5. Density evolution

Probabilistic analysis of message passing algorithms

variable nodes factor nodes

- consider factor graph model $G=(V, F, E)$ and

$$
\mu(x)=\frac{1}{Z} \prod_{a \in F} \psi_{a}\left(x_{\partial a}\right) \prod_{i \in V} \psi_{i}\left(x_{i}\right)
$$

- sum-product algorithm and max-product algorithms are instances of message-passing algorithms
- discrete $x_{i} \in \mathcal{X}$
- two sets of messages $\left\{\nu_{i \rightarrow a}\left(x_{i}\right)\right\}$ and $\left\{\tilde{\nu}_{a \rightarrow i}\left(x_{i}\right)\right\}$
- update:

$$
\begin{aligned}
\nu_{i \rightarrow a}^{(t+1)} & =F_{i \rightarrow a}\left(\left\{\tilde{\nu}_{b \rightarrow i}^{(t)}: b \in \partial i \backslash a\right\}\right) \\
\tilde{\nu}_{a \rightarrow i}^{(t)} & =G_{a \rightarrow i}\left(\left\{\nu_{j \rightarrow a}^{(t)}: j \in \partial a \backslash i\right\}\right)
\end{aligned}
$$

- assumptions for probabilistic analysis
- a random graph is a graph $G=(V, F, E)$ where E is drawn randomly from a set of possible graphs
e.g., Erdös-Renyi graph, random regular graph
- asymptotic analysis: in the limit $n \rightarrow \infty$
- density evolution is used in
- analyzing channel codes
- analyzing solution space of XORSAT
- analyzing a message-passing algorithm for crowdsourcing
- analyzing belief propagation for community detection
- etc.

Example: channel coding

- sending messages through a noisy channel

- channel is defined by $\mathbb{P}_{Y \mid X}(y \mid x)$
- Binary Erasure Channel (BEC)
- input $x_{i} \in\{0,1\}$, output $y_{i} \in\{0,1, *\}$

- goal: estimate $\widehat{x}_{1} \ldots ., \widehat{x}_{n}$ given y_{1}, \ldots, y_{n}
- performance metric: average bit error probability

$$
P_{\text {error }} \equiv \frac{1}{n} \sum_{i=1}^{n} \mathbb{P}\left(x_{i} \neq \widehat{x}_{i}\right)
$$

Message length vs. block length

code rate r

- no coding: $(01001) \Rightarrow(01 * 0 *)$
- message $k=5$ bits, block length $n=5$ \Rightarrow rate of this code $r \triangleq k / n=1$, delay is one
- $P_{\text {error }}=\epsilon / 2$
- repetition code: $(000111000000111) \Rightarrow(0 * * 1 * 10 * 0 * * * 111)$
- $k=5, n=15$
- rate $r=1 / 3$ and $P_{\text {error }}=\epsilon^{3} / 2$, delay is 3
- in general, $P_{\text {error }}=\epsilon^{1 / r} / 2>0$ (unless rate is zero)
- information theory
- capacity of a BEC is $1-\epsilon$
- there exists a code such that $\lim _{n \rightarrow \infty} P_{\text {error }}=0$ with rate $r<1-\epsilon$
- using the BEC n times, one can reliably send $k=(1-\epsilon) n$ bits of

Modern coding theory

- modern codes $=$ iterative decoding (belief propagation)
- Turbo code
- Low-Density Parity Check (LDPC) code
- Polar code
- etc.
- LDPC code is defined by a factor graph model variable nodes factor nodes

- block length $n=4$
- number of factors $m=2$
- allowed messages $=\{0000,0111,1010,1101\}$
- message size $k \triangleq \log _{2}$ (\# of allowed messages) $=2(k=n-m)$
- rate $r \triangleq k / n=1 / 2$
- received $y=(0 * 1 *)$, then $\widehat{x}=(0111)$
- received $y=(0 * * *)$, then ?

Peeling decoder is equivalent to sum-product for BEC without loss of generality, suppose all 0's sent

Peeling decoder is equivalent to sum-product for BEC without loss of generality, suppose all 0's sent

Peeling decoder is equivalent to sum-product for BEC

 without loss of generality, suppose all 0's sent

Peeling decoder is equivalent to sum-product for BEC without loss of generality, suppose all 0's sent

Peeling decoder is equivalent to sum-product for BEC without loss of generality, suppose all 0's sent

Peeling decoder is equivalent to sum-product for BEC without loss of generality, suppose all 0's sent

Peeling decoder is equivalent to sum-product for BEC without loss of generality, suppose all 0's sent

Peeling decoder is equivalent to sum-product for BEC without loss of generality, suppose all 0's sent

Peeling decoder is equivalent to sum-product for BEC without loss of generality, suppose all 0's sent

Modern coding theory

- decoding using belief propagation

$$
\mu_{y}(x)=\frac{1}{Z} \prod_{i \in V} \mathbb{P}_{Y \mid X}\left(y_{i} \mid x_{i}\right) \prod_{a \in F} \mathbb{I}\left(\oplus x_{\partial a}=0\right)
$$

- use (parallel) sum-product algorithm to find $\mu\left(x_{i}\right)$ and let

$$
\widehat{x}_{i}=\arg \max \mu\left(x_{i}\right)
$$

- minimizes bit error rate

Decoding by sum-product algorithm

- Directly applying parallel sum-product algorithm

$$
\begin{aligned}
& \nu_{i \rightarrow a}^{(t+1)}\left(x_{i}\right)=\mathbb{P}\left(y_{i} \mid x_{i}\right) \prod_{b \in \partial i \backslash\{a\}} \tilde{\nu}_{b \rightarrow i}^{(t)}\left(x_{i}\right) \\
& \tilde{\nu}_{a \rightarrow i}^{(t+1)}=\sum_{x_{\partial a \backslash i\}}} \prod_{j \in \partial a \backslash\{i\}} \nu_{j \rightarrow a}\left(x_{j}\right) \mathbb{I}\left(\oplus x_{\partial a}=0\right)
\end{aligned}
$$

- Notice that all $\nu, \tilde{\nu}$'s can take only one of the following three values:

$$
\nu_{i \rightarrow a}\left(x_{i}\right) \in\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right]\right\}
$$

hence, we will map these vectors to symbols $\{0,1, *\}$

- because (proof by induction)
- initially,

$$
\tilde{\nu}_{a \rightarrow i}^{(0)}\left(x_{i}\right)=\left[\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right], \quad \nu_{i \rightarrow a}^{(1)}\left(x_{i}\right)=\left\{\begin{aligned}
{\left[\begin{array}{l}
1 \\
0
\end{array}\right] } & \text { if } y_{i}=0 \\
{\left[\begin{array}{l}
0 \\
1
\end{array}\right] } & \text { if } y_{i}=1 \\
{\left[\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right] } & \text { if } y_{i}=*
\end{aligned}\right.
$$

- recursively, assuming the input messages up to t are one of the three types,

$$
\left.\begin{array}{l}
\tilde{\nu}_{a \rightarrow i}^{(t+1)}\left(x_{i}\right)=\left\{\begin{aligned}
& {\left[\begin{array}{l}
1 \\
0
\end{array}\right] } \text { if all other bits are determined and add up to } 0 \\
& 0 \\
& 0 \\
& 1
\end{aligned}\right]
\end{array} \begin{array}{l}
\text { if all other bits are determined and add up to } 1 \\
1 / 2 \\
1 / 2
\end{array}\right] \quad \text { if there is at least one bit that is not determined }, ~ \begin{aligned}
& {\left[\begin{array}{l}
1 \\
0
\end{array}\right] } \text { if at least one of the input message is }\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& {\left[\begin{array}{l}
0 \\
1
\end{array}\right] } \text { if at least one of the input message is }\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& \nu_{i \rightarrow a}^{(t+1)}\left(x_{i}\right)=\left\{\begin{array}{l}
\text { if all input messages are }\left[\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right]
\end{array}\right.
\end{aligned}
$$

- consequently, the messages only take those three values
- we will denote those three types of messages as 0,1 , and $*$, meaning determined to be 0 or 1 , or not determined.
- (simplified) Parallel sum-product for BEC
- $\nu_{i \rightarrow a}^{(t)} \in\{0,1, *\}$ our belief about x_{i}
- $\tilde{\nu}_{a \rightarrow i}^{(t)} \in\{0,1, *\}$ our belief about x_{i}
- at iteration 0: $\nu_{i \rightarrow a}^{(0)}=y_{i}$
- at iteration t :

$$
\begin{gathered}
\tilde{\nu}_{a \rightarrow i}^{(t)}=\left\{\begin{aligned}
* & \text { if any of the incoming messages is a } * \\
\oplus x_{\partial a \backslash i} & \text { otherwise }
\end{aligned}\right. \\
\nu_{i \rightarrow a}^{(t)}=\left\{\begin{aligned}
* & \text { if all of the incoming messages are } * \\
x_{b \rightarrow i} & \text { otherwise }
\end{aligned}\right.
\end{gathered}
$$

- this is equivalent to the peeling decoder

Probabilistic analysis: density evolution

- an LDPC code is defined by a graph G
- probabilistic analysis: we want to predict the performance of a given LDPC code G
- to this end, we use density evolution on the computation tree
- if G is locally tree like up to depth k, and if we run sum-product algorithm for k iterations, then the resulting message $\nu_{i \rightarrow a}^{(k)}$ is fully described by the computation tree for the message $\nu_{i \rightarrow a}^{(k)}$:

- however, it is not always possible to apply density evolution
- a few assumptions
- sparse random graph construction
(e.g. random (ℓ, r)-regular graph from the configuration model)
- asymptotic analysis:
in the limit $n \rightarrow \infty$ but finite number of iterations t
- why do we need these assumptions?
- it is difficult to analyze one particular graph, so we resort to the expected performance where the expectation also take into account the randomness in the graph generation
- random sparse graphs are locally tree-like
\star if we consider random (d, d)-regular graphs, the expected number of 2 -cycles is $\left(\frac{1}{n}+\cdots+\frac{d-1}{n}\right) \times n$, which is small compared to the number of edges

Probabilistic analysis: density evolution

- locally-tree like structure ensures that the incoming messages are independent
- formally, as $n \rightarrow \infty$ local neighborhood of a node converges in probability to a random tree
$\mathbb{P}\left(\lim _{n \rightarrow \infty}\right.$ depth k neighborhood of a random i is a tree $)=1$
- density evolution for (ℓ, r)-regular graph
- $z_{t} \in[0,1]$ be the probability a randomly chosen message from $\left\{\nu_{i \rightarrow a}^{(t)}\right\}$ is an erasure
- $w_{t} \in[0,1]$ be the probability a randomly chosen message from $\left\{\tilde{\nu}_{a \rightarrow i}^{(t)}\right\}$ is an erasure
- in the limit $n \rightarrow \infty$, they satisfy the density evolution equations

$$
\begin{aligned}
w_{t} & =1-\left(1-z_{t-1}\right)^{r-1} \\
z_{t} & =\epsilon w_{t}^{\ell-1}
\end{aligned}
$$

$$
z_{t}=\epsilon\left(1-\left(1-z_{t-1}\right)^{r-1}\right)^{\ell-1}
$$

with initial condition $z_{0}=\epsilon$

- density evolution for $(3,6)$ code with $\epsilon=0.4$ (left) and 0.45 (right)

- rate of this code $=0.5$, threshold $\epsilon^{*} \simeq 0.4 x x x$,
- this simple code achieves rate less than the capacity $=1-\epsilon$
- $P_{\text {error }}(t)=\lim _{n \rightarrow \infty} P_{\text {error }}(n, t)$
- analyze $\lim _{t \rightarrow \infty} \lim _{n \rightarrow \infty} P_{\text {error }}(n, t)$, is this what we want?
for a given value of ϵ, we can numerically run the density evolution, since it is an evolution of a scalar value, which gives

$$
\text { bit error rate of }(3,6) \text {-codes }
$$

how do we find ϵ^{*} ?

$$
z_{t}=\epsilon\left(1-\left(1-z_{t-1}\right)^{r-1}\right)^{\ell-1}
$$

let's change the equation to

$$
\left(\frac{z_{t}}{\epsilon}\right)^{1 /(\ell-1)}=1-\left(1-z_{t-1}\right)^{r-1}
$$

for a given ϵ, if there is no overlap, then achieve zero error probability

$$
\int_{0}^{1} \epsilon y^{\ell-1} d y=\frac{\epsilon}{\ell}, \quad \int_{0}^{1}\left(1-(1-x)^{r-1}\right) d x=1-\frac{1}{r}
$$

rate of the code $=1-\frac{\ell}{r}$ vs. capacity $=1-\epsilon$ extend this analysis to construct capacity achieving tornado codes
density evolution for general message passing algorithms variable nodes factor nodes

- consider factor graph model $G=(V, F, E)$ and

$$
\mu(x)=\frac{1}{Z} \prod_{a \in F} \psi_{a}\left(x_{\partial a}\right) \prod_{i \in V} \psi_{i}\left(x_{i}\right)
$$

- update:

$$
\begin{aligned}
\nu_{i \rightarrow a}^{(t+1)} & =F_{i \rightarrow a}\left(\left\{\tilde{\nu}_{b \rightarrow i}^{(t)}: b \in \partial i \backslash a\right\}\right) \\
\tilde{\nu}_{a \rightarrow i}^{(t)} & =G_{a \rightarrow i}\left(\left\{\nu_{j \rightarrow a}^{(t)}: j \in \partial a \backslash i\right\}\right)
\end{aligned}
$$

- density evolution equation

$$
\begin{aligned}
z^{(t+1)} & =F\left(w_{1}^{(t)}, \ldots, w_{\ell-1}^{(t)}\right) \\
w^{(t)} & =G\left(z_{1}^{(t)}, \ldots, z_{k-1}^{(t)}\right)
\end{aligned}
$$

- formally, as $n \rightarrow \infty$ a randomly chosen message from $\left\{\nu_{i \rightarrow a}^{(t)}\right\}$ converge in probability to $z^{(t)}$
- who cares about random graphs?
- who cares about asymptotics?

alphabet $x_{i} \in \mathcal{X}$	messages $\nu_{i \rightarrow a} \in \mathcal{Y}$	density \mathcal{Z}
discrete $\{0,1\}$	discrete $\{0,1, *\}$	continuous \mathbb{R}
discrete	continuous $\mathbb{R}^{\|\mathcal{X}\|-1}$	distribution over $\mathbb{R}^{\|\mathcal{X}\|-1}$
continuous \mathbb{R}	distribution over \mathbb{R}	dist. over dist. over \mathbb{R}

- how do we compute evolution of distributions?
- quantization
- Gaussian approximation
- population dynamics: represent the density using 'samples'

