I example: Gaussian elimination[
4 2
2 3

] [
x1
x2

]
=

[
3
3

]
[
4− 2

3 · 2 2− 2
3 · 3

2 3

] [
x1
x2

]
=

[
3− 2

3 · 3
3

]
[
8
3 0
2 3

] [
x1
x2

]
=

[
1
3

]

I Gaussian elimination that exploits tree structure by eliminating from
the leaves is equivalent as Gaussian BP
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MAP configuration
I for Gaussian random vectors, mean is the mode

max
x

exp
{
− 1

2
(x−m)TΛ−1(x−m)

}
taking the gradient of the exponent

∂

∂x

{
− 1

2
(x−m)TΛ−1(x−m)

}
= −Λ−1(x−m)

hence the mode x∗ = m
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Gaussian hidden Markov models

x0 x1 x2 x3 x4 x5 x6

y0 y1 y2 y3 y4 y5 y6

Gaussian HMM
I states xt ∈ Rd
I state transition matrix A ∈ Rd×d
I process noise vt ∈ Rp and ∼ N (0, V ) for some V ∈ Rp×p, B ∈ Rd×p

xt+1 = Axt +Bvt

x0 ∼ N (0,Λ0)

I observation yt ∈ Rd′ , C ∈ Rd′×d
I observation noise wt ∼ N (0,W ) for some R ∈ Rd′×d′

yt = Cxt + wt
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in summary, for H = BV BT

x0 ∼ N (0,Λ0)

xt+1|xt ∼ N (Axt, H)

yt|xt ∼ N (Cxt,W )

factorization

µ(x, y) = µ(x0)µ(y0|x0)µ(x1|x0)µ(y1|x1) · · ·

∝ exp
(
−

1

2
xT0 Λ−1

0 x0
)

exp
(
−

1

2
(y0 − Cx0)TW−1(y0 − Cx0)

)
exp

(
−

1

2
(x1 −Ax0)TH−1(x1 −Ax0)

)
· · ·

=
t∏

k=0

ψk(xk)
t∏

k=1

ψk−1,k(xk−1, xk)
t∏

k=0

φk(yk)
t∏

k=0

φk,k(xk, yk)
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factorization

µ(x, y) ∝
t∏

k=0

ψk(xk)
t∏

k=1

ψk−1,k(xk−1, xk)
t∏

k=0

φk(yk)
t∏

k=0

φk,k(xk, yk)

logψk(xk) =



− 1
2
xT0 (Λ−1

0 + CTW−1C +ATH−1A︸ ︷︷ ︸
≡ J0

)x0 k = 0

− 1
2
xTk (H−1 + CTW−1C +ATH−1A︸ ︷︷ ︸

≡ Jk

)xk 0 < k < t

− 1
2
xTt (H−1 + CTW−1C︸ ︷︷ ︸

≡ Jt

)xt k = t

logψk−1,k(xk−1, xk) = xTk H
−1A︸ ︷︷ ︸
≡ Lk

xk−1

log φk(yk) = −
1

2
yTkW

−1yk

log φk,k(xk, yk) = xTk C
TW−1︸ ︷︷ ︸
≡ Mk

yk
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problem: given observations y estimate hidden states x

x0 x1 x2 x3 x4 x5 x6

µ(x|y) ∝
t∏

k=0

exp
{
− 1

2
xTk Jkxk + xTk Mkyk︸ ︷︷ ︸

hk

} t∏
k=1

exp
{
− xTk (−Lk)︸ ︷︷ ︸

Jk,k−1

xk−1

}

use Gaussian BP to compute marginals for this Gaussian graphical
model on a line

I initialize
J0→1 = J0, h0→1 = h0

J6→5 = J6, h6→5 = h6

I forward update
Ji→i+1 = Ji − LiJ−1i−1→iL

T
i

hi→i+1 = hi − LiJ−1i−1→ihi−1→i

I backward update
Ji→i−1 = Ji − Li+1J

−1
i+1→iL

T
i+1

hi→i−1 = hi − Li+1J
−1
i+1→ihi+1→i
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I compute marginals

Ĵi = Ji − LiJ−1i−1→iL
T
i − Li+1J

−1
i+1→iL

T
i+1

ĥi = hi − LiJ−1i−1→ihi−1→i − Li+1J
−1
i+1→ihi+1→i

I the marginal is

xi ∼ N (Ĵ−1i ĥi, Ĵ
−1
i )
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Kalman filtering (1959)

important problem in control

provides a different perspective on Gaussian HMMs

problem: linear quadratic estimation (LQE)
I minimize the quadratic loss:

L(x, x̂(y)) =
∑
k

(x̂(y)k − xk)2 =
(
x̂(y)− x

)T (
x̂(y)− x

)
I since x is random, we minimize the expected loss

E
[
L(x, x̂(y))|y

]
= x̂(y)T x̂(y) + E[xTx|y]− 2x̂(y)TE[x|y]

I taking the gradient w.r.t x̂(y) and setting it equal to zero yields

2x̂(y)− 2E[x|y] = 0

I minimum mean-squared error estimate is x̂∗(y) = E[x|y]
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x0 x1 x2 x3 x4 x5 x6

y0 y1 y2 y3 y4 y5 y6

Linear dynamical systems with Gaussian noise (= Gaussian HMM)
I states xt ∈ Rd
I state transition matrix A ∈ Rd×d
I process noise vt ∈ Rp and ∼ N (0, V ) for some V ∈ Rp×p, B ∈ Rd×p

xt+1 = Axt +Bvt

x0 ∼ N (0,Λ0)

I observation yt ∈ Rd′ , C ∈ Rd′×d
I observation noise wt ∼ N (0,W ) for some R ∈ Rd′×d′

yt = Cxt + wt

I all noise are independent
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Conditioning on observed output

we use notations

xt|s = E[xt|y0, · · · , ys]
Σt|s = E[(xt − xt|s)(xt − xt|s)T |y0, · · · , ys]

I the random variable xt|y0, · · · , ys is Gaussian with mean xt|s and
covariance Σt|s

I xt|s is the minimum mean-square error estimate of xt given y0, · · · , ys
I Σt|s is the covariance of the error of the estimate xt|s

we focus on two state estimation problems:
I finding xt|t, i.e., estimating the current state based on the current and

past observations
I finding xt+1|t, i.e., predicting the next state based on the current and

past observations

Kalman filter is a clever method for computing xt|t and xt+1|t
recursively
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Measurement update

let’s find xt|t and Σt|t in terms of xt|t−1 and Σt|t−1

let Yt−1 = (y0, · · · , yt−1), then

yt|Yt−1 = Cxt|Yt−1 + wt|Yt−1 = Cxt|Yt−1 + wt

since wt and Yt−1 are independent

so xt|Yt−1 and yt|Yt−1 are jontly Gaussian with mean and covariance[
xt|t−1

C xt|t−1

]
,

[
Σt|t−1 Σt|t−1C

T

CΣt|t−1 CΣt|t−1C
T +W

]
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now use standard formula for conditoining Gaussian random vector to
get mean and variance of(

xt|Yt−1

) ∣∣ (yt|Yt−1

)
which is exactly the same as xt|Yt

xt|t = xt|t−1 + Σt|t−1C
T (CΣt|t−1C

T +W )−1(yt − Cxt|t−1)

Σt|t = Σt|t−1 − Σt|t−1C
T (CΣt|t−1C

T +W )−1CΣt|t−1

this recursively defines xt|t and Σt|t in terms of xt|t−1 and Σt|t−1

this is called measurement update since it gives our updated estimate
of xt based on the measurement yt becoming available
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Time update

now we increment time using xt+1 = Axt +Bvt

condition on Yt to get

xt+1|Yt = Axt|Yt +Bvt|Yt = Axt|Yt +Bvt

since vt is independent of Yt

therefore xt+1|t = Axt|t and

Σt+1|t = E
[
(xt+1|t − xt+1)(xt+1|t − xt+1)T

]
= E

[
(Axt|t −Axt −Bvt)(Axt|t −Axt −Bvt)T

]
= AΣt|tA

T +BV BT
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Kalman filter

Kalman filter:
I measurement update and time update together give a recursion
I start with x0|−1 = 0 and Σ0|−1 = Λ0

I apply measurement update to get x0|0 and Σ0|0
I apply time update to get x1|0 and Σ1|0
I repeat ...

we have an efficient recursion to compute
xt|t = arg minx E

[
(xt − x)T (xt − x)|y0 . . . , yt

]
notice there is no backward update as in Gaussian BP, because we are
interested in real time estimation: estimate current state given
observations so far
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Example #1: Consensus propagation
[Moallemi and Van Roy, 2006]

y1

y2 y3 y4

y5

y6

y7y8y9

y10

y11

y12

Observations of the ‘state of the world’: y1, y2, . . . , yn
Objective: compute at each node the mean

y ≡ 1

n

n∑
i=1

yi

Bottle-neck: communication allowed on the edges
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Graphical model approach

define a Gaussian graphical model µy(x) on G with parameters
y = (y1, y2, . . . , yn) such that

Eµ{xi} = y

equivalently, define J and h such that m = J−1h = y1

of course we could define J = I and h = y1

µy(x) =
1

(2π)n/2
exp

{
− 1

2
‖x− y 1‖22

}
=

∏
i∈V

1

(2π)1/2
exp

{
− 1

2
(xi − y)2

}
. . . but this does not address the problem.
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use a Gaussian graphical model

µy(x) =
1

Z
exp

{
− γ

2

∑
(i,j)∈E

(xi − xj)2 − 1

2

∑
i∈V

(xi − yi)2
}

and solve for x (hoping that the solution m is close to ȳ1)

m = arg min
x∈Rn

γ

2

∑
(i,j)∈E

(xi − xj)2 +
1

2

∑
i∈V

(xi − yi)2

intuition: as γ →∞, xi ≈ xj for all i, j ∈ V . Hence xi ≈ x:

m = arg min
ξ∈R

{∑
i∈V

(ξ − yi)2
}

=
1

n

∑
i∈V

yi
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Graph Laplacian

Laplacian of a graph is defined as

(LG)ij =

{
−1 if (i, j) ∈ E,

degG(i) if i = j.

for x ∈ Rn, we have 〈x,LG x〉 = 1
2

∑
(i,j)∈E(xi − xj)2. In particular,

I LG � 0
I LG1 = 0
I If G is connected, then the null space of LG has dimension one
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rewriting things,

µy(x) =
1

Z
exp

{
− γ

2

∑
(i,j)∈E

(xi − xj)2 − 1

2

∑
i∈V

(xi − yi)2
}

=
1

Z
exp

{
− γ

2
〈x,LG x〉 −

1

2
‖x− y‖22

}
if we compute Eµ{x} by taking the derivative and setting it to zero,
we get

−γ LG x− x+ y = 0

and

Eµ{x} = (I + γLG)−1y
γ→∞→ 11T y = y 1

can we compute this using Gaussian belief propagation (in a
distributed fashion)?
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Consensus Propagation

Belief Propagation
let ∆i = degG(i), then

µy(x) =
1

Z
exp

γ ∑
(i,j)∈E

xixj −
1

2

∑
i∈V

(1 + γ∆i)x
2
i +

∑
i∈V

yixi

 ,

Jii = 1 + γ∆i, Jij = −γ , hi = yi .

J
(t+1)
i→j = 1 + γ∆i −

∑
k∈∂i\j

γ2

J
(t)
k→i

,

h
(t+1)
i→j = yi +

∑
k∈∂i\j

γ

J
(t)
k→i

h
(t)
k→i .
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Consensus Propagation
Redefine

K
(t)
i→j = −γ + J

(t)
i→j

m
(t)
i→j =

h
(t)
i→j

K
(t)
i→j

K
(t+1)
i→j = 1 +

∑
k∈∂i\j

K
(t)
k→i

1 + γ−1K
(t)
k→i

,

m
(t+1)
i→j =

yi +
∑

k∈∂i\j
K

(t)
k→i

1+γ−1K
(t)
k→i

m
(t)
k→i

1 +
∑

k∈∂i\j
K

(t)
k→i

1+γ−1K
(t)
k→i

Interpretation? Ki→j as size of population and mi→j as population mean
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From a quadratic MRF to a covariance matrix

given a quadratic Markov random field parametrized by h and J

µ(x) =
1

Z

∏
i∈V

exp{hTi xi − xTi Jiixi}
∏

(i,j)∈E

exp{−1

2
xTi Jijxj}

it is a valid Gaussian distribution only if J is positive definite
a symmetric matrix J is positive definite if and only if

0. xTJx > 0 for all x ∈ Rn
1. all eigen values are positive

proof ⇒ λ = xT Jx
‖x‖2 > 0

proof ⇐ xTJx = xTUDUTx = x̃TDx̃ =
∑
i x̃

2
iDii > 0

2 has a Cholesky decomposition: there exists a (unique) lower triangular
matrix L with strictly positive diagonal entries such that J = LTL

proof ⇒
proof ⇐ xTJx = xTLTLx = ‖Lx‖2 > 0

3 satisfies Sylvester’s criterion: leading principal minors are all positive (a
kth leading principal minor of a matrix J is the determinant of its
upper left k by k sub-matrix)

there is no simple way to check if J is positive definite
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Sufficient conditions

toy example on 2× 2 symmetric matrices[
a b
b c

]
what is the sufficient and necessary condition for positive definiteness?
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Sufficient conditions

sufficient condition 1. J is positive definite if it is diagonally
dominant, i.e., ∑

j 6=i
|Jij | < Jii

I proof by Gershgorin’s circle theorem

[Gershgorin’s circle theorem] every eigenvalue of A ∈ Rn×n lies
within at least one of the Gershgorin discs, defined for each i ∈ [n] as

Di ≡
{
x ∈ R

∣∣ |x− Jii| ≤ ∑
j 6=i
|Jij |

}


10 0.5 0.5 0.5
0 5 0.1 0.2
0.3 0 0 0.5
0 0.5 0.5 −4


Corollary. diagonally dominant matrices are positive definite
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proof (for a amore general complex valued matrix A). consider
an eigen value λ ∈ C and an eigen vector x ∈ Cn such that

Ax = xλ

let i denote the index of the maximum magnitude entry of x such
that |xi| ≥ |xj | for all j 6= i, then it follows that∑

j∈[n]

Aijxj = λxi

and ∑
j 6=i

Aijxj = (λ−Aii)xi

dividing both sides by xi gives

|λ−Aii| =
∣∣∣∑j 6=iAijxj

xi

∣∣∣ ≤ ∑
j 6=i

∣∣∣Aijxj
xi

∣∣∣ ≤ ∑
j 6=i
|Aij | = Ri
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when there is an overlap, it is possible to have an empty disc, for

example

[
0 1
4 0

]
and

[
1 −2
1 −1

]
have eigen values {−2, 2} and {i,−i}

theorem. if a union of k discs is disjoint from the union on the rest
of n− k discs, then the former union contains k eigen values and the
latter n− k.

proof. let
B(t) , (1− t)diag(A) + t(A)

for t ∈ [0, 1], and note that eigen values of B(t) are continuous in t.
B(0) has eigen values at the center of the discs and the eigen values
{λ(t)i}i∈[n] of B(t) move from this center as t increases, but by
continuity the k eigen values of the first union of discs can not escape
the expanding union of discs

counter example? computational complexity?
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Sufficient conditions

sufficient condition 2. J is positive definite if it is pairwise
normalizable, i.e., if there exists compatibility functions ψi’s and

ψij ’s such that Jii =
∑

j∈∂i a
(ii)
ij ,

− logψi(xi) = xTi aixi + bTi xi

− logψij(xi, xj) = xTi a
(ii)
ij xi + xTj a

(jj)
ij xj + xTi a

(ij)
ij xj

we have ai > 0 for all i and

[
a

(ii)
ij

1
2a

(ij)
ij

1
2a

(ij)
ij a

(jj)
jj

]
is PSD for all 2× 2

minors
I follows from

∫
f(x)g(x) dx ≤

∫
|f(x)| dx

∫
|g(x)| dx

x1 x2 x3 x1 x2 x3

x1 x2
x1 2 -1
x2 -1 3

x2 x3
x2 1 2
x3 2 3

x1 x2
x1 2 -1
x2 -1 2

x2 x3
x2 2 2
x3 2 3

counter example? computational complexity?
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Correctness

there is little theoretical understanding of loopy belief propagation
(except for graphs with a single loop)

perhaps surprisingly, loopy belief propagation (if it converges) gives
the correct mean of Gaussian graphical models even if the graph has
loops (convergence of the variance is not guaranteed)

Theorem [Weiss, Freeman 2001, Rusmevichientong, Van Roy 2001]
If Gaussian belief propagation converges, then the expectations are
computed correctly: let

m̂
(`)
i ≡ (Ĵ

(`)
i )−1ĥ

(`)
i

where m̂
(`)
i = belief propagation expectation after ` iterations

Ĵ
(`)
i = belief propagation information matrix after ` iterations

ĥ
(`)
i = belief propagation precision after ` iterations and if

m̂
(∞)
i , lim`→∞ m̂

∞
i exists, then

m̂
(∞)
i = mi
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A detour: Computation tree

what is m̂
(`)
i ?

computation tree CTG(i; `) is the tree of `-steps non-reversing
walks on G starting at i.

i

a

r = i0

i, j, k, . . . , a, b, . . . for nodes in G and r, s, t, . . . for nodes in CTG(i; `)

potentials ψi and ψij are copied to CTG(i; `)

each node (edge) in G corresponds to multiple nodes (edges) in
CTG(i; `).

natural projection π : CTG(i; `)→ G, e.g., π(t) = π(s) = j

Gaussian graphical models 7-41



A detour: Computation tree

what is m̂
(`)
i ?

computation tree CTG(i; `) is the tree of `-steps non-reversing
walks on G starting at i.

i

a

r = i0

b

c

u
π(u) = b

v
π(v) = c

i, j, k, . . . , a, b, . . . for nodes in G and r, s, t, . . . for nodes in CTG(i; `)

potentials ψi and ψij are copied to CTG(i; `)

each node (edge) in G corresponds to multiple nodes (edges) in
CTG(i; `).

natural projection π : CTG(i; `)→ G, e.g., π(t) = π(s) = j

Gaussian graphical models 7-41



A detour: Computation tree

what is m̂
(`)
i ?

computation tree CTG(i; `) is the tree of `-steps non-reversing
walks on G starting at i.

i

a

r = i0

b

c

u
π(u) = b

v
π(v) = c

i, j, k, . . . , a, b, . . . for nodes in G and r, s, t, . . . for nodes in CTG(i; `)

potentials ψi and ψij are copied to CTG(i; `)

each node (edge) in G corresponds to multiple nodes (edges) in
CTG(i; `).

natural projection π : CTG(i; `)→ G, e.g., π(t) = π(s) = j

Gaussian graphical models 7-41



A detour: Computation tree

what is m̂
(`)
i ?

computation tree CTG(i; `) is the tree of `-steps non-reversing
walks on G starting at i.

i

a

r = i0

s
π(s) = a

t
π(t) = a

b

c

u
π(u) = b

v
π(v) = c

i, j, k, . . . , a, b, . . . for nodes in G and r, s, t, . . . for nodes in CTG(i; `)

potentials ψi and ψij are copied to CTG(i; `)

each node (edge) in G corresponds to multiple nodes (edges) in
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natural projection π : CTG(i; `)→ G, e.g., π(t) = π(s) = j
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What is m̂
(`)
i ?

Claim 1. m̂
(`)
i is m̂

(`)
r , which is the expectation of xr w.r.t. Gaussian

model on CTG(i; `)
I proof of claim 1. by induction over `.
I idea: BP ‘does not know’ whether it is operating on G or on CTG(i; `)

recall that for Gaussians, mode of −1
2x

TJx+ hTx is the mean m,
hence

Jm = h

and since J is invertible (due to positive definiteness), m = J−1h.

locally, m is the unique solution that satisfies all of the following
series of equations for all i ∈ V

Jiimi +
∑
j∈∂i

Jijmj = hi
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similarly, for a Gaussian graphical model on CTG(i; `)
xr

xs
Jrs

the estimated mean m̂(`) is exact on a tree. Precisely, since the width
of the tree is at most 2`, the BP updates on CTG(i; `) converge to the
correct marginals for t ≥ 2` and satisfy

Jrrm̂
(t)
r +

∑
s∈∂r

Jrsm̂
(t)
s = hr

where r is the root of the computation tree. In terms of the original
information matrix J and potential h

Jπ(r),π(r)m̂
(t)
r +

∑
s∈∂r

Jπ(r),π(s)m̂
(t)
s = hπ(r)

since we copy J and h for each edge and node in CTG(i; `).
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I note that on the computation tree CTG(i, ; `), m̂
(t)
r = m̂

(`)
r for t ≥ `

since the root r is at most distance ` away from any node.
I similarly, for a neighbor s of the root r, m̂

(t)
s = m̂

(`+1)
s for t ≥ `+ 1

since s is at most distance `+ 1 away from any node.
I hence we can write the above equation as

Jπ(r),π(r)m̂
(`)
r +

∑
s∈∂r

Jπ(r),π(s)m̂
(`+1)
s = hπ(r) (1)
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if the BP fixed point converges then

lim
`→∞

m̂
(`)
i = m̂

(∞)
i

we claim that lim`→∞ m̂
(`)
r = m̂

(∞)
π(r), since

lim
`→∞

m̂(`)
r = lim

`→∞
m̂

(`)
π(r) by Claim 1.

= m̂
(∞)
π(r) by the convergence assumption

we can generalize this argument (without explicitly proving it in this
lecture) to claim that in the computation tree CTG(i; `) if we
consider a neighbor s of the root r,

lim
`→∞

m̂(`+1)
s = m̂

(∞)
π(s)
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Convergence

from Eq. (1), we have

Jπ(r),π(r)m̂
(`)
r +

∑
s∈∂r

Jπ(r),π(s)m̂
(`+1)
s = hπ(r)

taking the limit `→∞,

Jπ(r),π(r)m̂
(∞)
π(r) +

∑
s∈∂r

Jπ(r),π(s)m̂
(∞)
π(s) = hπ(r)

hence, BP is exact on the original graph with loops assuming
convergence, i.e. BP is correct:

Ji,im̂
(∞)
i +

∑
j∈∂i

Ji,jm̂
(∞)
j = hi

Jm̂(∞) = h
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What have we achieved?

complexity?

convergence?

correlation decay: the influence of leaf nodes on the computation
tree decreases as iterations increase

understanding BP in a broader class of graphical models (loopy belief
propagation)

help clarify the empirical performance results (e.g. Turbo codes)
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Gaussian Belief Propagation (GBP)

Sufficient conditions for convergence and correctness of GBP
I Rusmevichientong and Van Roy (2001), Wainwright, Jaakkola, Willsky

(2003) : if means converge, then they are correct
I Weiss and Freeman (2001): if the information matrix is diagonally

dominant, then GBP converges
I convergence known for trees, attractive, non-frustrated, and diagonally

dominant Gaussian graphical models
I Malioutov, Johnson, Willsky (2006): walk-summable graphical models

converge (this includes all of the known cases above)
I Moallemi and Van roy (2006): if pairwise normalizable then

consensus propagation converges
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