
Exercises
Graphical models

1 Prerequisite

For the students taking this course, it is expected that you have the skills and backgrounds to solve the
problems in this homework (it is encouraged that you talk to your peers to figure the solutions out). If you
have trouble following any of these problems, you need to talk to the instructor.

Basic probability.

1.1 For three discrete random variables x, y, and z with joint probability distribution p(x, y, z), we say
x is conditionally independent of y given z if and only if p(x, y|z) = p(x|z)p(y|z), where p(x|z) =
p(x,z)
p(z) =

∑
y′ p(x,y

′,z)∑
x′,y′ p(x

′,y′,z) is the conditional probability distribution of x given z, and p(x, y|z) and p(y|z)
are defined similarly. We use x–z–y to denote that x and y are independent conditioned on z. We use
x–()–y to denote that x is independent of y. Prove each of the following properties.

1. x–()–(y, z) implies x–z–y

2. x–z–(y, w) implies x–z–y

3. x–z–(y, w) and y–z–w implies (x,w)–z–y

1.2 There are two coins, one is a fair coin and the other is biased. The outcome of tossing a fair coin is a
head (H) with probability half. The outcome of tossing a biased coin is a head (H) with probability
3/4. We are given a coin at random (equal probability of getting a fair or biased coin), and want to
test whether the coin is biased or not based on n coin tosses. We toss the coin 5 times independently
and get (H,H, T, T,H). What is the probability that the coin is a biased coin? Then, what is your
maximum a posteriori (MAP) estimate? Does it depend on the order of the outcome?

Basic linear algebra.

1.3 An n × n dimensional symmetrix matrix A is positive definite if xTAx > 0 for any vector x ∈ Rn,
where xT is the transpose of the column vector x. It is positive semidefinite if xTAx ≥ 0 for any x.
Prove that if A has eigen values which are all positive, then A is positive definite.
[Hint: A symmetric matrix A can be factorized by eigen decomposition as A = QΛQT . Q is a unitary
matrix such that QQT = QTQ = I, where I is the n-dimensional identity matrix, and Λ is a diagonal
matrix with the eigen values λi of matrix A in the diagonals. Then, we are left ot show that if Λ is a
diagonal matrix with strictly positive entries, then yTΛy > 0, where we changes variables by setting
y = QTx. ].

1.4 Find a vector y∗ in terms of Qij ’s, hi’s and x that maximizes a quadratic function

f(x, y) =
[
x y

] [A11 A12

A21 A22

] [
x
y

]
+
[
h1 h2

] [x
y

]
[Note: the maximizer y∗(x) is a linear function of x.]

1



2 Definition of graphical models

2.1 (Exercise 2.5 in Koller/Friedman)

Let X, Y , Z be three disjoint subsets of random variables. We say X and Y are conditionally inde-
pendent given Z if and only if

PX,Y |Z(x, y|z) = PX|Z(x|z)PY |Z(y|z) .

Show that X and Y are conditionally independent given Z if and only if the joint distribution for the
three subsets of random variables factors in the following form:

PX,Y,Z(x, y, z) = h(x, z) g(y, z) .

2.2 (Exercise 4.1 in Koller/Friedman)

In this problem, we will show by example that the distribution of a graphical model need not have a
factorization of the form in the Hammersley-Clifford Theorem if the distribution is not strictly positive.
In particular, we will consider a distribution on the following simple 4-cycle where each node is a binary

4

1 2

3

random variable, Xi, for i ∈ {1, 2, 3, 4}. Consider a probability distribution that assigns a probability
1/8 uniformly to each of the following set of values (X1, X2, X3, X4):

(0, 0, 0, 0) (1, 0, 0, 0) (1, 1, 0, 0) (1, 1, 1, 0)

(0, 0, 0, 1) (0, 0, 1, 1) (0, 1, 1, 1) (1, 1, 1, 1)

and assigns zero to all other configurations of (X1, X2, X3, X4).

(a) We first need to show that this distribution is Markov on our graph. To do this, it should not be
difficult to see that what we need to show are the following conditions:

∗ The pair of variables X1 and X3 are conditionally independent given (X2, X4).

∗ The pair of variables X2 and X4 are conditionally independent given (X1, X3).

First, show that if we interchange X1 and X4 and interchange X2 and X3, we obtain the same
distribution, i.e.., P(x1, x2, x3, x4) = P(x4, x3, x2, x1). This implies that if we can show the first
condition, then the other is also true.

(b) Show that whatever pair of values you choose for (X2, X4), we then know either X1 or X3 with
certainty. For example, (X2 = 0, X4 = 0) implies that X3 = 0. Since we know either X1 or
X3 with certainty, then conditioning on the other one of these obviously provides no additional
information, trivially proving conditional independence.

2



(c) What we now need to show is that the distribution cannot be factorized in the way stated in
the Hammersley-Clifford Theorem. We will do this by contradiction. Noting that the maximal
cliques in our graph are just the edges and absorbing the normalization 1/Z into any of the
pairwise compatibility functions, we know that if our distribution has the factorization implied
by the Hammersley-Clifford Theorem, we can write it in the following form:

P(x1, x2, x3, x4) = ψ12(x1, x2)ψ23(x2, x3)ψ34(x3, x4)ψ41(x4, x1) .

Show that assuming that our distribution has such a factorization leads to a contradiction by
examining the values of P(0, 0, 0, 0), P(0, 0, 1, 0), P(0, 0, 1, 1), and P(1, 1, 1, 0).

2.3 Given a graph G = (V,E), an independent set of G is a subset S ⊆ V of the vertices, such that no two
vertices in S is connected by an edge in E. Precisely, if i, j ∈ S then (i, j) /∈ E. We let IS(G) denote
the set of all independent sets of G, and let Z(G) = |IS(G)| denote its size, i.e. the total number
of independent sets in G. The number of independent sets Z(G) is at least 1 + |V |, since the empty
set and all subsets with single vertex are always independent sets. We are interested in the uniform
probability measure over S:

PIS(G)(S) =
1

Z(G)
I(S ∈ IS(G)) ,

where I(A) is an indicator function which is one if event A is true and zero if false.

(a) The set S can be naturally encoded by a binary vector x ∈ {0, 1}|V | by letting xi = 1 if and
only if i ∈ S. Denote by PG(x) the probability distribution induced on this vector x according to
PIS(G)(S). Show that PG(x) is a pairwise graphical model on G.
[Hint: A pairwise graphical model on a graph G = (V,E) is defined by a factorization of the form
PG(x) = (1/Z)

∏
(i,j)∈E ψi,j(xi, xj).]

(b) Let Ln be the line graph with n vertices, i.e. the graph with vertex set V (Ln) = {1, 2, 3, . . . , n}
and edge set E(Ln) = {(1, 2), (2, 3), . . . , (n− 1, n)}. Derive a formula for Z(Ln).
[Hint: Write a recursion over n, and solve it using a matrix representation.]

(c) With the above definitions, derive a formula for PLn(xi = 1), for each i ∈ {1, . . . , n}. Plot PLn(xi)
versus i for n = 11. Describe the main features of this plot. Can you give an intuitive explanation?
[Hint: Use the recursion from previous subproblem.]

(d) The same probability distribution PLn(x) can be also represented with a Bayesian network. For
example, PG(x) = PX1

(x1)PX2|X1
(x2|x1)PX3|X1,X2

(x3|x1, x2) · · ·PX11|X1···X10
(x11|x1 · · ·x10). Us-

ing the recursions used in (b) and (c), write the conditional probability distributions for this
Bayesian network.

2.4 We again consider the independent set explained in the previous problem. Now let G = Tk,` denote
the rooted tree with branching factor k and ` generations, that is the root has k descendants and each
other node has one ancestor and k descendants except for the leaves. The total number of vertices
is (k`+1−1)/(k−1), and Tk,`=0 is the graph consisting only of the root. We let φ denote the root of Tk,`.

3



(a) Let Z` = Z(Tk,`) denote the total number of independent sets of G = Tk,`. Let Z`(0) be the
number of independent sets in Tk,` such that the root is xφ = 0, and Z`(1) be the number of
independent sets such that xφ = 1. It is immediate that Z0(0) = Z0(1) = 1. Derive a recursion
expressing (Z`+1(0), Z`+1(1)) as a function of (Z`(0), Z`(1)).

(b) Using the above recursion, derive a recursion for the probability that the root belongs to a uni-
formly random independent set. Explicitly, derive a recursion for

p` = PTk,`({xφ = 1}) .

(c) Program this recursion and plot p` as a function of ` ∈ {0, 1, . . . , 50} for four values of k, e.g.
k ∈ {1, 2, 3, 10}. Comment on the qualitative behavior of these plots.

(d) Prove that, for k ≤ 3, the recursion converges to a unique value using Banach’s fixed point
theorem.

4



3 Markov properties

3.1 (Intersection lemma)
In proving that pairwise Markov property implies global Markov property for undirected graphical
models, we used the intersection lemma which states that if µ is strictly positive and

A–(C ∪D)–B, A–(B ∪D)–C,

then

A–D–(B ∪ C) .

Here A–B–C if and only if µ(xA, xC |xB) = µ(xA|xB)µ(xC |xB). From previous homework, we know
that A–(C ∪ D)–B if and only if µ(xA, xB , xC , xD) = a(xA, xC , xD) b(xB , xC , xD) for some function
a(·) and b(·). Similarly, we have µ(xA, xB , xC , xD) = f(xA, xB , xD) g(xB , xC , xD).

(a) Show f(xA, xB , xD) = a′(xA, xD) b′(xB , xD) for some a′(·) and b′(·) and find one such pair of
functions a′ and b′ in terms of a(), b(), g().

(b) Substitute f(·) and prove A–D–(B ∪ C).

(c) Find a counter example when µ is not strictly positive.

3.2 (I-map)
In this problem, we will show that when the distribution µ(x) is not strictly positive (i.e. µ(x) = 0 for
some x), then the I-map for this distribution is not unique. Consider a distribution of 4 binary random
variables x1, x2, x3, and x4 such that µ(x1 = x2 = x3 = x4 = 1) = 0.5 and µ(x1 = x2 = x3 = x4 =
0) = 0.5. The following two undirected graphical models are both minimal I-maps for this distribution,
hence it is not unique.

2

3 4

1 2

3 4

1

(a) Prove that the two undirected graphical models above are minimal I-maps for the distribution
µ(x). You need to show that both graphs are I-maps for the given distribution µ(x) and that
removing any edge results in introducing independencies that are not implied by the distribution
µ(x).

(b) Now, we show that starting with a complete graph and eliminating edges that are pairwise condi-
tionally independent does not always give you an I-map (minimal or not). Start with a complete
graph K4. For each pair of nodes, eliminate the edge between this pair if they are conditionally
independent given the rest of the nodes in the graph. Continue this procedure for all pairs of
nodes and examine the resulting graph. Is this an I-map of the distribution µ(x1, x2, x3, x4)?

Recall from class, that a distribution over x is (globally) Markov with respect to G = (V,E) if,
for any disjoint subsets of nodes A, B, C such that B separates A from C, xA–xB–xC is satisfied.
Recall two other notions of Markovity. A distribution is pairwise Markov with respect to G if, for

5



any two nodes i and j not directly linked by an edge in G, the corresponding variables xi and xj
are independent conditioned on all of the remaining variables, i.e. for all (i, j) /∈ E,

xi–xV \{i,j}–xj

A distribution is locally Markov with respect to G if any node i, when conditioned on the variables
on the neighbors of i, is independent of the remaining variables, i.e. for all i ∈ V ,

xi–x∂i–xV \{i,∂i}

(c) Using the example of distribution on 4 random variables as a counter example, prove that a
distribution is pairwise Markov w.r.t. G does not always imply that it is locally Markov w.r.t.
the same graph G. (However, if the distribution is positive, pairwise Markovity implies local and
global Markovity.)

(d) Using the definitions of Markov properties, prove that if a distribution is globally Markov with
respect to G, then it is locally Markov with respect to G.

(e) (Optional) Using the definitions of Markov properties, prove that if a distribution is locally Markov
with respect to G, then it is pairwise Markov with respect to G.

3.3 (Markov property)
Consider a stochastic process that transitions among a finite set of states s1, . . . , sk over time steps
i = 1, . . . , N . The random variables X1, . . . , XN representing the state of the system at each time step
are generated as follows:

– Sample the initial state X1 = s from an initial distribution p1, and set i := 1.

– Repeat the following:

∗ Sample a duration d from a duration distribution pD over the integers {1, . . . ,M}, where M
is the maximum duration.

∗ Remain in the current state s for the next d time steps, i.e., set

Xi := Xi+1 := . . . := Xi+d−1 := s

∗ Sample a successor state s′ from a transition distribution pT (·|s) over the other states s′ 6= s
(so there are no sef-transitions).

∗ Assign i := i+ d and s := s′.

This process continues indefinitely, but we only observe the first N time steps. You need not worry
about the end of the sequence to do any of the problems. As an example calculation with this model,
the probability of the sample state sequence s1, s1, s1, s2, s3, s3 is

p1(s1)pD(3)pT (s2|s1)pD(1)pT (s3|s2)
∑

2≥d≤M

pD(d) .

Finally, we do not directly observe the Xi’s, but instead observe emissions yi at each step sampled
from a distribution pYi|Xi(yi|xi).

(a) For this part only, suppose M = 2, and pD(d) =

{
0.6 for d = 1
0.4 for d = 2

, and each Xi takes on a

value from an alphabet {a, b}. Draw a minimal directed I-map for the first five time steps using
the variables (X1, . . . , X5, Y1, . . . , Y5). Explain why none of the edges can be removed.
[Note: you do not need to solve part (a) in order to solve part (b) and (c).]

6



(b) This process can be converted to an HMM using an augmented state representation. In particular,
the states of this HMM will correspond to pairs (x, t), where x is a state in the original system,
and t represents the time elapsed in that state. For instance, the state sequence s1, s1, s1, s2, s3, s3
would be represented as (s1, 1), (s1, 2), (s1, 3), (s2, 1), (s3, 1), (s3, 2). the transition and emission
distribution for the HMM take the forms

p̃Xi+1,Ti+1|Xi,Ti(xi+1, ti+1|xi, ti) =

 φ(xi, xi+1, ti) if ti+1 = 1 and xi+1 6= xi
ξ(xi, ti) if ti+1 = ti + 1 and xi+1 = xi
0 otherwise

and p̃Yi|Xi,Ti(yi|xi, ti), respectively. Express φ(xi, xi+1, ti), ξ(xi, ti), and p̃Yi|Xi,Ti(yi|xi, ti) in
terms of parameters p1, pD, pT , pYi|Xi , k, N , and M of the original model.

(c) We wish to compute the marginal probability for the final state XN given the observations
Y1, . . . , YN . If we naively apply the sum-product algorithm to the construction in part (b),
the computational complexity is O(Nk2M2). Show that by exploiting additional structure in
the model, it is possible to reduce the complexity to O(N(k2 + kM)). In particular, give the
corresponding rules for computing the forward messages νi+1→i+2(xi+1, ti+1) from the previous
message νi→i+1(xi, ti). Do not worry about the beginning or the end of the sequence and restrict
your attention to 2 ≤ i ≤ N − 1.
[Hint: substitute your solution from part (b) into the standard update rule for HMM messages
and simplify as much as possible.]
[Note: If you cannot fully solve this part of the problem, you can receive substantial partial credit
by constructing an algorithm with complexity O(Nk2M).]

3.4 (I-map)
Consider random variables X1, X2, Y1, . . . , YN , Z1, . . . , ZN distributed according to

pX1,X2,Y,Z(x1, x2, y, z) = pX1
(x1)pX2

(x2)

N∏
i=1

[
pY |X1

(yi|x1)pZ|Y,X2
(zi|yi, x2)

]
,

where X1, Y1, . . . , YN , Z1, . . . , ZN take on values in {1, 2, . . . ,K} and X2 instead takes on a value in
{1, 2, . . . , N}. A minimal directed I-map for the distribution is as follows:

x1

x2

z1 z2 zN

y1 y2 yN

Assume throughout this problem that the complexity of table lookups for pX1 , pX2 , pY |X1
, and pZ|Y,X2

are O(1).

7



(a) A Bayesian network represented by a directed acyclic graph can be turned into a Markov random
field by moralization. The moralized counterpart of a directed acyclic graph is formed by connect-
ing all pairs of nodes that have a common child, and then making all edges in the graph undirected.
Draw the moral graph over random variables X1, X2, Y1, . . . , YN conditioned on Z1, . . . , ZN . In
other words, find an undirected I-map for the distribution of random variables X1, X2, Y1, . . . , YN
conditioned on Z1, . . . , ZN .

Provide a good elimination ordering for computing marginals of X1, X2, Y1, . . . , YN conditioned on
Z1, . . . , ZN . For your elimination ordering, determine α and β such that complexity of computing
pX1|Z1,...,ZN using the associated elimination algorithm is O(NαKβ).

(b) For the remainder of this problem, suppose that we also have the following context-dependent
conditional independencies: Yi is conditionally independent of Zi given X2 = c for all i 6= c. For
fixed z1, . . . , zN , x1, and c, show that

pZ1,...,ZN |X1,X2
(z1 . . . , zN |x1, c) = η(x1, c, zc)λ(c, z1, . . . , zc−1, zc+1, . . . , zN )

for some function η(x1, c, zc) that can be evaluated in O(K) operations for fixed (x1, c, zc), and
some function λ(c, z1, . . . , zN ) that can be evaluated in O(N) operations for fixed (c, z1, . . . , zN ).
Express η(x1, c, zc) in terms of pY |X1

and pZ|Y,X2
, and λ(c, z1, . . . , zc−1, zc+1, . . . , zN ) in terms of

pZ|X2
.

3.5 (Perfect map)

The graph G is a perfect undirected map for some strictly positive distribution µ(x) over a set of random
variables x = (x1, . . . , xn), each of which takes values in a discrete set X . Choose some variable xi and
let xA denote the rest of the variables in the model, i.e., {xi, xA} = {x1, . . . , xN}. Construct the graph
G′ from G by removing the node xi and all its edges. Let some value c ∈ X be given. Show that G′ is
not necessarily a perfect map for the conditional distribution PxA|xi(·|c) by giving a counterexample.

3.6 (Converting MRF and FG)
A straight forward method for converting a Markov Random Field (the general model and not the
pairwise model) into a factor graph model is to write the joint distribution as a product of factors,
each factor corresponding to a maximal clique in the MRF. Hence, an undirected graph of the MRF
can be translated into a factor graph by simply defining a factor node for each maximal clique. Below
is an example of such translation. We call this translation a canonical construction.

1

3

2

4

65

1

3

2

4

65

undirected graphical model associated factor graph

We want to show by constructing an example that the factor graph produced by the canonical con-
struction can have the number of factor nodes exponential in the number of variable nodes. Specifically,
we will show that there exists a constant c > 1 and an undirected graph with n nodes such that the
associated factor graph has at least cn factor nodes for sufficiently large n.

8



(a) First, consider a complete undirected graph with n nodes, where all pairs of nodes are connected
by edges. We denote this graph by Kn. How many factors does the factor graph have that is the
canonical construction of this Kn?

(b) Choose two nodes arbitrarily and erase the edge connecting those two nodes from Kn and call the

resulting graph K
(−1)
n . How many factors does the canonical construction of this K

(−1)
n have?

(c) There are two choices: choose two new nodes that are different from those chosen in the previous
step and erase the edge connecting that pair, or choose one new node and one of the node that was
chosen in the previous step and erase the edge connecting those two nodes. In the former case,

let’s call the resulting undirected graph K
(−2)
n , and the latter, we call the resulting undirected

graph K
(−1.5)
n . How many factors nodes does the canonical construction associated with K

(−2)
n

have? How many factors nodes does the canonical construction associated with K
(−1.5)
n have?

(d) Suppose n is an even number. Explain how to use the above procedures to construct an undirected
graph whose canonical construction has number of factors 2n/2.

1

3

2

4

65

1

3

2

4

65

3

2

4

5

3

2

4

5

chordal graph non-chordal graph K4 K̃4

(e) Next, given an undirected graph G, we want to check whether the associated canonical construc-
tion is a tree or not. A naive attempt is to produce the canonical construction, and check for
loops. This approach can be extremely inefficient, since the size of the resulting factor graph (the
number of factors plus the number of variables) can be exponential in n as we showed previously.

We will show next that there is a polynomial time algorithm for checking that the factor graph
resulting from canonical construction is a tree. First recall that G is chordal if any cycle of length
4 or more nodes has a chord, which is an edge joining two nodes that are not adjacent in the
cycle. Note that testing for cordiality of a given G can be done in linear time.

Recall that a clique containing 4 nodes is denoted by K4. We use K̃4 to denote the graph generated
from deleting one edge from K4, and we say a graph G contains K̃4 if it has a subgraph which
is K̃4. Note that testing whether a graph contains K̃4 can be done in polynomial time (e.g.
brute-force search takes time O(n4)).

Prove that if G contains K̃4 then the resulting canonical construction is not a tree.

(f) Prove that if G is not chordal then the resulting canonical construction is not a tree.

(g) The above two statements prove that “if G contains K̃4 or is not chordal, then canonical con-
struction is not a tree”. We now show the converse to this statement. Specifically, we will show
that “if the canonical construction has at least one loop, then G contains K̃4 or is not chordal”.

First show that a canonical construction can have chordless loops of length 4 or of lengths 8 or
larger even number, but not of length 6.

9



1

2

1

2 3

1

2

3

4
3 4

loop of length 4 loop of length 6 loop of length 8

(h) Show that if canonical construction has a (chordless) loop of length 4, then G has K̃4.

(i) Show that if canonical construction has a (chordless) loop of length 8 or larger, then G is not
chordal, i.e. G contains a loop of length larger than or equal to 4 with no chord.

This proves, together with the previous statement, the desired converse. Hence, we can check
for trees in resulting factor graphs, by checking that the original graph is chordal and does not
contain K̃4, which can be done in polynomial time.

10



4 Sum-product algorithm (belief propagation)

4.1 (Belief propagation)
Consider the (parallel) sum-product algorithm on an undirected tree T = (V,E) with compatibility
functions ψij such that µ(x) =

∏
(i,j)∈E ψij(xi, xj). Consider any initialization of messages, which is

denoted by ν
(0)
i→j(xi) for all directions i → j and all states xi. Messages at step t ≥ 1 are denoted

by ν
(t)
i→j(xi). In this problem, we will prove by induction that the sum-product algorithm, with the

parallel schedule, converges in at most diamater of the graph iterations. (Diameter of the graph is the
length of the longest path.)

(a) ForD = 1, the result is immediate. Consider a graph of diameterD. At each time step the message
that each of the leaf nodes sends out to its neighbors is constant because it does not depend on
messages from any other nodes. Construct a new undirected graphical model T ′ = (V ′, E′) by
stripping each of the leaf nodes from the original graph T . Let ψ′ij(xi, xj) be the compatibility

functions for the new graphical model, and ν
′(t)
i→j(xi) be the messages of (parallel) sum-product

algorithm on the new graphical model. Let L be the set of leaves in T and L′ be the set of nodes
that is adjacent to a node in L. For the new graphical model, we add, for all i ∈ L′,

ψ′i(xi) = ψi(xi)
∏

k∈∂i∩L

∑
xk

ν
(0)
k→i(xk)ψki(xk, xi)

where ψi(xi) = 1 if ψi(xi) is not defined for the original graph G and for all other edges we keep
the original compatibility functions

ψ′ij(xi, xj) = ψij(xi, xj) .

Also we initialize the messages as

ν
′(0)
i→j(xi) = ν

(1)
i→j(xi) .

Show that ν
′(t)
i→j(xi) = ν

(t+1)
i→j (xi) for all (i, j) ∈ E′ and all t ≥ 0.

(b) Argue that T ′ has diameter strictly less than D − 1.

(c) By the induction assumption that the parallel sum-product algorithm converges to a fixed point
after at most d time steps when the diameter is d ≤ D − 1, the sum-product algorithm on T ′

converges after at most D−2 time steps. Show that if we add back the leaf nodes into T ′ and run
(parallel) sum-product algorithm for one more time step, then all messages will have converged
to a fixed point.

4.2 (Belief propagation)
For ` ∈ N, let G` = (V`, E`) be an `× ` two-dimensional grid1. We consider an Ising model on G` with
parameters θ = {θij , θi : (i, j) ∈ E`, i ∈ V`}. This is the probability distribution over x ∈ {+1,−1}V`

µ(x) =
1

ZG
exp

{ ∑
(i,j)∈E`

θij xixj +
∑
i∈V`

θixi

}
(1)

(a) Write the belief propagation (BP) update equations for this model. Also write the update equation
for the log-likelihood ratio

L
(t)
i→j =

1

2
log
(ν(t)i→j(+1)

ν
(t)
i→j(−1)

)
1Namely V` = [`[×[`] and, for any two vertices i, j ∈ V`, i = (i1, i2), j = (j1, j2), i1, i2, j1, j2 ∈ [`], (i, j) ∈ E` if and only if

i1 = j1 and |i2 − j2| = 1, or i2 = j2 and |i1 − j1| = 1.

11



(b) We give a MATLAB implementation of the code bpsol.m, a Python implementation bpsol.py,
and a iPython note book bpsol.ipynb you can download from the course website. Feel free to
use whichever you feel comfortable with. Make yourself familiar with it to answer the following
questions.

(c) Consider the case ` = 10 (and hence n = 100 nodes). For each β ∈ {0.2, 0.4, . . . , 2.8, 3.0},
generate an instance by drawing θi, θij uniformly random in [0, β]. Run the BP iteration and
monitor convergence by computing the quantity

∆(t) ≡ 1

| ~E`|

∑
(i,j)∈~E`

∣∣ν(t+1)
i→j (+1)− ν(t)i→j(+1)

∣∣ . (2)

Here ~E` denotes the set of directed edges in G`, in particular | ~E`| = 2 |E`|.
Plot ∆(t = 15) and ∆(t = 25) versus β, for the random instances generated with β ∈ {0.2, 0.4, . . . , 2.8, 3.0}.
Comment on the results.

(d) Repeat the calculation at the precious point, with now θi, θij uniformly random in [−β,+β], with
β ∈ {0.2, 0.4, . . . , 2.8, 3.0}. Comment on the results.

4.3 (Hidden Markov models; implementation)
In this problem, you will implement the sum-product algorithm on a line graph and analyze the
behavior of S&P 500 index over a period of time. The following figure shows the price of S&P 500
index from January 2, 2009 to September 30, 2009 (http://finance.yahoo.com).

For each week, we measure the price movement relative to the previous week and denote it using a
binary variable (+1 indicates up and −1 indicates down). The price movements from week 1 (the week
of January 5) to week 39 (the week of September 28) are plotted below:

Consider a hidden Markov model in which xt denotes the economic state (good or bad) of week t and
yt denotes the price movement (up or down) of the S&P 500 index. We assume that xt+1 = xt with
probability 0.8, and PYt|Xt(yt = +1|xt = ‘good’) = PYt|Xt(yt = −1|xt = ‘bad’) = q. In addition,
assume that PX1

(x1 = ‘bad’) = 0.8. Download the file sp500.mat (Matlab file) or sp500.csv (csv
file) from course website, and load it into MATLAB or whichever programming language you feel
comfortable with. The variable price move contains the binary data above. Implement the (sequential)
sum-product algorithm and submit the code with the homework solutions.

(a) Assume that q = 0.7. Plot PXt|Y (xt = ‘good’|y) for t = 1, 2, . . . , 39. What is the probability that
the economy is in a good state in the week of September 28, 2009 (week 39)?

12



(b) Repeat (a) for q = 0.9. Compare the results of (a) and (b).

4.4 (Hidden Markov models)
Consider a hidden Markov model (HMM) with binary states xi ∈ {0, 1} for i ∈ {1, . . . , n} and ob-
servations yi’s. For simplicity, let us assume that the model is homogeneous, i.e., ψi,i+1(xi, xi+1) =
ψ(xi, xi+1) and φi(xi, yi) = φ(xi, yi). Given the observations yi’s we are interested in state estimates
x̂i(y1, · · · , yn) that maximizes the probability that at least one of those state estimates x̂i is correct.

(a) The desired state estimates can be expressed in the form

(x̂1, . . . , x̂n) ∈ arg minP(X1 = f(x̂1) ∧ · · · ∧ Xn = f(x̂n)|y1, . . . , yn) .

Determine the function f(·).
(b) Show that if only the marginal distributions µ(xi|y1 . . . , yn), i ∈ {1, . . . , n} for the model are

available, the desired state estimates cannot be determined. In particular, construct two HMMs
whose marginals coincide, but whose state estimates differ.
[Hint: it sufficies to consider a model with n = 2, and in which the observations are independent of
the states thus can be ignored. Accordingly, express your answer in the form of two compatibility
functions ψ(x1, x2) and ψ′(x1, x2).]

(c) Construct an example of an HMM in which our desired estimates are not the same as the MAP
estimates obtained from running the max-product algorithm on our model. The same hint in part
(b) applies, so again give your answer in the form of a compatibility function ψ(x1, x2).

(d) Let’s assume that you are given two pieces of code (e.g., matlab scripts).

The first routine implements the sum-product algorithm, taking as input the potential functions
that describe a homogeneous HMM, and an associated list of n observations. It produces as
output the list of marginal distributions for each associated n states conditioned on the full set of
n observations, for the specified HMM.

The second routine implements the max-product algorithm, taking the same inputs as sum-
product algorithm, but producing as output the max-marginals for each associated n states con-
ditioned on the full set of n observations, for the specified HMM.

Describe how to use one or both of these routines to compute the desired estimates x̂i(y1, . . . , yn)
for i ∈ {1, . . . , n} for our model of interest, assuming that the potentials are strictly positive. You
are free to use these routines with any input values you like (whether or not related to the model

13



of interest), and you can further process the outputs of these routines to compute the desired
state estimates. However, in such further processing, you are not allowed to (re)use the model’s
potential functions or observations.

4.5 (Belief propagation)
Consider the following graphical model.

(a) Draw a factor graph representing the graphical model and specify the factor graph message-passing
equations. For this particular example, explain why the factor graph message-passing equations
can be used to compute the marginals, but the sum-product equations for pairwise MRF cannot
be used.

(b) Define a new random variable x6 = {x1, x2, x3}, i.e., we group variables x1, x2, and x3 into
one variable. Draw an undirected graph which captures the relationship between x4, x5, and
x6. Explain why you can apply the sum-product algorithm to your new graph to compute the
marginals. Compare the belief propagation equations for the new graph with the factor graph
message-passing equations you obtained in part (a).

(c) If we take the approach from part (b) to the extreme, we can simply define a random variable
x7 = {x1, x2, x3, x4, x5}, i.e., define a new random variable which groups all five original random
variables together. Explain what running the sum-product algorithm on the corresponding one
vertex graph means. Assuming that we only care about the marginals for x1, x2, . . . , x5, can you
think of a reason why we would prefer the method in part (b) to the method in this part, i.e., why
it might be preferable to group a smaller number of variables together?

4.6 (Belief propagation)
In this exercise, you will construct an undirected graphical model for the problem of segmenting
foreground and background in an image, and use loopy belief propagation to solve it. Load the image
flower.bmp into MATLAB using imread. (The command imshow may also come in handy.) Partial
labeling of the foreground and background pixels are given in the mask images foreground.bmp and
background.bmp, respectively. In each mask, the white pixels indicate positions of representative
samples of foreground or background pixels in the image. Let y = {yi} be an observed color image,
so each yi is a 3-vector (of RGB values between 0 and 1) representing the pixel indexed by i. Let
x = {xi}, where xi ∈ {0, 1} 2 is a foreground(1)/background(0) labeling of the image at pixel i. Let

14



us say the probabilistic model for x and y given by their joint distribution can be factored in the form

µ(x, y) =
1

Z

∏
i

φ(xi, yi)
∏

(j,k)∈E

ψ(xj , xk) (3)

where E is the set of all pairs of adjacent pixels in the same row or column as in 2-dimensional grid.
Suppose that we choose

ψ(xj , xk) =

{
0.9 if xj = xk
0.1 if xj 6= xk

This encourages neighboring pixels to have the same label–a reasonable assumption. Suppose further
that we use a simple model for the conditional distribution φ(xi, yi) = PYi|Xi(yi|xi):

P(yi|xi = α) ∝ 1

(2π)3/2
√

detΛα
exp

{
− 1

2
(yi − µα)TΛ−1α (yi − µα)

}
+ ε

for yi ∈ [0, 1]3. That is, the distribution of color pixel values over the same type of image region is a
modified Gaussian distribution, where ε accounts for outliers. Set ε = 0.01 in this problem.

(a) Sketch an undirected graphical model that represents µ(x, y).

(b) Compute µα ∈ R3 and Λα ∈ R3×3 for each α ∈ {0, 1} from the labeled masks by finding the
sample mean and covariance of the RGB values of those pixels for which the label xi = α is
known from foreground.bmp and background.bmp. The sample mean of samples {y1, . . . , yN} is

ȳ = 1
N

∑N
i=1 yi and the sample covariance is Cy = 1

N−1
∑N
i=1(yi − ȳ)(yi − ȳ)T .

(c) We want to run the sum-product algorithm on the graph iteratively to find (approximately) the
marginal distribution µ(xi|y) at every i. For a joint distribution of the form (3) with pairwise
compatibility functions and singleton compatibility functions, the local message update rule for
passing the message νj→k(xj) from xj to xk, is represented in terms of the messages from the
other neighbors of xj , the potential functions.

νj→k(xj) ∝ φ(xj , yj)
∏

u∈∂j\k

∑
xu

ψ(xj , xu)νu→j(xu)

Then the final belief on xj is computed as

νj(xj) ∝ φ(xj , yj)
∏
u∈∂j

∑
xu

ψ(xj , xu)νu→j(xu)

Implement the sum-product algorithm for this problem. There are four directional messages:
down, up, left, and right, coming into and out of each xi (except at the boundaries). Use a
parallel update schedule, so all messages at all xi are updated at once. Run for 30 iterations (or
you can state and use some other reasonable termination criterion). Since we are working with
binary random variables, perhaps it is easier to pass messages in log-likelihood. Feel free to use
gridbpsol.m or gridbpsol.py from the website for running the BP algorithm.
After the marginal distributions at the pixels are estimated, visualize their expectation. Where
are the beliefs “weak”?
Visualize the expectation after 1, 2, 3, and 4 iterations. Qualitatively, discuss where the loopy
belief propagation converge first and last.
Run BP with a different value of ε = 0 and comment on the result.
Run BP with a different pairwise potential and comment on the result.

ψ(xj , xk) =

{
0.6 if xj = xk
0.4 if xj 6= xk

15



4.7 (Applying belief propagation)
In this problem, we apply inference techniques in graphical models to find Maximum Weight Matching
(MWM) in a complete bipartite graph. This is one of a few problems where belief propagation converges
and is correct on a general graph with loops. Other such examples include Gaussian graphical models
studied in class.

Consider an undirected weighted complete bipartite graph G(X,Y,E) where X is a set of n nodes and
Y is another set of n nodes: |X| = |Y | = n. In a bipartite complete graph all the nodes in X are
connected to all the nodes in Y and vice versa, as shown below. Further, each edge in this graph is

a complete bipartite graph a perfect matching

associated with a real valued weight wij ∈ R. A matching in a graph is a subset of edges such that no
edges in this matching share a node. A matching is a perfect matching if it matches all the nodes in
the graph. Let π = (π(1), . . . , π(n)) be a permutation of n nodes. In a bipartite graph, a permutation
π defines a perfect matching {(i, π(i)}i∈{1,...,n}. From now on, we use a permutation to represent a
matching. A weight of a (perfect) matching is defined as Wπ =

∑n
i=1 wi,π(i). The problem of maximum

weight matching is to find a matching such that

π∗ = arg max
π

Wπ .

We want to solve this maximization by introducing a graphical model with probabilty proportional to
the weight of a matching:

µ(π) =
1

Z
eCWπ I(π is a perfect matching) ,

for some constant C.

(a) The set of matchings can be encoded by a pair of vectors x ∈ {1, . . . , n}n and y ∈ {1, . . . , n}n,
where each node takes an integer value from 1 to n. With these, we can represent the joint
distribution as a pari-wise graphical model:

µ(x, y) =
1

Z

∏
(i,j)∈{1,...,n}2

ψij(xi, yj)

n∏
i=1

ewi,xi
n∏
i=1

ewyi,i ,

where ψij(xi, yj) =

 0 xi = j and yj 6= i ,
0 xi 6= j and yj = i ,
1 otherwise .

Show that for the pairwise graphical model defined

above, the joint distribution µ(x, y) is non-zero if and only if πx = {(1, x1), . . . , (n, xn)} and
πy = {(y1, 1), . . . , (yn, n)} both are matchings and πx = πy. Further, show that when non-zero,
the probability is equal to 1

Z e
2Wπx .

16



(b) Let

(x∗, y∗) = arg max
x,y

µ(x, y) .

Show that πx∗ = πx∗ is the maximum weight matching on the given graph G with weights {wij}.
(c) Let us denote by li the i-th ‘left’ node in X corresponding to the random variable xi, and by

rj the j-th ‘right’ node in Y corresponding to the random variable yj . We are going to derive
max-product update rules for this problem. Let νli→rj (xi)

(t) denote the message from a left node

li to a right node rj at t-th iteration, which is a vector of size n. Similarly, we let νrj→li(yj)
(t)

denote the message from a right node rj to a leftt node li. We initialize all the messages such
that

ν
(0)
li→rj (xi) = ewi,xi ,

ν
(0)
rj→li(yj) = ewyj,j .

Write the message update rule for the message ν
(t+1)
li→rj (xi) and ν

(t+1)
rj→li(yj) as functions of messages

from previous iterations.

4.8 (Max-product algorithm)

x1 x2 x3 x4

Consider an MRF on a line graph with 4 nodes: x = [x1, x2, x3, x4]. Each node has a ternary alphabet,
i.e. xi ∈ {a, b, c}. Suppose that the joint probability for all 81 possible state sequences are distinct, i.e.
no two realizations have the same probability mass.

Recall that max-marginal is, for example,

µ̃(x2) , max
x{1,3,4}∈{a,b,c}3

µ(x1, x2, x3, x4)

We ran the max-product algorithm and recorded the resulting max-marginals for each node i ∈
{1, 2, 3, 4} and each value in the table below.

i µ̃(xi = a) µ̃(xi = b) µ̃(xi = c)

1 0.2447 0.0753 0.0234
2 0.2447 0.0118 0.1199
3 0.2447 0.1199 0.0169
4 0.2447 0.0346 0.0141

In this problem, we want to find the k-th most likely instance x(k) ∈ {a, b, c}4 for k ∈ {1, 2, 3}. Here, the

k-th most likely instance means a specific joint state x(k) = [x
(k)
1 , x

(k)
2 , x

(k)
3 , x

(k)
4 ] whose joint probability

is the k-th largest among all 81 instances.

(a) Find the most likely instance x(1) and the corresponding probability µ(x(1)) using the information
in the given max-marginals in the above table. Explain your answer.

17



(b) Find the second most likely instance x(2) and the corresponding probability µ(x(2)) using the given
max-marginals above. Explain your answer. Is it uniquely determined? Can x(2) be uniquely
determined from max-marginals (like the table above) assuming joint probability masses are all
distinct, in the general case, for any alphabet size, graph, and number of nodes?

(c) (For this problem ignore the constraints imposed by the structure of the graph.) Given the max-
marginals in the above table, list all sequences that can be the third most likely instance x(3).
Explain your answer. Can the corresponding probability µ(x(3)) be uniquely determined? For
which instances of x(3) in the list you provided, can µ(x(3)) be uniquely determined?

(d) Using the structure of the graph (and the corresponding factorization), and the fact that µ(x(1)) >
µ(x) for all x 6= x(1), find which instances in the list you provided in the previous step cannot be
x(3). Meaning, eliminate as many instances in the previous list by considering the graph structure.
Explain your answer.

(e) Suppose that instead of computing the node max-marginal data above, we ran a different algorithm
and computed edge max-marginals, for example µ̃(x2, x3) , maxx1,x4 µ(x1, x2, x3, x4), for every
edge (i, j) ∈ E. With this edge-max-marginals, can we uniquely determine the third likely instance
x(3)? Explain your answer. Can x(4) be uniquely determined?

4.9 (Convergence of belief propagation)
Although belief propagation on graphs with loops is challenging to analyze, we consider a particular
example in this problem with highly symmetric structure.

An Ising model on a vector of binary variable x, with xi ∈ {−1,+1} is represented by a set of parameter
vector θ = [{θi}i∈[n], {θij}(i,j)∈E ] as

µθ(x) =
1

Zθ
exp

{∑
i∈V

θixi +
∑

(i,j)∈E

θijxixj

}
for some given graph G = (V,E). In this problem, we focus on a simple case where θi = 0 for all
i ∈ V , θij = γ for all (i, j) ∈ E for some positive γ > 0, and the graph is a toroidal grid, as shown
below. Each node is connected to its four neighbors in the grid, and the grid is wrapped around at the
boundaries. We will consider general toroidal grid with more than 3× 3 nodes.

18



(a) Show, by explicitly analyzing the marginal and also by symmetry, that the single node marginal
distributions are uniform for all values of γ, i.e. µ(xi = 1) = µ(xi = −1) = 0.5 for all i. [hint:
start with smaller examples]

(b) Write down the sum-product algorithm update rules for the messages ν
(t)
i→j(xi).

(c) Write down the sum-product update rules again, but with a change of variables. Let

q
(t)
i→j =

ν
(t)
i→j(x1 = −1)

ν
(t)
i→j(x1 = +1)

and rewrite the sum-product update rules in terms of q
(t)
i→j ’s.

(d) Suppose we initialize the messages q
(0)
i→j ’s with the same value (which might not necessarily be

one) such that q
(0)
i→j = q(0) ∈ R for all (i, j) ∈ E. Then, by the symmetry of the graph and

the update rules, all subsequent messages will be the same for all edges, i.e. q
(t)
i→j = q(t) for all

(i, j) ∈ E. Now, write a single sum-product update rule (that does not depend on the particular
edge), by substituting all the messages by q(t) and simplifying the formula you got in the previous
step. Define a function f : R → R such that q(t+1) = f(q(t)) denote this update rule. Plot the
function y = x and y = f(x) for x ∈ [0, 2] and y ∈ [0, 2] for two choices of γ ∈ {0.3, 0.45}. How
many fixed points are there in each plot (a fixed point of q(t+1) = f(q(t)) is where y = x and
y = f(x) cross)?

(e) Notice that we start sum-product algorithm with the usual initialization of ν
(0)
i→j(xi = +1) =

ν
(0)
i→j(xi = −1) = 0.5 (or equivalently q(0) = 1), then the messages stay at this uniform distribution

and do not change. The reason is that the set of all-uniform messages is a fixed point in the sum-
product update equation (or BP equation). This means that all-uniform messages are not changed
after sum-product update.

However, depending on the value of γ this fixed point is either stable or unstable. If it is a
stable fixed point, the BP will still converge to the same fixed point, even if we start at slightly

perturbed initialization. For example let us initialize each message as ν
(0)
i→j(xi = +1) = 0.5 + ε

and ν
(0)
i→j(xi = −1) = 0.5 − ε for some small ε. This is equivalent to initializing q(0) = 0.5−ε

0.5+ε . If
the fixed point is stable, sum-product algorithm will still converge to the all-uniform messages.
Otherwise, the messages will converge to another fixed point (or diverge). Using the two plots
you draw in the previous step, identify whether q(0) = 1 is a stable fixed point or not for γ = 0.3
and also for γ = 0.45. Explain your answer.

(f) The necessary and sufficient condition for a function f to be stable at a point q(0) is that f ′(q(0)) <
1. Analytically find the threshold γ∗ below which the all-ones initialization is stable, and above
which it is not.

19



5 Density evolution

5.1 (Application of LDPC codes)
In this problem we consider using Low-Density Parity Check (LDPC) codes to encode bits to be sent
over a noisy channel.

Encoding. LDPC codes are defined by a factor graph model over a bipartite graph G(V, F,E), where
V is the set of variable nodes, each representing the bit to be transmitted, and F is a set of factor
nodes describing the code and E is a west of edges between a bit-node and a factor node. The total
number of variable nodes in the graph define the length of the code (also known as the block length),
which we denote by n , |V |.
We consider binary variables xi ∈ {−1,+1} for i ∈ V , and all codewords that are transmitted satisfy∏

i∈∂a

xi = +1 ,

which means that there are even number of −1’s in the neighborhood of any factor node.

Channel. We consider a Binary Symmetric Channel, known as BSC(ε), where one bit is transmitted
over the channel at each discrete time step, and each transmitted bit is independently flipped with
probability ε. Precisely, let xi ∈ {+1,−1} be a transmitted bit and yi ∈ {+1,−1} be the received bit
(at time i), then

P(yi = +1|xi = +1) = 1− ε ,
P(yi = −1|xi = +1) = ε ,

P(yi = −1|xi = −1) = 1− ε ,
P(yi = +1|xi = −1) = ε .

The conditional probability distribution over xn1 = [x1, . . . , xn] given the observed received bits yn1 =
[y1, . . . , yn] is

µ(xn1 | yn1 ) =
1

Z

∏
i∈V

ψi(xi, yi)
∏
a∈F

I(⊗x∂a = +1) ,

where ψi(xi, yi) = P(yi|xi) and ⊗ indicates product of binary numbers such that if x∂a = {x1, x2, x3}
then ⊗x∂a = x1×x2×x3 (to be precise we need to take ψi(xi|yi) = P(xi|yi), but this gives the exactly
same conditional distribution as above since any normalization with respect to yi’s are absorbed in the
partition function Z). This is naturally a graphical model on a factor graph G(V, F,E) defined by the
LDPC code.

(a) Write down the belief propagation updates (also known as the (parallel) sum-product algorithm)

for this factor graph model for the messages {ν(t)i→a(·)}(i,a)∈E and {ν̃(t)a→i(·)}(i,a)∈E .

(b) What is the computational complexity (how many operations are required in terms of the degrees
of the variable and factor nodes) for updating one message νi→a(·) and one message ν̃a→i(·)
respectively? Explain how one can improve the computational complexity, to compute the message

ν̃
(t)
a→i(·) exactly in runtime O(da), where da is the degree of the factor node a.

(c) Now, we consider a different message passing algorithm introduced by Robert Gallager in 1963.
The following update rule is a message passing algorithm known as the Gallager A algorithm.
Similar to the belief propagation for BEC channels we studied in class, this algorithm also sends

discrete messages (as opposed to real-valued messages in part (a)). Both ν
(t)
i→a’s and ν̃

(t)
a→i’s are

20



binary, i.e. in {+1,−1}.

ν
(t+1)
i→a =


+1 if ν̃

(t)
b→i = +1 for all b ∈ ∂i \ a ,

−1 if ν̃
(t)
b→i = −1 for all b ∈ ∂i \ a ,

yi otherwise ,

ν̃
(t)
a→i =

∏
j∈∂a\i

ν
(t)
j→a .

The interpretation of this update rule is that νi→a messages trust the received bit yi unless all of
the incoming messages disagree with yi, and ν̃a→i messages make sure that the consistency with
respect to I(⊗x∂a) is satisfied. In this algorithm, the messages take values in {+1,−1} and are the
estimated values of xi’s, as opposed to the distribution over those values as in belief propagation.

We assume that random (`, r)-regular bipartite graph is used to generate the LDPC code. In
the resulting random graph, all variable nodes have degree ` and all factor nodes have degree r.
Among all such graphs, a random graph is selected uniformly at random.

Define W (t) to be the (empirical) distribution of the messages {ν(t)i→a}(i,a)∈E and Z(t) to be the

(empirical) distribution of the messages {ν̃(t)a→i}(i,a)∈E . We assume the messages are initialized in

such way that ν
(0)
i→a = yi for all i ∈ V . We also assume, without loss of generality, that all +1

messages were sent, i.e. xi = +1 for all i. Then, let w(t) = P(W (t) = −1) be the probability

that a message ν
(t)
i→a is −1 for a randomly chosen edge (i, a), and let z(t) = P(Z(t) = −1) be the

probability that a message ν̃
(t)
a→i is −1 for a randomly chosen edge (i, a).

Write the density evolution equations for w(t) and z(t), describing how the random distribution
of the messages w(t) and z(t) evolve. [We are looking for a clean answer. Specifically, the number
of operations required to compute z(t) from w(t) should be O(1). The same technique that reduced
computation in part (b) should be helpful.]

(d) Write the density evolution equation for a single scalar variable w(t), by substituting z(t). This
gives a fixed point equation in the form of w(t) = F (w(t−1)) for some F . Plot (using MATLAB
to your favorite numerical analysis tool) the function y = F (x) and the identify function y = x,
for ` = 3 and r = 4, and for two values of ε = 0.05 and ε = 0.1 Explain the figure in terms of the
error probability of the (3,4)-code on those two BSC(ε)’s.

5.2 (Application of crowdsourcing; implementation) From the lecture, we studied a message passing
algorithm (developed as a belief propagation for Haldane prior):

– initialize: y
(0)
j→i’s as independent and identically distributed Gaussian random variable with mean

one and variance one (this is one choice of initialization and any reasonable choice works as well)

– update messages:

x
(τ+1)
i→j =

∑
k∈∂i\j

y
(τ)
j→iAik

y
(τ+1)
j→i =

∑
k∈∂j\i

x
(τ+1)
k→j Akj

– after enough number (e.g. T ) of iterations estimate each task label by

t̂i = sign

∑
k∈∂i

y
(T )
k→iAik


We will implement this algorithm for the following setting:

21



– the number of tasks n = 100

– the number of workers m = 100

– the (average) degree of a task node is `

– the (average) degree of a worker node is also `

– generate random graph as follows: for each task-worker pair (i, j), connect the two nodes with an
edge with probability `/m and otherwise do not connect with an edge: for example you can use
the following Matlab script to generate such a graph with adjacency matrix E

E = zeros(n,m);

E = ceil( rand(n,m)-1+(l/m) );

– generate random n task labels i.i.d, such that ti = +1 with probability 1/2 and −1 with probability
1/2

t = sign( rand(n,1)-0.5 );

– generate random m worker reliabilities i.i.d., such that pj is drawn from the uniform distribution
over the interval [a, b] for some 0 < a < b < 1

p = a+(b-a)*rand(m,1);

Or, equivalently, in Python:

import numpy as np

E = np.random.choice(2, [n,m], p=[1-l/m, l/m])

t = np.random.choice([-1,1], n)

p = np.random.uniform(a, b, m)

We will fix a = 0.3 and b = 0.95. For each value of ` ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10}, we will generate 100
instances of {random graph, task labels, worker reliabilities}, and for each instance of the problem,
generate the responses of the workers on those tasks assigned to the workers according to the Dawid-
Skene model, i.e.

Aij =

{
ti with probability pj
−ti with probability 1− pj

for all (i, j) ∈ E.

For each instance of the problem, use the proposed algorithm to find the estimates {t̂i}i∈n, and compute
the error probability:

Pe(`) =
1

n

n∑
i=1

I(ti 6= t̂i)

We will compare it to majority voting error rate:

PMV(`) =
1

n

n∑
i=1

I
(
ti 6= sign

(∑
j∈∂i

Aij
))

For each value of ` plot the Pe(`) and PMV(`) averaged over the 100 random instances of the problem,
as a function of ` ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10}.

22



6 Gaussian graphical models

6.1 (Gaussian graphical model and Gaussian BP)
Let x ∼ N−1(hx, Jx), and y = Cx+ v, where v ∼ N (0, R).

1. Find the potential vector hy|x and the information matrix Jy|x of p(y|x).

2. Find the potential vector hx,y and the information matrix Jx,y of p(x, y).

3. Find the potential vector hx|y and the information matrix Jx|y of p(x|y).

4. Consider the following Gaussian graphical model.

x1 x2 x3

x4

y1 y2

Let y1 = x1 + v1, y2 = x3 + v2, and R = I is the identity matrix. Find C. Represent messages
hx3→x2

and Jx3→x2
in terms of y2 and the elements of hx and Jx. [y1 and y2 are measurements,

which should be treated as given and deterministically known.]

5. Now assume that we have an additional measurement y3 = x3 + v3, where v3 is a zero-mean
Gaussian variable with variance 1 and is independent from all other variables. Find the new C.
Represent messages hx3→x2 and Jx3→x2 in terms of y2, y3 and the elements of hx and Jx. [again
y2 should be considered as a measurement which is given, and deterministically known.]

6. The BP message from x3 to x2 define a Gaussian distribution with mean mx3→x2
= J−1x3→x2

hx3→x2

and variance σx3→x2
= J−1x3→x2

. Comment on the difference in the mean and the variance of this
message when computed using a single observation y2 versus when computed using multiple
observations (y2, y3). Can you guess the mean and variance of the BP message when the number
of observations grows to infinity?

6.2 (Gaussian bp)
As mentioned in class, Gaussian BP allows to compute the minimum of a quadratic function

x̂ = arg min
x∈Rn

{1

2
〈x,Qx〉+ 〈b, x〉

}
. (4)

for Q ∈ Rn×n positive definite, where 〈a, b〉 = aT b indicates the standard inner product of two vectors.
In this homework we will consider a case in which Q is not positive definite, but is symmetric and has
full rank. in this case we can still define

x̂ = −Q−1b . (5)

which is a stationary point (a saddle point) of the above quadratic function. The BP update equations
are exactly the same as for the minimization problem with a positive definite Q. We claim that, when
BP converges, it still computes the correct solution x̂.

23



We consider a specific model. An unknown signal s0 ∈ Rn is observed in Gaussian noise

y = As0 + w0 . (6)

Here y ∈ Rm is a vector of observations, A ∈ Rm×n is a measurement matrix, and w0 ∈ Rm is a
vector of Gaussian noise, with i.i.d. entries w0,i ∼ N (0, σ2). We are given y and A, and would like to
reconstruct the unknown vector s0, and hence w0

A popular method consists in solving the following quadratic programming problem (known as ridge
regression):

t̂ = arg min
s∈Rn

{1

2

∥∥y −As∥∥2
2

+
1

2
λ‖s‖22

}
. (7)

We will do something equivalent. For x ∈ Rm+n, x = (z, s), z ∈ Rm, s ∈ Rn, we define a cost function

CA,y(x = (z, s)) = −1

2
‖z‖22 +

1

2
λ‖s‖22 + 〈z, y −As〉 . (8)

We will look for the stationary point of CA,y.

(a) Show that the cost function CA,y(x) can be written in the form

CA,y(x) =
1

2
〈x,Qx〉+ 〈b, x〉 . (9)

Write explicitly the form of the matrix Q ∈ R(m+n)×(m+n) and the vector b ∈ Rm+n.

(b) Let x̂ = (ẑ, t̂) be the stationary point of CA,y(z, s). Assuming it is unique, show that t̂ does
coincide with the ridge estimator (7).

(c) Write the update rule for the BP algorithm (equivalent to the sum-product algorithm) to compute
the stationary point x̂ = (ẑ, t̂) of CA,y(x). [hint: use the same ideas from the Gaussian belief
propagation for positive definite Q.]

(d) Prove the above claim that, if BP converges, then it computes x̂, cf. Eq. (5) even if Q is not
positive definite.

6.3 (Loopy belief propagation) Consider the Gaussian graphical model depicted below. More precisely,
if we let x denote the 4-dimensional vector of variables at the 4 nodes (ordered according to the node
numbering given), then x ∼ N−1(h, J), where J has diagonal values all equal to 1 and non-zero
off-diagonal entries as indicated in the figure (e.g., J12 = −ρ).

24



(a) Confirm (e.g., by checking Sylvester’s criterion to see if the determinants of all principal minors
are positive) that J is a valid information matrix–i.e., it is positive definite–if ρ = .39 or ρ = .4.
Compute the variances for each of the components (i.e., the diagonal elements of Λ = J−1)–you
can use any software to do this if you’d like.

(b) We now want to examine Loopy BP for this model, focusing on the recursions for the informa-
tion matrix parameters. Write out these recursions in detail for this model. Implement these
recursions and try for ρ = .39 and ρ = .4. Describe the behavior that you observe.

(c) Construct the computation tree for this model. Note that the effective “J” – parameters for this
model are copies of the corresponding ones for the original model (so that every time the edge
(1, 2) appears in the computation tree, the corresponding J-component is −ρ). Use Matlab to
check the positive-definiteness of these implied models on computation trees for different depths
and for two different values of ρ (ρ ∈ [0.3, 0.5]). What do you observe that would explain the
result in part (b)?

6.4 (Gaussian elimination)

Consider a random vector x made up of two subvecters x1 and x2, i.e. x =

[
x1
x2

]
, and is jointly Gaussian

vector with potential vector and information matrix denoted by

N−1(h, J) = N−1
([h1
h2

]
,

[
J11 J12
J21 J22

])
(10)

If J12 is all zeros, then inverting J is simple and so is finding the marginal distribution of x1. However,
when J12 is not all zeros matrix, there is work to be done. In this problem, we will prove that
x1 ∼ N−1(ha, Ja) with

ha = h1 − J12J−122 h2 , Ja = J11 − J12J−122 J21 , (11)

using Gaussian elimination.

(a) We will perform an invertible linear transformation to x such that the components of x1 remain
unchanged but the resulting information matrix is sparse. Consider a linear transformation of the
form [

x1
z

]
=

[
I 0
A I

] [
x1
x2

]
=

[
x1

Ax1 + x2

]
for some choice of A. Ideally, we would like to choose A such that x1 and z are independent,

so that the resulting information matrix is sparse. Compute the information matrix of

[
x1
z

]
and

prove that with the choice of A is J−122 J21, x1 and z are independent.

(b) Use the solution from part (a) to show that the marginal distribution of x1 is N−1(ha, Ja) with
ha and Ja given in (11).

(c) The mean m of x is related to the information form by Jm = h. This defines a series of equations,
which can be written as two vector equations

J11m1 + J12m2 = h1 , and

J21m1 + J22m2 = h2 .

Eliminate m2 in the above set of equations and show that what is left is precisely the equation of
the form

Jam1 = ha

25



7 Restricted Boltzmann Machines

7.1 (Restricted Boltzmann Machines)
Restricted Boltzmann Machines (RBMs) are a class of Markov networks that have been used in several
applications, including image feature extraction, collaborative filtering, and in deep belief networks.
An RBM is a bipartite Markov network consisting of a visible (observed) layer and a hidden layer,
where each node is a binary random variable. One way to look at an RBM is that it models latent
factors that can be learned from input features. For example, suppose we have samples of binary user
ratings (like vs. dislike) on 5 movies: Finding Nemo (V1), Avatar (V2), Star Trek (V3), Aladdin (V4),
and Frozen (V5). We can construct the following RBM:

H1 H2

V1 V2 V3 V4 V5

Figure 1: An example RBM with 5 visible units and 2 hidden units.

Here, the bottom layer consists of visible nodes V1, . . . , V5 that are random variables representing the
binary ratings for the 5 movies, and H1, H2 are two hidden units that represent latent factors to be
learned during training (e.g., H1 might be associated with Disney movies, and H2 could represent
the adventure genre). If we are using an RBM for image feature extraction, the visible layer could
instead denote binary values associated with each pixel, and the hidden layer would represent the
latent features. However, for this problem we will stick with the movie example. In the following
questions, let V = (V1, . . . , V5) be a vector of ratings (e.g. the observation v = (1, 0, 0, 0, 1) implies that
a user likes only Finding Nemo and Frozen). Similarly, let H = (H1, H2) be a vector of latent factors.
Note that all the random variables are binary and take on states in {0, 1}. The joint distribution of a
configuration is given by

P (V = v,H = h) =
1

Z
e−E(v,h), (12)

where
E(v, h) = −

∑
ij

wijvihj −
∑
i

aivi −
∑
j

bjhj

is the energy function, {wij}, {ai}, {bj} are model parameters, and

Z = Z({wij}, {ai}, {bj}) =
∑
v,h

e−E(v,h)

is the partition function, where the summation runs over all joint assignments to V and H.

(a) Using Equation (12), show that p(H|V ), the distribution of the hidden units conditioned on all
the visible units can be factorized as

p(H|V ) =
∏
j

p(Hj |V ),

where

p(Hj = 1|V = v) = σ

(
bj +

∑
i

wijvi

)
and σ(s) = es

1+es is the sigmoid function. Note that p(Hj = 0|V = v) = 1− p(Hj = 1|V = v).

26



(b) Give the factorized form of p(V |H), the distribution of the visible units conditioned on all the
hidden units. This should be similar with what’s given in part 1, and so you may omit the
derivation.

(c) Can the marginal distribution over hidden units p(H) be factorized? If so, give the factorization.
If not, give the form of p(H) and briefly justify.

(d) Based on your answers so far, does the distribution in Equation (12) respect the conditional
independences of Figure 1? Explain why or why not. Are there any independences in Figure 1
that are not captured in Equation (12)?

27



8 Markov Chain Monte Carlo methods

8.1 (Cheeger’s inequality)
In this problem, we use the Cheeger’s inequality from class to upper bound the mixing time of a Markov
chain by lower bounding the conductance of the Markov chain. Consider a distribution over matchings
in a graph. A matching in a graph G = (V,E) is a subsets of edges such that no two edges share a
vertex. Here we focus on the special case of a complete bipartite graph G with vertices v1, . . . , vN on
the left and u1, . . . , uN on the right, as shown:

v1

v2

v3

vN

u1

u2

u3

uN

In such a graph, a perfect matching is a matching which includes N edges. We are interested in
sampling from a distribution over perfect matchings. We can denote a perfect matching using the
variables σ = [σij ] ∈ {0, 1}N×N , where σij = 1 is vi and uj are matched and σij = 0 otherwise.
Observe that σ is a perfect matching if and only if

N∑
k=1

σik = 1 for all 1 ≤ i ≤ N

N∑
k=1

σkj = 1 for all 1 ≤ j ≤ N

A perfect matching σ can also be thought of as a permutation σ : {1, . . . , N} → {1, . . . , N}. For
example, if σ12 = σ21 = σ33 = 1, this would correspond to the permutation σ(1) = 2, σ(2) = 1, and
σ(3) = 3.

Consider the distribution defined by a set of weights on the edges wij ≥ 0 for all i and j such that

µ(σ) ∝ exp
{∑

i,j

wijσij

}
I(σ is a perfect matching)

= exp
{∑

i

wiσ(i)

}
I(σ is a perfect matching) .

(a) First, in this part, consider the uniform distribution over perfect matchings, i.e., wij = 0 for all
i, j. Describe a simple procedure to sample σ from this uniform distribution.

(b) Now for the weighted distribution, show that for any perfect matching σ,

µ(σ) ≥ 1

N ! exp(Nw∗)
,

where w∗ = maxi,j wij .

(c) Consider the Metropolis-Hastings rule defined by: choose i, i′ ∈ {1, . . . , N} uniformly at random.
If i = i′, do nothing, otherwise with probability

R = min
{

1 , exp(wiσ(i′) + wi′σ(i) − wiσ(i) − wi′σ(i′))
}

28



swap σ(i) and σ(i′), i.e. define a new permutation σ′ such that σ′(j) = σ(j) for j 6= i, i′ and
σ′(i) = σ(i′) and σ′(i′) = σ(i).

Show that, under this Markov chain, for any valid transition σ → σ′,

Pσ,σ′ = P( next state is σ′ | currect state is σ )

≥ 1

N2 exp(2w∗)
.

(d) For the conductance of this Markov chain, argue using (b) and (c) that

Φ = min
S

∑
σ∈S,σ′∈Sc µ(σ)Pσ,σ′
µ(S)µ(Sc)

≥ 1

N !N2 exp((N + 2)w∗)
,

where S is a set states (or matchings), Sc is the complement of S, and µ(S) =
∑
σ∈S µ(σ).

(e) Using (d), obtain a bound on the mixing time of the Markov chain.

8.2 (Block Gibbs sampling; implementation)
In this problem, we develop an efficient algorithm for sampling from a two-dimensional Ising model
building on the naive Gibbs sampling. In particular, suppose all variables xij take values in {+1,−1}.
Using the graph structure G shown below, define the distribution

µθ(x) =
1

Zθ
exp

{ ∑
(ij,kl)∈E

θxijxkl
}
.

(a) Derive the update rules for a node-by-node Gibbs sampler for this model. Implement the sampler
in Matlab and run it for 3,600,000 iterations on an Ising model of size 60 × 60 with coupling
parameter θ = 0.45. Use uniformly random initialization of xij = +1 with probability 0.5 and
xij = −1 otherwise. Show one instance of the state of the variables after every 360,000 iterations.
For a 60×60 matrix x ∈ {−1,+1}60×60, you can use MATLAB commands imagesc(x);colormap
gray;axis off; to display the state x.

29



(b) Suppose we are given a tree-structured undirected graphical model T with variables y = (y1, . . . , yN ).
Give an efficient procedure for sampling from the joint µ(y).

(c) In block Gibbs sampling, we partition a graph into r subsets A1, . . . , Ar. In each iteration, for
each Ai, we sample xAi from the conditional distribution µ(xAi |xV \Ai). For the Ising model G
described above, consider the two comb-shaped subsets A and B shown below. Describe how to
use your sampler from part (b) to perform the block Gibbs updates. (For this part, you may
assume a black-box implementation of your sampling procedure from part (b).) .

(d) We provide an implementation of the block Gibbs sampler from part (c) in comb gibbs step.m,

comb sum product.m, ising gibbs comb.m. As in part (a), we set θ = 0.45 and run the sampler
for 1000 iterations updating A and then B at every iteration. Run the block Gibbs sampler in
ising gibbs comb.m and analyze the state of the variables after every 100 iterations. Which of
the two samplers appears to mix faster?

You can visually check how much of the initialization is still correlated to current state for different
iterations. Qualitatively assess how long it takes for the Markov chain to forget the initial state.
This can be used as a proxy for mixing time.

30



9 Variational methods

9.1 (Free energy)
In this problem, we are going to compute free energies of simple graphical models and use BP-like fixed
point equations to find the stationary points. We shall consider G` = (V`, E`), an `×` two-dimensional
torus. This has vertex set V` = [`] × [`] and, for any two vertices i, j ∈ V`, i = (i1, i2), j = (j1, j2),
i1, i2, j1, j2 ∈ [`], we let (i, j) ∈ E` if and only if either i1 = j1 and (i2 − j2) ∈ {+1,−1} modulo `, or
i2 = j2 and (i1 − j1) ∈ {+1,−1} modulo `.

We consider the homogeneous Ising model over x ∈ {+1,−1}V`

µ(x) =
1

ZG
exp

{
θe

∑
(i,j)∈E`

xixj + θv
∑
i∈V`

xi

}
,

where θe, θv are parameters.
[It is rare to encounter such a symmetric model in applications. On the other hand, such toy examples
are very useful for developing intuition.]

In the following, fix ` = 10, θv = 0.05.

(a) Consider the naive mean field approximation, and write the naive mean field free energy for

FMF(b) = Eb[logψtot(x)]−
∑
i

∑
xi

bi(xi) log bi(xi) ,

where b = b1(·)× · · · × bn(·) and ψtot(x) =
∏
i∈V ψi(xi)

∏
(i,j)∈E ψij(xi, xj).

Assume then the further restriction bi(xi) = bv(xi) for all i ∈ V` (i.e. the belief is independent of
the vertex). Write an expression FMF(bv) as a function of bv ∈ R2. This is the objective function
to be maximized. Plot the free energy FMF(bv) as a function of a scalar variable a = (bv(+1) −
bv(−1)) ∈ R for θe ∈ {0.2, 0.4, 0.6, 0.8, 1.0}. This is equivalent to setting bv(+1) = (1 + a)/2 and
bv(−1) = (1− a)/2.

Maximize FMF(bv) with respect to bv and plot the optimal value b∗v(+1) and FMF(b∗v) as a function
of θe.

(b) Repeat the same exercise for the Bethe free energy : Write explicitly the Bethe free energy

F(b) =
∑

(i,j)∈E

Ebij [logψij(xi, xj)] +
∑
i∈V

Ebi [logψi(xi)]

−
∑

(i,j)∈E

∑
xi,xj

bij(xi, xj) log bij(xi, xj)−
∑
i∈V

(1− deg(i))
∑
xi

bi(xi) log bi(xi) .

Assume the further restriction bi(xi) = bv(xi) for all i ∈ V`, bij(xi, xj) = be(xi, xj) (i.e. the belief
is independent of the vertex). Write an expression F(bv, be) as a function of bv, be.

Now, consider θe = 1.0, and we want to show that F(bv, be) has more than one stationary
point. The objective function is F(bv, be), and the constraint is that

∑
xi
be(xi, xj) = bv(xj)

and
∑
xj
be(xi, xj) = bv(xi). The Lagrangian can be written as

L(bv, be, λ1, λ2) = F(bv, be) +
∑
xi

λ1(xi)(
∑
xj

be(xi, xj)− bv(xi)) +
∑
xj

λ2(xj)(
∑
xi

be(xi, xj)− bv(xj)) .

31



The derivative gives

∂L

∂bv(xi)
=

∂F(bv, be)

∂bv(xi)
− λ1(xi)− λ2(xi) + C

∂L

∂be(xi, xj)
=

∂F(bv, be)

∂be(xi, xj)
+ λ1(xi) + λ2(xj) + C ′ ,

where C and C ′ are constants (that may differ for each xi, xj) that we ignore because we do not
care about normalization at this point. Write the explicit derivative of the Lagrangian in terms
of `, θv, θe, bv(xi), be(xi, xj), and Lagrangian multipliers λ1(xi) and λ2(xj) which correspond to
the constraints

∑
xj
be(xi, xj) = bv(xi) and

∑
xi
be(xi, xj) = bv(xj).

By symmetry, λ1 and λ2 are the same. So we define λ(xi) = (1/2l2)λ1(xi) = (1/2l2)λ2(xi). Show
that bv(xi) and be(xi, xj) at the stationary point satisfy the below equations, by setting the above
derivative to zero.

bv(xi) ∝ e−(1/3)θvxie(4/3)λ(xi)

be(xi, xj) ∝ eθexixje(λ(xi)+λ(xj)) ,

By the condition that
∑
xi
be(xi, xj) = bv(xj), this gives

eθexi+λ(+) + e−θexi+λ(−) ∝ e−(1/3)θvxi+(1/3)λ(xi) ,

for xi ∈ {+1,−1}. substituting xi = +1 in the above equation, then dividing by the same function
evaluated at xi = −1, we get

eθe+λ(+) + e−θe+λ(−)

e−θe+λ(+) + e+θe+λ(−)
= e−(2/3)θv+(1/3)(λ(+)−λ(−)) ,

Let w = (1/2)(λ(+)− λ(−)) and change variables to get

eθe+w + e−θe−w

e−θe+w + e+θe−w
= e−(2/3)θv+(2/3)w ,

Using the equality that atanh(tanh(a) tanh(b)) = (1/2) log
(
ea+b+e−a−b

ea−b+e−a+b

)
, show that

tanh(θe) tanh(w) = tanh
(1

3
(w − θv)

)
. (13)

Plot the left-hand side and the right-hand side of the above equations to finish the proof that
there are multiple stationary points of Bethe free energy when θv = 0.05 and θe = 1.0.

(c) We want to maximize F(p1, p2) for each value of θe ∈ {0.2, 0.4, 0.6, 0.8, 1.0}. Using the above fixed
point equations in (13), find all the fixed points of w (numerically and/or approximately). For
each fixed point w, find the corresponding value of bv(·), be(·), and F(bv, be). Plot the optimal
(i.e., maximum) value p1 = b∗v(+1) and the free energy F(p∗1, p

∗
2) as a function of θe.

9.2 (Application of minimum cut)
In this problem, we explore the connections between minimum cut of a graph and pairwise Markov
random fields in binary alphabets. Consider a graphical model defined on an undirected graph G(V,E),

µ(x) =
1

Z
exp{−

∑
i∈V

φi(xi)−
∑

(i,j)∈E

φij(xi, xj)} ,

32



for x = [x1, . . . , xn] ∈ {0, 1}n. We further assume for now that φij(0, 0) = φij(1, 1) = 0 for all (i, j) ∈ E
(meaning they are zero-diagonal when we consider the functions as 2× 2 matrices) such that

φi(·) =

[
φi(0)
φi(1)

]
, and φij(·, ·) =

[
0 φij(0, 1)

φij(1, 0) 0

]
.

Our goal is to find the maximum likelihood estimate, the one that maximizes the above joint distribu-
tion. In order to find the maximizer, we pose this question as a problem of finding the minimum cut
of a graph.

Given a pairwise MRF on G(V,E) and the compatibility functions φij(·, ·)’s, we first create a new
directed and weighted graph as follows.

– Add one node for the source s and one node for the sink t.

– Add an edge from source s to all nodes in V (red edges in the figure below).

– Add an edge from all nodes in V to the sink t (blue edges in the figure below).

– make all edges in E reciprocal (by taking the undirected edge E and making them in to two edges
in opposite directions; black edges in the figure below).

An example of a 2× 2 grid G, that is transformed is shown below. The colors do not have particular
meanings, it is there to help you understand the creation of the new graph. We will find the minimum
cut in this transformed graph, after putting appropriate non-negative weights on the edges. A cut
in a graph is partition of the nodes into two disjoint sets, one containing the source and the other
containing the sink. The value of a cut is the total weight of the edges that start from a node in
the same partition as the source and end in a node in the sink side of the partition, i.e. those that
go from the source side of the partition to the other. Note that in the minimum cut, for each node
in V , EITHER the edge connecting to the sink will be cut, OR the edge connecting from the source
will be cut, but NOT BOTH (since the source and the sink are constrained to be on different sides of
the cut). Once we find the minimum cut in this graph, we will assign ZERO to the sink side of the
cut and ONE to the source side. This defines a one-to-one mapping between an assignment of binary
values in the MRF and a cut in the transformed graph H(V ∪ {s, t}, D).

s

t

x1

x4

x2

x3

x1

x4

x2

x3

Our goal is to minimize E(x) ,
∑
i∈V φi(xi) +

∑
(i,j)∈E φij(xi, xj) (which is equivalent as finding the

most likely assignment). The following costs on the edges (also called capacities in max-flow min-cut
context) ensures that the min-cut of the transformed graph H corresponds to the minimizer of E(x).

– Assign φi(0) to the edge from the source (s, i).

– Assign φi(1) to the edge to the sink (i, t).

33



– Assign φ(1, 0) to the edge (i, j) and φij(0, 1) to the edge (j, i).

An example below shows that this assignment ensures that the value of the cut corresponds to the
energy E(x) of the corresponding assignment. In general, cut values are equal to the energy E(x) pf
the corresponding assignment x.

s

t

x1

x4

x2

x3

cut s

t

x1

x4

x2

x3

cut s

t

x1

x4

x2

x3

cut

φ1(0)

φ4(1)

φ14(1, 0)
φ14(0, 1)

assignment: x = [0, 0, 0, 0]
cut value: φ1(0) + φ2(0) + φ3(0) + φ4(0)

x = [1, 0, 0, 0]
φ1(1) + φ14(1, 0) + φ12(1, 0)
+φ2(0) + φ3(0) + φ4(0)

x = [1, 0, 0, 1]
φ1(1) + φ12(1, 0)
+φ2(0) + φ3(0) + φ4(1) + φ34(01)

It is known that when the cost on the edges are non-negative, the minimum cut can be found efficiently.
Hence, when all φij(0, 0) = φij(1, 1) = 0 and φi(xi)’s, φij(0, 1)’s and φij(1, 0)’s are all non-negative,
then the costs on the edges are all non-negative and the minimizer of E(x) can be found efficiently by
running the off-the-shelf min-cut solvers on H.

(a) Suppose φ1(0) < 0, and the rest of the compatibility functions are all non-negative, and φij(0, 0) =
φij(1, 1) = 0 for all (i, j) ∈ E. Find a new φ′1(x1) such that

– φ′1(0) and φ′1(1) are non-negative; and

– the minimizer of E′(x) = φ′1(x1) +
∑
i∈V \{1} φi(xi) +

∑
(i,j)∈E φij(xi, xj) is the minimizer of

E(x).

Then, the corresponding transformed graph H with the new costs from φ′1(x1) can be solved for
min-cut, since all costs are non-negative.

(b) Now, consider a general case when φij(0, 0)’s and φij(1, 1)’s are not necessarily zero. Explain how
to assign costs to the directed edges of H (not just for the example given above, but for general
H(V ∪ {s, t}, D) defined from general G(V,E)), such that the value of a cut in this new
H is equal to the energy E(x) =

∑
i∈V φi(xi) +

∑
(i,j)∈E φij(xi, xj) for the correspond-

ing assignment x. Note that we do not worry about computational complexity of finding the
minimum-cut in this part, and focus in posing the problem as a min-cut problem.
[hint: consider changing φi(xi)’s and φij(xi, xj)’s in order to get new φ′ij(xi, xj)’s such that the
diagonals are zero.]

(c) Suppose φi(xi)’s are all non-negative and φij(xi, xj)’s are also all non-negative. Assigning costs to
the edges of H as per the solution of part (b), it is possible that some edges are assigned negative
costs. This is problematic, since min-cut cannot be efficiently solved. However, when all pairwise
compatibility functions are sub-modular, then the minimizer of E(x) can be found efficiently.

34



We will prove that this is possible, by constructing a new graph H with non-negative costs under
sub-modularity assumption.

A function f(·) over two binary variables is said to be sub-modular if and only if

f(0, 0) + f(1, 1) ≤ f(0, 1) + f(1, 0) .

Suppose φi(xi)’s are non-negative and φij(xi, xj)’s are non-negative and sub-modular. Explain
how to assign costs to the directed edges of H (not just for the example given above, but for
general H(V ∪ {s, t}, D) defined from general G(V,E)), such that

– the value of a cut in this newH is equal to the energy E(x) =
∑
i∈V φi(xi)+

∑
(i,j)∈E φij(xi, xj)

for the corresponding assignment x; and

– all costs are non-negative.

[hint: consider changing φi(xi)’s and φij(xi, xj)’s in order to get new φ′ij(xi, xj)’s such that the
diagonals are zero and the off-diagonals are non-negative.]

35



10 Learning graphical models

36


	Prerequisite
	Definition of graphical models
	Markov properties
	Sum-product algorithm (belief propagation)
	Density evolution
	Gaussian graphical models
	Restricted Boltzmann Machines
	Markov Chain Monte Carlo methods
	Variational methods
	Learning graphical models

