5. Density evolution

Probabilistic analysis of message passing algorithms

• consider factor graph model G = (V, F, E) and

$$\mu(x) = rac{1}{Z} \prod_{a \in F} \psi_a(x_{\partial a}) \prod_{i \in V} \psi_i(x_i)$$

- sum-product algorithm and max-product algorithms are instances of message-passing algorithms
 - discrete $x_i \in \mathcal{X}$
 - ▶ two sets of messages $\{
 u_{i \to a}(x_i)\}$ and $\{\tilde{
 u}_{a \to i}(x_i)\}$
 - update:

$$egin{aligned} &
u_{i
ightarrow a}^{(t+1)} = F_{i
ightarrow a}(\{ ilde{
u}_{b
ightarrow i}^{(t)}: b \in \partial i \setminus a\}) \ & ilde{
u}_{a
ightarrow i}^{(t)} = G_{a
ightarrow i}(\{
u_{j
ightarrow a}^{(t)}: j \in \partial a \setminus i\}) \end{aligned}$$

- assumptions for probabilistic analysis
 - a random graph is a graph G = (V, F, E) where E is drawn randomly from a set of possible graphs
 - e.g., Erdös-Renyi graph, random regular graph
 - asymptotic analysis: in the limit $n o \infty$
- density evolution is used in
 - analyzing channel codes
 - analyzing solution space of XORSAT
 - analyzing a message-passing algorithm for crowdsourcing
 - analyzing belief propagation for community detection
 - etc.

Example: channel coding

• sending messages through a noisy channel

$$x \longrightarrow$$
 Channel $\longrightarrow y$

- channel is defined by $\mathbb{P}_{Y|X}(y|x)$
- Binary Erasure Channel (BEC)
 - input $x_i \in \{0,1\}$, output $y_i \in \{0,1,*\}$

- goal: estimate $\widehat{x}_1, \ldots, \widehat{x}_n$ given y_1, \ldots, y_n
- performance metric: average bit error probability

$$P_{ ext{error}} \equiv rac{1}{n}\sum_{i=1}^n \mathbb{P}(x_i
eq \widehat{x}_i)$$

Message length vs. block length

• using the BEC n times, one can reliably send $k = (1 - \epsilon)n$ bits of Density evolutions 5-5

Modern coding theory

- modern codes = iterative decoding (belief propagation)
 - Turbo code
 - Low-Density Parity Check (LDPC) code
 - Polar code
 - etc.

• LDPC code is defined by a factor graph model

v

- block length n = 4
- number of factors m = 2
- allowed messages = {0000, 0111, 1010, 1101}
- ▶ message size $k \triangleq \log_2(\# \text{ of allowed messages}) = 2 \; (k = n m)$

• rate
$$r riangleq k/n = 1/2$$

• received y = (0 * 1*), then $\widehat{x} = (0111)$

• received
$$y = (0 * **)$$
, then ?

Modern coding theory

• decoding using belief propagation

$$\mu_y(x) = rac{1}{Z} \prod_{i \in V} \mathbb{P}_{Y|X}(y_i|x_i) \prod_{a \in F} \mathbb{I}(\oplus x_{\partial a} = 0)$$

• use (parallel) sum-product algorithm to find $\mu(x_i)$ and let

$$\widehat{x}_i = rg\max \mu(x_i)$$

minimizes bit error rate

Decoding by sum-product algorithm

- Directly applying parallel sum-product algorithm $\nu_{i \to a}^{(t+1)}(x_i) = \mathbb{P}(y_i | x_i) \prod_{b \in \partial i \setminus \{a\}} \tilde{\nu}_{b \to i}^{(t)}(x_i)$ $\tilde{\nu}_{a \to i}^{(t+1)} = \sum_{x_{\partial a \setminus \{i\}}} \prod_{j \in \partial a \setminus \{i\}} \nu_{j \to a}(x_j) \mathbb{I}(\oplus x_{\partial a} = 0)$
- Notice that all $\nu, \tilde{\nu}$'s can take only one of the following three values:

$${
u}_{i o a}(x_i) \in \left\{ egin{bmatrix} 1 \ 0 \end{bmatrix}, egin{bmatrix} 0 \ 1 \end{bmatrix}, egin{bmatrix} 1/2 \ 1/2 \end{bmatrix}
ight\}$$

hence, we will map these vectors to symbols {0, 1, *}because (proof by induction)

initially,

$$ilde{
u}_{a o i}^{(0)}(x_i) = egin{bmatrix} 1/2 \ 1/2 \end{bmatrix}, \quad
u_{i o a}^{(1)}(x_i) = egin{bmatrix} 1 \ 0 \ 1 \end{bmatrix} & ext{if } y_i = 0 \ \begin{bmatrix} 0 \ 1 \ 1 \end{bmatrix} & ext{if } y_i = 1 \ \begin{bmatrix} 1/2 \ 1/2 \end{bmatrix} & ext{if } y_i = 1 \ \begin{bmatrix} 1/2 \ 1/2 \end{bmatrix} & ext{if } y_i = * \end{cases}$$

 recursively, assuming the input messages up to t are one of the three types,

$$ilde{
u}^{(t+1)}_{a
ightarrow i}(x_i) = \left\{egin{array}{c} \left[egin{array}{c} 1 \ 0 \ 1 \ 1 \ 1/2 \ 1/2 \end{bmatrix}
ight.$$

if all other bits are determined and add up to 0 if all other bits are determined and add up to 1

if there is at least one bit that is not determined

$$\nu_{i \to a}^{(t+1)}(x_i) = \begin{cases} \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix} & \text{if at least one of the input message is} \begin{bmatrix} 1\\0\\0\\1\\1 \end{bmatrix} \\ \text{if at least one of the input message is} \begin{bmatrix} 0\\1\\1\\1/2\\1/2 \end{bmatrix} \end{cases}$$

- consequently, the messages only take those three values
- we will denote those three types of messages as 0, 1, and *, meaning determined to be 0 or 1, or not determined.

• (simplified) Parallel sum-product for BEC

►
$$u_{i o a}^{(t)} \in \{0, 1, *\}$$
 our belief about x_i

- $\tilde{\nu}_{a \to i}^{(t)} \in \{0, 1, *\}$ our belief about x_i
- at iteration 0: $u_{i
 ightarrow a}^{(0)} = y_i$
- at iteration t:

$${ ilde
u}^{(t)}_{a o i} = \left\{ egin{array}{c} * \ \oplus x_{\partial a \setminus i} \end{array}
ight.$$

if any of the incoming messages is a * otherwise

$${{
u}_{i
ightarrow a}^{\left(t
ight) }=\left\{ egin{array}{c} st \ x_{b
ightarrow i} \end{array}
ight.$$

- if all of the incoming messages are * otherwise
- this is equivalent to the peeling decoder

Probabilistic analysis: density evolution

- an LDPC code is defined by a graph G
- $\bullet\,$ probabilistic analysis: we want to predict the performance of a given LDPC code G
- to this end, we use **density evolution** on the **computation tree**
- if G is locally tree like up to depth k, and if we run sum-product algorithm for k iterations, then the resulting message $\nu_{i \to a}^{(k)}$ is fully described by the computation tree for the message $\nu_{i \to a}^{(k)}$:

- however, it is not always possible to apply density evolution
- a few assumptions
 - sparse random graph construction
 - (e.g. random (ℓ, r) -regular graph from the configuration model)
 - asymptotic analysis:

in the limit $n
ightarrow \infty$ but finite number of iterations t

- why do we need these assumptions?
 - it is difficult to analyze one particular graph, so we resort to the expected performance where the expectation also take into account the randomness in the graph generation
 - random sparse graphs are locally tree-like
 - ★ if we consider random (d, d)-regular graphs, the expected number of 2-cycles is $(\frac{1}{n} + \cdots + \frac{d-1}{n}) \times n$, which is small compared to the number of edges

Probabilistic analysis: density evolution

- locally-tree like structure ensures that the incoming messages are independent
- \bullet formally, as $n \to \infty$ local neighborhood of a node converges in probability to a random tree

 $\mathbb{P}(\lim_{n o \infty} ext{depth} \ k \ ext{neighborhood} \ ext{of} \ ext{a random} \ i \ ext{is a tree}) = 1$

- density evolution for (ℓ, r) -regular graph
 - *z_t* ∈ [0, 1] be the probability a randomly chosen message from {*v*^(t)_{i→a}} is an erasure
 - $w_t \in [0, 1]$ be the probability a randomly chosen message from $\{\tilde{\nu}_{a \to i}^{(t)}\}$ is an erasure
 - in the limit $n \to \infty$, they satisfy the *density evolution equations*

$$egin{array}{rcl} w_t &=& 1-(1-z_{t-1})^{r-1} \ z_t &=& \epsilon \, w_t^{\ell-1} \end{array}$$

$$z_t \;\;=\;\; \epsilon (1-(1-z_{t-1})^{r-1})^{\ell-1}$$

with initial condition $z_0 = \epsilon$

• density evolution for (3,6) code with $\epsilon = 0.4$ (left) and 0.45(right)

- rate of this code = 0.5, threshold $\epsilon^* \simeq 0.4$ xxx,
- this simple code achieves rate less than the capacity = $1-\epsilon$

•
$$P_{ ext{error}}(t) = \lim_{n o \infty} P_{ ext{error}}(n,t)$$

• analyze $\lim_{t\to\infty} \lim_{n\to\infty} P_{\text{error}}(n, t)$, is this what we want?

for a given value of ϵ , we can **numerically** run the density evolution, since it is an evolution of a scalar value, which gives

bit error rate of (3, 6)-codes

how do we find ϵ^* ?

$$z_t = \epsilon (1 - (1 - z_{t-1})^{r-1})^{\ell-1}$$

let's change the equation to

for a given ϵ , if there is no overlap, then achieve zero error probability

$$\int_{0}^{1} \epsilon y^{\ell-1} dy = rac{\epsilon}{\ell} \;, \quad \int_{0}^{1} (1-(1-x)^{r-1}) dx = 1-rac{1}{r}$$

rate of the code $= 1 - rac{\ell}{r}$ vs. capacity $= 1 - \epsilon$

extend this analysis to construct capacity achieving *tornado codes* Density evolution

density evolution for general message passing algorithms

• consider factor graph model G = (V, F, E) and

$$\mu(x) = rac{1}{Z} \prod_{a \in F} \psi_a(x_{\partial a}) \prod_{i \in V} \psi_i(x_i)$$

▶ update:

$$\nu_{i \to a}^{(t+1)} = F_{i \to a}(\{\tilde{\nu}_{b \to i}^{(t)} : b \in \partial i \setminus a\})$$
 $\tilde{\nu}_{a \to i}^{(t)} = G_{a \to i}(\{\nu_{j \to a}^{(t)} : j \in \partial a \setminus i\})$

density evolution equation

$$egin{aligned} &z^{(t+1)} = F(w_1^{(t)}, \dots, w_{\ell-1}^{(t)}) \ &w^{(t)} = G(z_1^{(t)}, \dots, z_{k-1}^{(t)}) \end{aligned}$$

- formally, as $n o \infty$ a randomly chosen message from $\{
 u_{i o a}^{(t)} \}$ converge in probability to $z^{(t)}$
- who cares about random graphs?
- who cares about asymptotics?

alphabet $x_i \in \mathcal{X}$	messages $ u_{i ightarrow a} \in \mathcal{Y}$	density ${\mathcal Z}$
discrete {0,1}	discrete {0, 1, *}	continuous ${\mathbb R}$
discrete	continuous $\mathbb{R}^{ \mathcal{X} -1}$	distribution over $\mathbb{R}^{ \mathcal{X} -1}$
continuous ${\mathbb R}$	distribution over ${\mathbb R}$	dist. over dist. over ${\mathbb R}$

- how do we compute evolution of distributions?
 - quantization
 - Gaussian approximation
 - population dynamics: represent the density using 'samples'